用户名: 密码: 验证码:
人工林林分交互式经营可视化模拟技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高林业信息化管理水平服务现代林业建设,是当今林业科学研究与管理实践领域面临的重要工作。分析研究森林生长变化、森林结构特征以及森林经营措施,对于最大限度地发挥森林多种效益意义重大。以森林经理学理论为指导,适应现代林业建设需求,将可视化模拟技术应用到森林经营管理当中,以期利用可视模式提高森林生长模拟精度、增强对森林结构的理解和认识以及提升森林经营决策能力。由此,可为解决现代森林经营中面临的问题、实现森林信息化高效经营提供新方法,进而提高林业信息化管理水平。
     本研究将林分经营理论及实践与计算机可视化模拟技术相结合,提出了人工林林分交互式经营可视化模拟技术,并研发了面向经营者的可用定量化方法实现林分经营目标的人工林林分交互式经营可视化模拟系统,以期为经营者能够实时掌握林分动态变化,实现林分实时监管提供技术支持。试验数据(3块杉木人工林样地,1块杉木马尾松人工林样地)全部来自于湖南攸县黄丰桥国有林场,所做的主要工作和取得的成果有以下几个方面:
     (1)自定义生长模型参数下的林分生长可视化模拟方法
     首先,构建常用的含有未知参数的模型库,封装模型变量计算方法;其次,在构建图形化林分生长活动的基础上,结合参数自定义接口实现了模型的存储;最后,提出了模型的读取与解析方法,并将其与林分生长可视化模拟方法相结合,为后续开展林分生长可视化模拟提供了基础。此种方法将估算模型从程序代码中解放出来,支持经营者人机交互式定义模型参数,为经营者自定义适用于当地林分生长规律的数学估算模型提供了技术支持,保证了模型的估计精度,为提高林分生长可视化模拟精度提供了新思路。
     (2)林分生长、林分结构与林分经营交互过程可视化模拟技术
     首先,结合林分经营实践,参照经营措施技术指标确定方法,在提出7个采伐木决策因子的前提下,利用WF技术创建了21个图形化相关活动(6个经营措施活动:人工整枝、抚育间伐、择伐、渐伐、皆伐和更新采伐,1个林分生长活动,1个林分结构分析活动,7个采伐木决策因子活动和6个其他相关活动),并由此构建了经营措施条件判断可视化模型与3类采伐木决策可视化模型;其次,通过定义工作流运行时引擎与自定义活动跟踪服务,实现了林分生长、林分结构与林分经营交互过程可视化模拟流程的解析与流转;最后,利用GDI+与MOGRE技术,以2维3维图形图像的方式对经营前后的林分状况进行了可视化模拟。以杉木人工林生长伐为例,开展模拟试验。结果显示:在面向经营者的可视化工作流设计器中,此种方法支持经营者利用拖拽、定义的方法构建林分生长、林分结构与林分经营交互过程流程模型,可对此交互过程进行可视化模拟。
     (3)林分交互式经营措施方法决策可视化模拟技术
     归纳林分经营目标,选择方法决策准则(采伐量、郁闭度、平均胸径、混交度等),并将其封装为经营措施方法决策活动的属性,以此构建林分交互式经营措施方法决策活动。分析经营措施方法决策活动执行过程,建立了林分交互式经营措施方法决策模型并实现了可视化模拟。以杉木人工林生长伐方法决策为例,开展了择优试验。结果表明:此种方法可按决策准则(采伐量),从多种具体方法中选择更加贴近经营目标的方法进行可视化模拟,整个过程可适应林分经营实践的要求。
     (4)基于林分虚拟环境的交互式林分经营措施活动可视化模拟技术
     基于Direct3D绘制技术,利用几何体建模方法,以两个圆台模拟树干、两个成一定折合角度的四边形模拟树枝,以冠形曲线控制树枝空间分布,构建了基于胸径、树高、冠高、冠幅、活枝下高与冠形等参数的参数化林木个体模型,最后将所建模型存储为mesh格式的文件(含78个submesh)。在利用MOGRE渲染引擎构建的林分场景中,通过利用射线查询算法和可查询到面片级别的查询算法,实现了交互式林木采伐过程与林木整枝过程的可视化模拟。以杉木人工林为例,开展了模拟试验。结果显示:利用参数化林木个体可视化模型建模方法,可以快速构建反映多个测树因子信息的林木3D模型;交互式林木采伐过程与林木整枝过程得到了形象直观的可视化模拟。在虚拟环境中经营者可精确选择采伐木与整枝对象,增强了经营者与林分虚拟环境的交互能力,为开展经营措施活动提供了另一种可行的途径。
     (5)人工林林分交互式经营可视化模拟系统设计与应用
     在已提出的技术方法、模型和算法的基础上,开发了人工林林分交互式经营可视化模拟系统。以杉木马尾松人工混交林单株择伐为例,进行了系统应用。结果表明:此系统可在保证林分生长模拟精度的情况下,以图形图像的方式对林分生长变化、林分结构特征分析、林分经营措施开展与林分环境进行可视化模拟,并将林分实时状况呈现给经营者。整个系统具有很强的人机交互能力、可视性、可操作性与适用性,可用于建立林分经营流程可视化模型,可视化模拟林分交互式经营,以及提高林分经营自动化能力和真正指导林分经营实践。
     整套技术方法的提出及实现,可为林分经营提供科技含量高的技术方法和应用平台,可实现林分实时监管,并显著提高林分经营管理水平。
Improving the ability of forestry informatization management in order to serve modernforestry is important work in the field of forestry science and management practices nowadays.The analysis and research of forest growth changes, forest structure characteristics and forestmanagement measures have a significant role of maximizing the multiple benefits of forestecosystem. Based on the theory of forest management and adapting to the needs of modernforestry construction, the visual simulation technology is applied to the forest management soas to improve the forest growth simulation accuracy, enhance the understanding and awarenessof forest structure and promote the forest management decision making ability by using thevisual mode. As a result, it can provide a new method for solving problems in the modernforest management and achieving forest informatization efficient management, and thenimprove the forestry informatization management level.
