用户名: 密码: 验证码:
黄淮海农田防护林体系水分利用同步测算模型与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄淮海平原是我国重要粮食产区,农田防护林一直是该区农业综合治理与开发、平原绿化工程的重要内容,为农业生产提供了重要的生态保障。水资源紧缺是制约该地区农业及林业可持续发展的最主要生态要素。为应对水资源日益紧缺、气候变化等诸多因素对粮食安全和林业生态建设的影响,黄淮海农田防护林体系建设与发展应以科学协调农林用水关系为前提。深入研究该地区农田防护林体系多尺度种间水分利用关系,对防护林系统模式优化、种间调控管理、林木水分承载力及区域发展规模的确定等具有重要的科学指导意义。
     以蒸散及水分利用效率为主要指标的种间水分利用关系虽一直是农林复合系统的重要研究内容,但因复合系统结构的复杂性及模式的多样性以及现有实测技术与模拟模型的局限性,制约研究成果的应用价值,亟待开展多尺度种间水分利用同步测算研究。鉴于地面观测与遥感观测在时空尺度及分辨率各具优势,如能将地面与遥感观测在机理上进行融合,构建一套能够兼顾精度与尺度的星地集成综合模型,利用精确的地面观测数据驱动遥感模型,获取多尺度不同组分蒸散及水分利用效率等数据,则具有很好科学价值及应用前景。目前,在农田防护林系统下垫面条件下,有关此方面的综合模型未见公开报道。
     本研究以地处黄淮海平原黑龙港流域的河北省饶阳县官厅农田防护林试验示范区为基地,研究建立农田防护林体系多尺度种间水分利用同步测算的模型,并利用验证后的模型,分析2007年及2008年4-6月10个杨树林网系统杨树与小麦尺度种间水分利用关系,再结合1995年实测数据,分析两个不同林龄阶段防护林网的水分效应。主要结果如下:
     (1)基于光能利用效率和Priestley-Taylor的基本原理,研究构建了以遥感观测为主、常规地面观测为辅的各组分植被生产力(GPP)及蒸散耗水(ET)的同步测算模型(简称“星地集成水分利用模拟模型”),将GPP除以ET,可得到WUE模型。模型的空间分辨率为30m、时间分辨率为8d。
     (2)将波段光谱性质相近、同一时间段的中等分辨率成像光谱影像数据(MODIS)和陆地卫星(LANDSAT)遥感影像数据,进行动态融合,建立了高时空分辨率的遥感数据库,为模型运行提供数据支撑;
     (3)利用小麦及杨树ET及小麦GPP地面测算数据(实测值),对模型进行验证精度进行验证,结果表明:模拟值与实测值存在显著的线性相关关系,其中,小麦ET实测值与模拟值相关系数为0.82,相对误差平均值为14.9%;杨树ET实测值与模拟值相关系数为0.833,相对误差平均值为15.5%,小麦GPP实测值与模拟值相关系数达0.927,相对误差平均值15.62%,所构建的模型具有较高的测算精度,可满足农田防护林体系多尺度种间水分关系及水分效应的同步测算等相关研究工作的要求。
     (4)利用星地集成水分利用模拟模型的测算数据,分析表明:冬小麦拔节-乳熟期间,单位面积上,各杨树林网蒸散耗水量略高于冬小麦耗水量。但实际面积上,各林网系统内冬小麦耗水量均高于林带,二者比值(RET)在2007年及2008年分别为3.37-8.18、3.66-7.20。各网格RET值有较大的差异,在10个供试网格系统间的变异率(CV)在2007年、2008年分别达0.14、0.07。该2年10个网格RET平均值分别为5.14、5.06,即在实际面积上作物蒸散耗水远高于林带。说明总体而言,作物耗水仍是农田防护林体系耗水的主要方式,杨树不会与冬小麦发生激烈争水的矛盾。在黄淮海平原农区,适度发展杨树防护林具有可行性。
     (6)多数网格内作物和林带的ET和GPP均存在显著的对数或线性函数关系(P<0.05),表明用水量是植物生产力的决定因子之一。冬小麦与林带水分利用效率(WUE)的比值在网格间存在一定的差异,但多数网格作物高于林带。
     (7)就以500m×250m,主防护林方向为东-西走向,一路两行(4×8m)的杨树林网-小麦复合系统而言,12a林龄时,在距离林带10m范围内的土壤水分低于CK(简称负效应区)、该范围外的土壤水分则高于CK(简称正效应区);24a林龄时在距离林带15m范围内为负效应区、此范围外为正效应区。网格尺度而言,杨树防护林具有提高土壤贮水量的作用,但这种提高效应会随着树龄的增长而有所降低。在小麦拔节-乳熟期间,对比CK,12a和24a林龄防护林可使0-200cm土层土壤贮水量分别提高7.8%,1.9%;对比CK,上述2个林龄阶段,杨树防护林网均具有降低小麦蒸散量的作用,降低值分别可达19.1%,25.0%,说明随着树龄的增长,防护林对农田蒸散的降低效应并未显著下降,故对因树木根系吸水所导致的林带附近农田土壤水分下降的状况,具有重要的缓解作用。
     (8)利用星地集成水分利用模拟模型的测算数据,分析表明:同一林龄时期不同网格防护林对冬小麦蒸散量均具有一定的降低效应,冬小麦拔节-乳熟期间,10个供试网格系统降低效应的平均值在2007年、2008年分别为15.89%、16.73%,但网格间差异比较大,变幅分别为1.29%-36.08%、9.94%-23.58%,变异率分别可达0.56、0.13。
Huang-Huai-Hai Plain grows a large portion of China’s grain. Its farmland shelterbeltsserve crucial ecological protection for agricultural production, therefore, has been important incomprehensive agriculture development and revegetation of the area. However, sustaineddevelopments of agriculture and forestry are critically constrained by shortage of waterresource in the region. In order to address the increasing scarcity of water resources, climatechange and many other challenges, agricultural and forestry water consumptions must becoordinated in the development of Huang-Huai-Hai Plain farmland shelterbelts. Study of themulti-scale water usage relationships in the region, therefore, is of scientific significance.