     Combined the theory and practice of stand management and computer visualization andsimulation technology, the visual simulation technique of interactive stand management inplantations and a visual simulation system that was faced the managers and could achieve standmanagement objectives using quantitative methods were proposed in this study in order toprovide the managers with technical support of grasping stand real-time and dynamic changesand managing stands. All test data that included three Chinese fir plantations and one mixedplantation of Chinese fir and masson pine were collected in Huangfengqiao state-owned forestfarm of Youxian, Hunan. The major work and results are as following.
     (1) Visual simulation method of stand growth based on self-defined growth modelsparameters
     First of all, the model library with unknown parameters was build and the calculationmethods of model variables were packaged. Secondly, based on developing graphical standgrowth activities, growth models were stored successfully by using the interface of custom parameters. Finally, the reading and analytical methods of models were proposed andcombined with the visual simulation method of stand growth so as to provide the basis for thefollow-up visual simulation of stand growth. By using this method, managers can definemodels parameters by human-computer interaction. So, this method can provide technicalsupport for defining mathematical models that apply to the local law of stand growth, canensure the precision of models and can provide a new idea for improving the accuracy of visualsimulation of stand growth.
     (2) Visual simulation technique of the interaction process among stand growth, standstructure and stand management
     In the first place, after combing stand management practices, referring to determinationmethods of main technical indexes, and proposing7decision making factors for removingtrees, we developed21graphical related activities by using WF, which contained6management measures-pruning, thinning, selection cutting, shelterwood cutting, clear cuttingand regeneration cutting,1stand growth activity,1stand structure analysis activity,7decisionmaking activities for removing trees and6other related activities, and then the visual model ofthe condition judgment of management measures and3types of decision making visualizationmodels for removed trees were build. In the next place, by defining the workflow runtimeengine and adding tracking services of user-defined activities, the visual simulation of theinteraction process among stand growth, stand structure and stand management was executed.In the end, using GDI+technique and MOGRE rendering engine, the visual simulation ofstand status at2-dimension (2D) and3-dimension (3D) was implemented before and afterstand management. A case study of accretion cutting in a Chinese fir plantation was carried out.The results showed that in the manager-oriented visual workflow designer, this method enabledmanagers to create the flow model of the interaction process among stand growth, standstructure and stand management by dragging and defining activities, and that the interactionprocess could be simulated visually.