     Interspecific water use had been an important research topic on the agroforestry system.Practical application of research findings, however, is often restricted by structure complexity,mode diversity, measure technology and simulation model limitations of the composite systems.This warrants a study of multi-scale water usage through synchronous measurement. By takingadvantages of ground-based observations and remote sensing observations in the spatial andtemporal scales, we can construct a model containing both precision and scale of star integrate,and using accurate ground-based observations of the data-driven remote sensing to get differentcomponents of the multi-scale evapotranspiration and water use efficiency data. Nowadays,researches about this model have not been publicly reported.
     In this study, the basin of Heilonggang located in Raoyang, Hebei Province has beenselected to demonstrate the model development for synchronization estimates of water usage inmulti-scale farmland shelterbelts. By using this model, Poplar and Wheat scale water usagerelationship had been analyzed from data collected in2007and April~June2008. Datacollected in1995are used to compare the water effect of two different age stage shelterbelts.The main results are as follows:
     Based on the basic principles of solar energy utilization efficiency and thePriestley-Taylor theory, a synchronous multi-scale model for various gross primaryproductivity and Evapotranspiration was developed. The model utilizes remote sensingobservations as primary, supplemented by conventional ground-based observations. WUEmodel can be obtained via dividing GPP by the ET. The spatial resolution of the model is30mand time resolution is8d.
     After the dynamic integration of MODIS and LANDSAT in the same wave band and time,the database of high temporal and spatial resolution remote sensing can be achieved.
     The wheat and tree shelterbelt ET and the wheat GPP can be used to verify the modelaccuracy. The results showed that there is a significant linear correlation between the simulatedand measured values. The correlation coefficient of measured and simulated values of wheatET is0.82with an average relative error of14.9%. The correlation coefficient of measured andsimulated values of poplar ET is0.833with an average relative error of15.62%. Thecorrelation coefficient of measured and simulated values of wheat GPP is0.927with anaverage relative error of15.62%. The correlations approve accuracy of the simulation model.
     The modelled results showed that the in the stage of winter wheat such as jointing-milkystage, Poplar shelterbelts evapotranspiration was slightly higher than winter wheat. Actually,each shelterbelt system of winter wheat was higher than forest. The RETs are3.37-8.18、3.66-7.20in2007and2008respectively. RET values of each grid are quite different, forexample the rate of variation (CV) in the10grid system tested in2007,2008are0.14and0.07respectively. These2years of10grids average RET were5.14and5.06, which are muchhigher than the forest on the actual area of crops evapotranspiration. In general, crops still themajor water consumer in farmland. Therefore it is feasible to develop poplar shelterbelts inHuang-Huai-Hai Plain.
     There are significant logarithmic or linear relationship between ET and GPP(P<0.05).This showed that water was one of determining factors of plant productivity. Though WUEdiffers among grids, general trend shows that grid crops have higher WUE than the forest.