     (3) Visual simulation technique of decision making of interactive stand managementmethods
     Summarizing stand management targets and selecting decision making policies-cuttingvolume, crown density, average DBH, mingling, etc., which were packaged the attributes of thedecision making activity, we developed the decision making activity of interactive standmanagement methods. When the implementation of the decision making activity ofmanagement methods was analyzed, the decision making model of interactive standmanagement methods was built and the decision making of interactive stand managementmethods was simulated visually. The decision making of accretion cutting methods in aChinese fir plantation was taken as an example in order to select the better method. The resultsshowed that this method could select one specific method closer to the management target froma variety of methods according to the decision making policy-cutting volume and then itcould be simulated visually, and that the whole process could meet the demands of forestmanagement practices.
     (4) Visual simulation technique of interactive stand management measures activities basedon a stand virtual environment
     Based on direct3D rendering techniques, the geometric modeling method, the trunksimulated through two truncated cones, branchs simulated through two quadrilaterals with afolding angle and the spatial distribution of branches controlled by the crown shape curve, theparameterized model of individual trees was developed, which included the parameters-DBH,height, crown height, crown width, under-branch height, crown shape, etc., and then the modelwas stored as a mesh file which contained78submeshes. In the stand scene built by using theMOGRE rendering engine, the interactive tree cutting process and the interactive pruningprocess were simulated visually based on the ray query algorithm and the ray query algorithmthat can detect the triangular surface. The Chinese fir plantation was taken as an example tocarry out the simulation test. The results showed that the tree’s3D model that included multipletree measurement factors could be built fast by using the parameterized modeling method of individual trees, and that the processes of interactive tree cutting and interactive pruning weresimulated vividly and intuitively. In a stand virtual environment, managers can accuratelyselect the removed and pruned trees, so interactive capabilities between managers and the standvirtual environment are enhanced. Meanwhile, this method can provide another feasible way ofcarring out stand management measures.
     (5) Design and application of visual simulation system of interactive stand management inplantations
     On the basis of the technical methods, models and algorithms proposed in this study, thevisual simulation system of interactive stand management in plantations was developed. Thesingle tree selection felling was taken as an example in a mixed plantation of Chinese fir andmasson pine in order to apply the system. The results showed that this system with ensuring thesimulation accuracy of stand growth could visually simulate stand growth, analysis of standstructure, implementation of stand management measures and stand environment by usinggraphics and images showed to managers and that this system with strong human-computerinteraction capability, visibility, operability and applicability could be used to establish standmanagement process visualization models, visually simulate interactive stand management inplantations, improve stand management automation capabilities and authentically guide standmanagement practices.
     The proposal and realization of a set of technical methods can provide methods withhigher technology and an application platform for stand management, supervise the stand inreal time, and significantly improve the stand management ability.
引文
Amateis R L, Burkhart H E. Growth of young loblolly pine trees following pruning. Forest Ecology andManagement,2011,262(12):2338-2343.
    Amateis R L, Burkhart H E, Walsh T A. Diameter increment and survival equations for loblolly pine treesgrowing in thinned and unthinned plantations on cutover, site-prepared lands. South. J. Appl. For,1989,13:170-174.
    Andreassen K, Tomter S M. Basal area growth models for individual trees of Norway spruce, Scots pine,birch and other broadleaves in Norway. Forest Ecology and Management,2003,180(1):11-24.
    Arii K, Caspersen J P, Jones T A, Thomas S C. A selection harvesting algorithm for use in spatially explicitindividual-based forest simulation models. Ecological Modelling,2008,211(3-4):251-266.
    Atta-Boateng J, Moser J W. A compatible growth and yield model for the management of mixed tropical rainforest. Can J For Res,2000,30(2):311-323.
    Bailey R L, Dell T R. Quantifying diameter distribution with the Weibull function. For Sci,1973,19(2):97-104.
    Baker P J, Wilson J S. A quantitative technique for the identification of canopy stratification in tropical andtemperate forests. Forest Ecology and Management,2000,127(1-3):77-86.
    Baldwin V C, Peterson K D. The effect of spacing and thinning on stand and tree characteristic of38yearold loblolly pine. Forest Ecology and Management,2000,137(3):91-102.
    Bergen S, Fridley J, Ganter M, et al. Predicting the visual effect of forest operations. Journal of Forestry,1995,93(2):33-37.
    Biging G S, Dobbertin M. A comparison of distance-dependent competition measures for height and basalarea growth of individual conifer trees. Forest Science,1992,38(3):695-720.
    Blanco J A, Imbert J B, Castillo F J. Nutrient return via litterfall in two contrasting Pinus sylvestris forests inthe Pyrenees under different thinning intensities. Forest Ecology and Management,2008,256(10):1840-1852.
    Bouchon J, De Reffye P, Barthélémy D. Modélisation et simulation de l'architecture des végétaux. Paris:INRA,1997:34-36.
    Bruce R K. A growth and yield model for thinned stands of yellow-poplar. Forest Science,1986,32(2):1-64.
    Buckley D J, Ulbricht C, Berry D J. The Virtual Forest: Advanced3-D Visualization Techniques for ForestManagement and Research, The ESRI1998User Conference, San Diego, CA, USA.1998.
    Buckman R E. Growth and yield of red pine in Minnesota U.S.D.A. Tech Bull.1962.
    Bukovics B. Pro WF: Windows Workflow in.NET3.5. Berkeley, California, USA: Apress L. P.,2008.
    Burger J A. Management effects on growth, production and sustainability of managed forest ecosystems:Past trends and future directions. Forest Ecology and Management,2009,258(10):2335-2346.
    Cao Q V. Predictions of individual-tree and whole-stand attributes for loblolly pine plantations. ForestEcology and Management,2006,236(2):342-347.
    Caraglio, Y, Becquey J, Gallois F, et al. Réaction de jeunes merisiers à la taille en boisement de terre agricole.Forêt Entreprise,2000,13:25-29.
    Ceder K R. Using silviculture to sustain wildlife habitat: assessing changes and trade-offs in forest habitatsusing a habitat evaluation procedure within the landscape management system. A master thesis ofcollege of forest resources of university of Washington,2002.
    Chumachenkoa S I, Korotkovb V N, Palenova M M, et al. Simulation modelling of long-term standdynamics at different scenarios of forest management for coniferous-broad-leaved forests. EcologicalModelling,2003,170(2-3):345-361.
    Clutter J L. Compatible growth and yield models for loblolly pine. Forest Science,1963,9(3):354-371.
    Crecente-Campo F, Pommerening A, Rodríguez-Soalleiro R. Impacts of thinning on structure, growth andrisk of crown fire in a Pinus sylvestris L. plantation in northern Spain. Forest Ecology and Management,2009,257(9):1945-1954.
    Crookston N L, Dixon G E. The forest vegetation simulator: A review of its structure, content, andapplications. Computers and Electronics in Agriculture,2005,49(1):60-80.
    Contreras M A, Chung W. Developing a computerized approach for optimizing individual tree removal toefficiently reduce crown fire potential. Forest Ecology and Management,2013,289:219-233.
    Cournède P-H, Guyard T, Bayol B, et al. A Forest Growth Simulator Based on Functional-StructuralModelling of Individual Trees. Proceeding PMA’09Proceeding of the2009Plant Growth Modeling,Simulation, Visualization, and Applications,2009,34-41.
    Curtis R O, Clendenen G W, Renkema D L. A new stand simulator for coastal Douglas-fir:DFSIM user’guide. USDA Forest Service General Technical Report,1981, PNW-128:79.
    Daniels R F. Simple competition indices and their correlation with annual loblolly pine tree growth. ForestScience,1976,22(4):454-456.