     In poplar shelterbelts and Wheat system with forest age of12, soil moisture within10mdistance to the forest is lower than in CK, and the moisture beyond10m is higher than in CK.The border expands to15m if the forest age is doubled, Poplar shelterbelts can improve waterstorage in soil, but the effectiveness might fall as trees age., A comparison of CK in the wheatjointing-milking period shows that12a and24a forest age of shelterbelts can increase waterstorage capacity in0-200cm soil layer by7.8%and1.9%respectively. CK comparison alsoindicates that poplar shelter forests at above two ages can reduce wheat evapotranspiration upto19.1%and25.0%respectively. These results show that the effectiveness of fieldevapotranspiration does not decline with the ageing of shelterbelt significantly. This may helpto mitigate the farmland moisture reduction due to water intake by nearby tree roots.
     The analysis showed that trees at same age indifferent grid shelterbelts all contribute toreduce the volume of winter wheat evapotranspiration. During winter wheat jointing-milkystage, the average reduction of10test grid system are15.89%and16.73%in2007and2008,respectively. But the reduction rate differs greatly among different grids. The variations scalesbetween1.29%and36.08%in2007, between9.94%and23.58%in2008. The mutation rateswere up to0.56and0.13in2007and2008respectively.
引文
Ahl D.E., Gower S.T., Mackay, D.S., et al. Heterogeneity of light use efficiency in a northern Wisconsinforest: implications for modeling net primary production with remote sensing. Remote Sensing ofEnvironment,2004,93:168~178
    Alexandrov G.A., Oikawa T., Yamagata Y. The scheme for globalization of a process-based model explaininggradations in terrestrial NPP and its application. Ecological Modelling,2002,148(3):293~306
    Allen R.G., Pereira L.S., Raes D., et al. Crop evapotranspiration-Guidelines for computing crop waterrequirements-FAO Irrigation and drainage paper56Rome, Food and Agriculture Organization of theUnited Nations.1998
    Baldocchi D.D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates ofecosystems: past, present and future. Global Change Biology,2003,9:479~492
    Barker GL, Hatfield JL and Wanjura DF. Influence of wind on cotton growth and yield. Trans ASAE,1989,32:98~104
    Barr, A.G. Evaluating three evapotranspiration methods in the SLURP macro-scale hydrologicalmodel.Hydrological Process,1997,11(13):1685~1705
    Bemhofer C. Applied single and two layer canopy models to drive conductances of a Scots pine plantationfrom micrometeorological measurements. Theoretical and applied climatology,1996,53(1~3):95~104
    Bird P R. Tree windbreaks and shelter benefits to pasture in temperature grazing systems, AgroforestrySystems,1998,41:35~54
    Bohn B A and Kershner J L. Establishing aquatic restoration priorities using a watershed approach. Journalof Environmental Management,2002,64(4):355~363
    Bonan, G.B. Land-atmosphere CO2exchange simulated by a land surface process model coupled to anatmospheric general circulation model. Journal of Geophysical Research,1995,100(D2):2817~2831
    Brenner A J. Microclimatic modifications in agroforestry. in: Ong C K,et al.Tree-crop interaction: APhysiological Approach. CAB Internation/ICRAF,1996
    Brenner A J. The effect of clumping and stomata response on evaporation from sparse vegetated shrublands.Agri.For.Meteorol.,1997,84:187~205
    Brenner AJ, Jarvis PG and van den Beldt RJ. Windbreak–crop interactions in the Sahel.2. Growthresponse of millet in shelter. Agric For Meteorol,1995,75:235~262
    Brown KW and Rosenberg NJ. Turbulent transport and energy balance as affected by a windbreak in anirrigated sugar beet field. Agron. Journal,1971,63:351~355
    Campbell D.I., Williamson J.L. Evaporation from a raised peat bog. Journal of Hydrology,1997,193:142–160
    Carper, W.J., Lilles, T.M., Kiefer, R.W. The use of intensity–hue-saturation transformations for mergingSPOT panchromatic and multispectral image data. Photogrammetric Engineering and RemoteSensing,1990,56:459~467
    Cellier P., Olioso A.. A simple system for automated longterm Bowen ratio measurement. Agricultural andForest Meteorology,1993,66:81~92
    Chen B.Z., Ge Q.S., Fu D.J. A data-model fusion approach for upscaling gross ecosystem productivity to thelandscape scale based on remote sensing and flux footprint modeling. Biogeosciences,2010,7:2943~2958
    Chen J., Zhu X.L., Vogelmann J. E., et al. A simple and effective method for filling gaps in Landsat ETM+SLC-off images. Remote Sensing of Environment,2011,115:1053~1164
    Cleugh H A. Effect of windbreaks on airflow, microclimates and crop yields. Agroforestry Systems,1998,41:55~84
    Cramer W., Kicklighter D.W., Bondeau A., et al. Comparing global models of terrestrial net primaryproductivity (NPP): Overview and key results. Global Change Biology,1999,5(suppl.1):1~15
    Dolmon A J. A multiple-source land surface energy balance model for use in general circulation Models.Agri.For.Meteorol.,1993,65:21~45
    Domingo F. Evapotranspriation model for semi-arid shrub-lands tested against data from SE Spain.,Agri.For.Meteorol.,1999,95:67~84
    Drolet, G.G., Middleton, E.M., Huemmrich, K.F., et al. Regional mapping of gross light-use efficiency usingMODIS spectral indices. Remote Sensing of Environment,2008,112:3064~3078
    Falge, E., Tenhunen, J., Baldocchi, D., et al. Phase and amplitude of ecosystem carbon release and uptakepotentials as derived from FLUXNET measurements. Agricultural and Forest Meteorology,2002b,113,75~95
    Falge, E., Tenhunen, J., Baldocchi, D., et al. Seasonality of ecosystem respiration and gross primaryproduction as derived from FLUXNET measurements. Agricultural and Forest Meteorology,2002a,113:53~74
    Field C.B., Randerson J.T., Malmstrom C.M. Global net primary production: Combining ecology and remotesensing. Remote Sensing of Environment,1995,51:74~88
    Fredrik L, Andes L. Transpiration response to soil moisture in pine and spruce trees in Sweden. Agriculturaland Forest Meteorology,2002,112:67~85
    Fredrik L,Anders L. Transpiration response to soil moisture in pine and spruce trees in Sweden. Agriculturaland forest meteorology,2002,112:67~85
    Gao, F., Masek, J., Schwaller, M. On the blending of the Landsat and MODIS surface reflectance: Predictingdaily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing,2006,44:2207~2218
    Garatuza Payan, J., Et al. Measurement and modelling evaporation for irrigated crops in North-west Mexico.Hydrological processes,1998,32(9):1397~1418
    Grainier, A., et al. Comprison of xylem sap flow and water vapor flux at the stand level and derivation ofcanopy conductance for scots pine. Theoretical and applied climatology,1996,53(1~3):115~122
    Grainier, A., et al. Transpiration of natural forest and its dependence on climatic factors. Agri. For. Meteorol.,1996,78(1~2):19~26
    Granier A, Mesure du flux de sève brute dans le tronc du Douglas par une novelle méthode thermique.Annals of Forest Science,1987,44:1~14
    Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. TreePhysiology,1987,3:309~320
    Granier A. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Annals ofForest Science,1985,42:193~200
    Grime J P. Stress, competition, resource dynamics and vegetation processes.//Fowden L, Mansfield T,Stoddart J, eds. Plant Adaptation To Environmental Stress. London: James and James Ltd:1993,351~377
    Grusev YM. Modelling annual dynamics of soil water storage for agro-and natural ecosystems of the steppeand forest-steppe zones on a local scale. Agri.For.Meteorol.,1997,85(3~4):171~191
    Guo Yu Qiu. Experimental verification of a mechanistic model to partition evapotranspiration into soil waterand plant. Agri.For.Meteorol.,1999,93(2):79~93