    Daniels R F, Burkhart H E, Clason T R. A comparison of competition measures for predicting growth ofLoblolly pine trees. Canadian Journal of Research,1986,16(6):1230-1237.
    Davis L S, Johnson K N. Forest Measurement. New York: McGraw-Hill,1987.
    Davision M. The sylvan display program. Columbia: University of Missouri,1995.
    De Freitas J V, Pinard M A. Applying ecological knowledge to decisions about seed tree retention inselective logging in tropical forests. Forest Ecology and Management,2008,256(7):1434-1442.
    Dufour-Kowalski S, Courbaud B, Dreyfus P, et al. Capsis: an open software framework and community forforest growth modeling. Annals of Forest Science,2012,69(2):221-233.
    Eriksson E. Thinning operations and their impact on biomass production in stands of Norway spruce andScots pine. Biomass and Bioenergy,2006,30(10):848-854.
    Fabrika M. Rastovy simulátor SIBYLA a mo nosti jeho uplatnenia pri obhospodarovaní lesa. Lesníckyasopis Forestry Journal,2003a,49:135-151.
    Fabrika M, URSKY,J. Algorithms and software solution of thinning models for SIBYLA growth simulator.Journal of Forest Science,2005,51(10):431-445.
    Falc o A O, Santos M P D, Borges J G. A real-time visualization tool for forest ecosystem managementdecision support. Computers and Electronics in Agriculture,2006,53(1):3-12.
    Gershon N D, Eick S G. Information visualization. IEEE Computer Graphics and Applications,1997,17(4):29-31.
    Girardin M P, Ali A A, Carcaillet C, et al. Fire in managed forests of eastern Canada: Risks and options.Forest Ecology and Management,2013,294:238-249.
    agner M, Lohmander P, Lundgren M. Computer-aided choice of trees for felling. Ecological Modelling,2001,151(1-3):151-161.
    Hegyi F. A simulation model for managing jack-pine stands. In: Fries, J.(Ed.), Growth models for tree andstand simulation. Royal College of Forestry, Stockholm, Sweden,1974, pp.74-90.
    Homyack J A, Harrison D J, Krohn W B. Structural differences between precommercially thinned andunthinned conifer stands. Forest Ecology and Management,2004,194(1-3):131-143.
    Hummel S, Kennedy M, Steel E A. Assessing forest vegetation and fire simulation model performance afterthe Cold Springs wildfire, Washington USA. Forest Ecology and Management,2013,287:40-52.
    Hynynen J. Predicting the growth response to thinning for scots pine stands using individual-tree growthmodels. Silva Fennica,1995,29(3):225-246.
    John P M, Robert L B. Compatible basal area and diameter distribution models for thinned loblolly pineplantation in Santa Catarina, Brazil. Forest Science,1987,33(1):43-51.
    Kang M Z, Cournède P H; De Reffye P, et al. Analytical study of a stochastic plant growth model:application to the GreenLab model. Mathematics and Computers in Simulation,2008,78(1):57-75.
    Karjalainen E, Tyrv inen L. Visualization in forest landscape preference research: a Finnish perspective.Landscape and Urban Planning,2002,59(1):13-28.
    Keenan R J, Kimmins J P. The ecological effects of clear-cutting. Environmental Reviews,1993,1(2):121-144.
    Kirnan D H, Bevilacqua E, Nyland D. Individual tree diameter growth for sugar maple trees in uneven agednorthern hardwood stands under selection system. Forest Ecology and Management,2008,256(8):1579-1586.
    Kojima T, Wakamori Y, Koizumi K, et al. Selection of Afforestation Methods for Eucalyptus sargentiias aCountermeasure to Climate Change and Salinity Problem-A Case Study of Wheat Belt Area in WesternAustralia. Journal of Arid Land Studies,2012,22(1):223-226.
    Larsen,D. Adaptable stand dynamics model integrating site-specifc growth for innovative silviculturalprescriptions. Forest Ecology and Management,1994,69:245-257.