    Hilker, T., Wulder, M. A., Coops, N. C. A new data fusion model for high spatial-and temporal-resolutionmapping of forest based on Landsat and MODIS. Remote Sensing of Environment,2009a,113:1613~1627
    Hilker, T., Wulder, M. A., Coops, N. C. Generation of dense time series synthetic Landsat data through datablending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sensingof Environment,2009b,113:1988~1999
    Huber B. Observation and measurements of sap flow in plant. Berichte Der Deutscher BotanishcenGesselfschaft,1932,50:89~109
    Huete A., Didan K., Miura T., et al. Overview of the radiometric and biophysical performance of the MODISvegetation indices. Remote Sensing of Environment,2002,83:195~213
    Hunt, J.E.R., Piper, S.C., Nemani, R., et al. Global net carbon exchange and intra-annual atmospheric CO2concentrations predicted by and ecosystem process model and three-dimensional atmospheric transportmodel. Global Biogeochemical Cycles,1996,10:431~456
    Irvine M R, Gardiner B A, Morse A P. Energy partition influenced by tree spacing. Agroforestry Systems,1998,39:211~224
    Jia L., Su Z.B., Hurk B., et al. Estimation of sensible heat flux using the Surface Energy Balance System(SEBS) and ATSR measurements. Physics and Chemistry of the Earth,2003,28:75~88
    Jiang L, Islam S. A methodology for estimation of surface evapotranspiration over large areas using remotesensing observations. Geophysical Research Letters,1999,26:2773~2776
    Jiang L, Islam S. Estimation of surface evaporation map over southern Great Plains using remote sensingdata. Water Resources Research,2001,37:329~340
    Kelemen J., Ingram H.A.P. The use of large bottomless lysimeters in the determination of water balances fora raised mire. Hydrology Processes,1999,13:101~111
    Kim C P. Impact of soil heterogeneity in a mixed-layer model of the planetary boundary layer. Hydrologicalsciences Journal,1998,43(4):633~658
    Kowalik P. Diurnal water relations of beech (Fugus Sylvationca L) trees in the mountains of Italy. Agri. For.Meteorol.,1997,84(1~2):11~23
    Kustas W P. Estimation of evapotranspiration with a one-layer and two-layer model of heat transfer overpartial canopy cover. J.Appl. Meteorol.,1990,29:704~715
    Kustas W P. On using mixed-layer transport parameterizations with radiometric surface temperature forcomputing regional scale sensible heat flux. Boundary-layer meteorology,1996,80(3):205~211
    Lawson G J,Crout N M J,Levy P E. The tree-crop interface: representation by coupling of forest and cropprocess-models. Agroforestry Systems,1995,30:199~221
    Leakey R. Definition of agroforesrty revised. Agroforestry Today,1996,8(4):5~7
    Li F., Meng P., Fu D.,et al. Light distribution, photosynthetic rate and yield in a Paulownia–wheatintercropping system in China. Agroforestry Systems,2008,74:163~172
    Liu S.M., Sun R., Sun Z.P. Evaluation of Three Complementary Relationship Approaches forEvapotranspiration over the Yellow River Basin. Hydrological Processes,2006,20:2347~2361
    Lu P,Urban L,Zhao P. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees:theory and practice. Acta Botanica Sinica,2004,46(6):631~646
    Lundgren BO.1990. ICRAF into1990s. Agroforestry Today,2(4):14~16
    Mallick, K., Bhattacharya, B.K., Rao, V.U.M., et al. Latent heat flux estimation in clear sky days overIndian agro-ecosystems using noontime satellite remote sensing data. Agricultural and ForestMeteorology,2009,10:1646~1665
    Marshall D C. Measurement of sap flow in conifers by heat transport. Plant Physiology,1958,33:385~396.
    Maselli F., Papale D., Puletti N., et al. Combining remote sensing and ancillary data to monitor the grossproductivity of water-limited forest ecosystems. Remote Sensing of Environment,2009,113:657~667
    McAneney KJ, Prendergast PT, Judd MJ, et al. Observations of equilibrium evaporation from awindbreak-sheltered kiwifruit orchard. Agric For Meteorol,1992,57:253~264