    Laubhann D, Sterba H, Reinds G J, et al. The impact of atmospheric deposition and climates on forestgrowth in European monitoring plots: an individual tree growth model. Forest Ecology andManagement,2009,258(9):1751-1761.
    Lei X D, Lu Y C, Peng C H, et al. Growth and structure development of semi-natural larch-spruce-fir (Larixolgensis–Picea jezoensis–Abies nephrolepis) forests in northeast China:12-year results after thinning.Forest Ecology and Management,2007,240(1-3):165-177.
    Lemmon P E, Schumacher F X. Stocking density around ponderosa pine trees. Forest Sci,1962,8:397-402.
    Lexer d N L, Tron E. Assessing suitability for selective cutting using a stand level index. Forest Ecology andManagement,2006,237(1-3):503-512.
    Li Y L, Zhang H Q, Jiang X, et al. Study on Visual Simulation of Selecting trees Based on Triangle inThinning. Proceedings2012IEEE international conference on computer science and automationengineering (CSAE),2012,2:697-701.
    Li Y L, Zhang H Q, Jiang X, et al. Visual Simulation of Techniques and Effects of Thinning of Chinese FirPlantations with Different Planting Densities.2012IEEE12th International Conference on Computerand Information Technology(CIT),2012,94-100.
    Lin C S, Thomson G, Hung S-H, et al. A GIS-based protocol for the simulation and evaluation of realistic3-D thinning scenarios in recreational forest management. Journal of Environmental Management,2012,113:440-446.
    Lim E.-M., Honjo T. Three-dimensional visualization forest of landscapes by VRML. Landscape and UrbanPlanning,2003,63:175-186.
    Lin C J, Paro K. A shifting algorithm to simulate thinnings from below and above. Computers andElectronics in Agriculture,2011,75:71-74.
    Liu C J. Competition index and its relationship to individual tree growth. XVII IUFO WORLD Cong. Proc.Div,1981,(6):135-147.
    Liu C, Zhang S Y, Lei Y C. Evaluation of three methods for predicting diameter distributions of black spruce(Picea mariana) plantations in central Canada. Canadian Journal Forest Science,2004,34(12):2424-2432.
    Louw J H, Scholes M. Forest site classification and evaluation: a South African perspective. Forest Ecologyand Management,2002,171(1-2):153-168.
    Lundqvist L, Chrimes D, Elfving B, et al. Stand development after different thinnings in two uneven-agedPicea abies forests in Sweden. Forest Ecology and Management,2007,238(1-3):141-146.
    Mabvurira D, Miina J. Individual tree growth mortality models for Eucalyptus grandis Maiden plantations inZimbabwe. Forest Ecology and Management,2002,161(2):231-245.
    M kinen H, Isom ki A. Thinning intensity and long-term changes in increment and stem form of Scots pinetrees. Forest Ecology and Management,2004,203(1-3):21-34.
    Manning T, Hagar J C, McComb B C. Thinning of young Douglas-fir forests decreases density of northernflying squirrels in the Oregon Cascades. Forest Ecology and Management,2012,264:115-124.
    Martin G L, EK A R. A comparison of competition measures and growth models for predicting plantation redpine diameter and height growth. Forest Science,1984,30(3):731-743.
    McCarter J B, Wilson J S, Baker P J, et al. Landscape management through integration of existing tools andemerging technologies. Journal of Forestry,1998,96(6):17-23.
    Michael H M, Frances E B. Performance of the SEAPROG prognosis variant of the forest vegetationsimulator. USDA: Forest Service,2003.
    Munro D D. Forest growth models-a prognosis. In: Growth models of tree and stand simulation, J. Fries,editor. Royal College of Forestry, Research Note no.30, Stockholm,1974.
    Nagel C, Evjen B, Glynn J, Skinner M, Watson K. Professional C#2008. Birmingham, UK: Wrox Press Ltd.,2008.
    Nagel J, Schmidt M. The Silvicultural Decision Support System BWINPro. In: Sustainable ForestManagement, Growth Models for Europe, Springer Berlin Heidelberg,2006.