    Mcintyre R D, Riha S J, Ong C K. Light interception and evapotranspiration in hedgerow agroforestrysystems. Agric. For. Meteorol.,1996,81:31~40
    Meijninger W M L, Hartogensis O K, Kohsiek W, etal. Determination of area-averaged sensible heat fluxeswith a large aperture scintillometer over a heterogeneous surface-flevoland field experiment.Boundary-Layer Meteorology,2002,105:37~62
    Miller DR, Rosenberg NJ and Baglet WT. Soybean water use in the shelter of a slat fence windbreak. AgricMeteorol,1973),11:405~418
    Mobbs D C,Cannell M G R, Crout N M J. Complementarity of light and water use in tropical agroforestrys I:Theoretical model outline, performance and sensitivity. Forest and Management,1998,102:259~274
    Moene AF. Effects of water vapour on the structure parameter of the refractive index fornear-infraredradiation. Boundary-Layer Meteorol,2003,107(3):635~653
    Monteith J E. Evaporation and environment.Symp.Soc. Expl. Biol.,1965,19:205~234
    Monteith J.L. Solar radiation and productivity in tropical ecosystems. Journal Applied Ecology,1972.,7:747~766
    Nichols W D. Energy budgets and resistances to energy transport in sparsely vegetated rangeland,Agri.For.Meteorol.,1992,60:221~247
    Nishida, K., Nemani R.R, Running S.W., et al. An operational remote sensing algorithm of land surfaceevaporation, Journal of Geophysical Research,2003(108):1~45
    Norman J M, Kustas W P. Source approach for estimating soil and vegetation energy fluxes in observationsof directional radiometric surface temperature. Agri.For.Meteorol.,1995,77:263~293
    Oltchev, A., et al. Stomatal and surface conductance of a spruce forest model simulation and fieldmeasurements. physics and chemistry of the Earth,1998,34(4):453~458
    Oltechev A. Application of a six-lay SVAT model from simulation of evapotranspiration and water uptake ina sparse forest. physics and chemistry of the Earth,1996,21(3):195~199
    Onillon B, Durand J L, Gastel F, et al. Drought effects on growth and carbon partitioning in a tall fescuesward grown at different rates of nitrogen fertilization. European Journal of Agronomy,1995,4:91~99
    Parlange, M.B., Albertson, J.D. Regional scale evaporation and the atmospheric boundary layer. Reviews ofGeophysics,1995,33(1):99~124
    Ping L.,Lauren Urban,Zhao P. Granier’s Thermal Dissipation Probe (TDP) method for measuring sap flowin trees: theory and practice. Acta Botanica Sinicae,2004,46(6):631~646
    Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scaleparameters. Mon.Weather Rev,1972,100:81~82
    Prince S.D., Goward S.N. Global net primary production: a remote sensing approach. Journal ofBiogeography,1995,22(6):815~835
    Rana,G. Evapotranspiration measurement for tall plant canopies: the sweet sorghum case. Theoretical andApplied climatology,1996,54(3~4):187~200
    Richards, J.M. Simple expression for the saturation vapor pressure of water in the range-50°to140°. BritishJournal of Applied Physics,1971,4:115~118
    Ringersma J, Sikking. A F S.Determining transpiration coefficients of Sahelian vegetation barriersAgroforestry Systems,2001,51:1~9
    Roerink, G.J., Su, Z., Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energybalance. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere,2000,25:147~157
    Ruimy A., Kergoat L., Bondeau A. Comparing global models of terrestrial net primary productivity (NPP):analysis of differences in light absorption and light-use efficiency Global Change Biology,1999,5(Suppl.1),56~64
    Ruimy, A., Dedieu, G., Saugier, B. TURC: a diagnostic model of continental gross primary productivity andnet primary productivity. Global Biogeochemical Cycles,,1996,10:269~286
    Running S.W., Nemani R., Glassy J. M., et al. MODIS Daily photosynthesis (PSN) and annual net primaryproduction (NPP) product (MOD17) Algorithm Theoretical Basis Document Version3.0,1999,http://modis.gsfc.nasa.gov/data/atbd/atbd_mod16.pdf
    Schaap M.G. and Bouten W. Forest floor evaporation in a dense Douglas fir stand, Agri.For.Meteorol.,1997,193(1~4):97~113
    Scott R. Timescales of land surface evapotranspiration response. J. of Climate,1997,10(4):559~566
    Shettigara V.K. A generalized component substitution technique for spatial enhancement of multispectralimages using a higher resolution data set. Photogrammetric Engineering and Remote Sensing,1992,58:561~567
    Shuttleworth W J, Gurney R J. The theoretical relationship between foliage temperature and canopyresistance in sparse crops. Q.J.R.Meteorol. Soc.,1990,116:794~519
    Shuttleworth W J,Wallace J S. Evaporation from crops—an energy combination theory. Q. J. R. Meteorol.Soc.,1985,111:839~855
    Shuttleworth W J. A one-dimensional theoretical description of the vegetation-atmosphere interaction.Boundary-layer meteorol.,1976,10:273~302
    Shuttleworth W J. Below-canopy fluxes in a simplified one-dimensional theoretical description of thevegetation-atmosphere interaction. Boundary-layer Meteorol.,1979,17:315~331
    Sobrino,J. A., Raissouni, N., Li, Z.L. A comparative study of Land Surface emissivity retrieval from NOAAdata. Remote Sensing of Environment,2001,75(2):256~266
    Soegaard, H., Jensen, N.O., Boegh, E., et al. Carbon dioxide exchange over agricultural landscape usingeddy correlation and footprint modelling. Agricultural and Forest Meteorology,2003,114:153~173
    Stannard D I.A theoretically based determination of Bowen ratio fetch requirements. Boundary-layerMeteorology,1997,83(3):375~406
    Swanson R H, Whitfield D W A. A numerical analysis of heat pulse velocity theory and practice. J. Ex p.Bot.,1981,32:221~239
    Tournebize R,Sinoquet H,Bussiere F. Modelling evapotranspriation partitioning in a shrub/grass alley crop.Agric. For. Meteorol.,1996,81:255~272
    Tourula T, Heikinheimo M. Modelling evapotranspriation from a barley field over the growing season.Agri.For.Meteorol.,1998,91:237~250
    Trotter, G.M., Whitehead, D., Pinkney, E. J. The photochemical reflectance index as a measure ofphotosynthetic light use efficiency for plants with varying foliar nitrogen. International Journal ofRemote Sensing,2002,23:1207~1212
    Verma S.B., Baldocchi D.D., Anderson D.E., et al., Eddy fluxes of CO2,water vapor,and sensible heat over adeciduous forest. Boundary-Layer Meteorology,1996,36:71~91
    Von Randow C, Kruijt B, Holtslag A M, et al. Exploring eddy covariance and large-aperture scintillometermeasurements in an amazonian rain forest. Agricultural and Forest Meteorology,2008,148:680~690
    Wallace J S. Evaporation and radiation interception by neighbouring plants. Q.J.R.Meteorol. Soc.,1997,123:1885~1905
    Wang H.S., Jia G.S., Fu C.B., et al. Deriving maximal light use efficiency from coordinated fluxmeasurements and satellite data for regional gross primary production modeling. Remote Sensing ofEnvironment,2010,11:2248~2258
    Wang K.C., Li Z.Q., Crib. M. Estimation of evaporative fraction from a combination of day and night landsurface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter.RemoteSensing of Environment,2006,102(3-4):293~305
    Wang T.I. et al.A saturation resistant optical scineillometer to measure CO2.J.Opt soc.Am,1978,68:334~338
    Wesely, M.L. The combined effect of temperature and humidity fluctuations on refractive index. J. Appl.Meteorol,1976,15(1):43~49
    Wofsy, S.C., Goulden, M.L., Munger, J.W., et al. Net exchange of CO2in a mid-latitude forest. Science,1993,260:1314~1317
    Xiao X.M., Hollinger D., Aber J.D., et al. Satellite-based modeling of gross primary production in anevergreen needleleaf forest. Remote Sensing of Environment,2004a,89:519~534
    Xiao X.M., Zhang Q.Y., Braswell, B., et al. Modeling gross primary production of temperate deciduousbroadleaf forest using satellite images and climate data. Remote Sensing of Environment,2004b,91:256~270
    Xiao, X. M., Zhang, Q. Y., Hollinger, D., et al. Modeling gross primary production of an evergreenneedleleaf forest using MODIS and climate data. Ecological Applications,2005a,15:954~969
    Xiao, X. M., Zhang, Q. Y., Saleska, S., et al. Satellite-based modeling of gross primary production in aseasonally moist tropical evergreen forest. Remote Sensing of Environment,2005b,94:105~122
    Yamanaka T. Evapotranspiration beneath the soil surface: some observational evidence and numericalexperiments. Hydrological Process,1998,12(13~14):2193~2203
    Yan H.M., Fu Y.L., Xiao X.M., et al. Modeling gross primary productivity for winter wheat-maize doublecropping System using MODIS time series and CO2eddy flux tower data. Agriculture Ecosystems andEnvironment,2009,129:391~400
    Yocky D.A. Multiresolution wavelet decomposition image merger of Landsat Thematic Mapper and SPOTpanchromatic data. Photogrammetric Engineering and Remote Sensing,1996.62(9):1067~1074
    Zhu X.L., Chen J., Gao F., et al. An enhanced spatial and temporal adaptive reflectance fusion model forcomplex heterogeneous regions. Remote Sensing of Environment,2010,114:2610~2623
    陈发祖.梯度扩散理论在能量和物质输送计算中的若干问题.地理研究,1990,9(2);76~84
    陈发祖.蒸发测定方法.地理研究,1988,7(3):78~88
    陈仁升,康尔泗,赵文智等.中国西北干旱区树木蒸腾对气象因子的响应.生态学报,2004,24(3):477~485
    胡玉春.植物与大气、土壤相互作用的数值模拟.中国科学院博士学位论文,1995
    康绍忠,刘晓明,熊运章.土壤-植物-大气连续体水分传输理论及其应用.北京:水利电力出版社,1994
    康斯坦季诺夫.林带与作物产量.闻大中.北京:中国林业出版社,1983
    柯晓新,杨兴国,张旭东.农田蒸散测算的微气象学方法.干旱地区农业研究,1995,13(1):31~40
    李俊,于强,孙晓敏等.华北平原农田生态系统碳交换及其环境调控机制.地球科学,2006,36(Supp.1):210~223
    李小文,刘素红.遥感原理与应用.北京:科学出版社,2008
    刘昌明,于沪宁,土壤-植物-大气系统水分运动实验研究.北京:气象出版社,1997,18-31
    刘奉觉,郑世锴,臧道群.1987.杨树人工幼林蒸腾变异与耗水量估算方法的研究.林业科学23,35-44
    刘奉觉,郑世锴,巨关升.用热脉冲速度记录仪测定树干液流.植物生理学通讯,1993,29(2)110~115
    刘绍民,孙睿,孙中平等.基于互补相关原理的区域蒸散量估算模型比较.地理学报,2004,59(3):331~340
    卢振民,张翼,牛文元.田间作物蒸腾量测算方法研究.生态学报,1988,8(1):35~43
    卢振民.农业生态环境研究,北京:气象出版社,1989,335-343
    陆光明,马秀玲,周厚德等.农林复合系统中农田蒸散及作物水分利用效率的研究.北京农业大学学报,1992,18(4):409~414
    马秀玲,陆光明,徐祝龄.农林复合系统中农田可能蒸散及实际蒸散的研究.北京农业大学学报,1993,19(4):409~415
    孟平,张劲松,宋兆明等.农林复合模式蒸散耗水的研究.林业科学研究,1996,9(3):221~226
    莫兴国.土壤-植物-大气间水分传输模拟与试验.中国科学院博士学位论文,1992
    牛国跃.干旱区非均匀陆面的数值模拟.中国科学院博士学位论文,1995
    桑玉强,吴文良,张劲松等.毛乌素沙地杨树防护林内紫花苜蓿蒸散耗水规律的研究.农业工程学报,2006,22(5):211~227
    申双和.国外森林蒸散的测定、计算与模拟.中国农业气象,1991,12(1):51~55
    孙景生.夏玉米田蒸散的计算.中国农业气象,1995,16(10):1~6
    孙志刚,王勤学,欧阳竹等. MODIS水汽通量估算方法在华北平原农田的适应性验证.地理学报,2004,59:49~59
    王国华,赵文智.遥感技术估算干旱区蒸散发研究进展.地球科学进展,2011,26(8):848~858
    王浩.以ET管理理念为核心的水资源管理在现代水资源管理中的重要性与可行性.http://www.hwcc.com.cn/pub/hwcc/wwgj/bgqy/jjqk/200806/t20080622_202409.html
    王介民,刘绍民,孙敏章等. ET遥感监测与流域尺度水资源管理.干旱气象,2005,23(2):1~7
    王沙生,高孚荣,吴贾明.植物生理学.第2版.北京:中国林业出版社,1991:12~32
    卫林,江爱良,蒋世逵.1981.农田叶面温度计算方法研究.农业气象,1981,3(4):37~42
    翁永玲,田庆久.遥感数据融合方法分析与评价综述.遥感信息,2003,18,49~54
    吴擎龙.田间腾发条件下水热运移数值模拟.清华大学博士论文1993
    谢贤群.麦田蒸腾需水量的计算模式.地理学报,1997,52(6):529~535
    谢正桐.考虑植被影响的陆气耦合模式.力学学报,1998,30(3):267~276
    尹昌君,李春友,张劲松等.黄淮海平原两种不同林龄杨树防护林对麦田土壤水分及蒸散的影响,河南农业大学学报,2011,15(5):542~547
    余新晓.晋西北地区防护林生态系统土壤动力学水文理论及其应用研究.北京林业大学博士论文,1993
    岳广阳,张铜会,刘新平等.热技术方法测算树木茎流的发展及应用.林业科学,2006,42(8):102~108
    张劲松,孟平,宋兆民等.农林复合模式耗水特征的数值模拟——模型的建立与检验.林业科学研究,1996,9(4):331~337
    张劲松,孟平,宋兆民.农林复合模式耗水特征的数值模拟:模型的建立与检验.林业科学研究,1996,9(4):332~337
    张劲松,孟平,尹昌君,等.植物蒸散耗水量计算方法综述.世界林业研究,2001,14(2):23~28
    张劲松,孟平,尹昌君,等.农林复合系统的水分生态特征研究述评.世界林业研究,2003,16(1):10-14
    张劲松,孟平,郑宁等.大孔径闪烁仪法测算低丘山地人工混交林显热通量的可行性分析.地球科学进展,2010,25(11):1283~1290
    张劲松.孟平,刘尉等.应用热扩散式树木液流国产化传感器性能分析.林业科学研究,2007,20(3):370~374
    赵焕胤,朱劲伟,王维华.林网内蒸发水平分布规律的研究.应用生态学报,1994,5(2):138~142
    赵晶晶,刘良云,徐自为等.华北平原冬小麦总初级生产力的遥感监测.农业工程学报,2011,27(Supp.1):346~351
    赵英时等.遥感应用分析原理与方法.科学出版社.2003
    周会珍,刘绍民,于小飞等.毛乌素沙地蒸散量的遥感研究---以内蒙古乌审旗为例.地理科学进展,2006,25(4):79~87
    周云轩,王黎明,陈圣波等.吉林西部陆面遥感蒸散模型研究.吉林大学学报(地球科学版),2005,35(6):812~817
    左大康,谢贤群.农田蒸发研究.北京:气象出版社,1991,1~14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700