    Newham R M, Smith J H G. Development and testing of stand models for Douglas-fir and lodgepole pine.Forest Chron,1964,40:492-502.
    Newton P F. A decision-support system for forest density management within upland black sprucestand-types. Environment Modelling&Software,2012,35:171-187.
    Nishizono, T. Effects of thinning level and site productivity on age-related changes in stand volume growthcan be explained by a single rescaled growth curve. Forest Ecology and Management,2010,259(12):2276-2291.
    Nunesa L, Tomé J, Tomé M. Prediction of annual tree growth and survival for thinned and unthinnedeven-aged maritime pine stands in Portugal from data with different time measurement intervals. ForestEcology and Management,2011,262(8):1491-1499.
    Ojeda-Camacho M, Kj r E D, Philipp M. Population genetics of Guibourtia chodatiana (Hassl.) J. Leonard,in a dry Chiquitano forest of Bolivia. Forest Ecology and Management,2013,289:525-534.
    Pang Y, Wang W B. Advanced Visualization Techniques for forest management and research. ForestryStudies in China,2000,2(1):54-57.
    Powers M D, Palik B J, Bradford J B, et al. Thinning method and intensity influence long-term mortalitytrends in a red pine forest. Forest Ecology and Management,2010,260(7):1138-1148.
    Pretzsch H, Biber P, ursky J. The single tree-based stand simulator SILVA: construction, application andevaluation. Forest Ecology and Management,2002,162(1):3-21.
    Pretzsch H. Forest dynamics, growth and yield: from measurement to model. Berlin: Springer,2009.
    Pukkala T, Miina J. Tree-selection algorithms for optimizing thinning using a distance-dependent growthmodel. Can. J. For. Res,1998,28:693-702.
    Radtke P J, Westfall J A, Burkhart H E. Conditioning a distance-dependent competition index to indicate theonset of inter-tree competition. Forest Ecology and Management,2003,175(1):17-30.
    Richard F J. A flexible growth function for empirical use. J. Exp Bot,1995,10(29):290-300.
    Richardson B, Watt M S, Mason E G, et al. Advances in modelling and decision support systems forvegetation management in young forest plantations. Forestry,2006,79(1):29-42.
    Roberts S D, Harrington C A. Individual tree growth response to variable-density thinning in coastal PacificNorthwest forests. Forest Ecology and Management,2008,255(7):2771-2781.
    Rondon X J, Gorchov D L, Elliott S R. Assessment of economic sustainability of the strip clear-cuttingsystem in the Peruvian Amazon. Forest Policy and Economics,2010,12(5):340-348.
    Rondon X J, Gorchov D L, Noble Jr R B. Projection of tree growth and timber volume following stripclear-cutting in the Peruvian Amazon. Forest Ecology and Management,2009,257(2):588-599.
    Roth P A, Finley J C, Zobrist K W, et al. Computer technology helps family forest owners in Pennsylvaniaand Washington. Journal of Forestry,2006,104(3):132-135.
    Sch nenberger W. Cluster afforestation for creating diverse mountain forest structures-a review. ForestEcology and Management,2001,145(1-2):121-128.
    Scott I R. Sylview: A Visualization System for Forest Management. A Thesis presented to the Faculty of theGraduate School University of Missouri-Columbia,2006.
    Sironen S, Kangas A, Maltamo A, et al. Estimation individual tree growth with nonparametric methods.Canadian Journal of Forest Research,2003,33(4):444-449.
    Smith F E. Population dynamics in daphnia magna and a new model for population growth. Ecology,1963,44(4):651-663.
    Smith R G B, Dingle J, Kearney D, et al. Branch occlusion after pruning in four contrasting sub-tropicaleucalypt species. Journal of Tropical Forestry and Science,2006,(18):117-123.
    Solomon D S, Hosmer R A, Hayslett H T Jr. A two-stage matrix model for predicting growth of forest standsin the Northeast. Can J of For Res,1986,16(3):521-528.
    Springmann S, Rogers R, Spiecker H. Impact of artificial pruning on growth and secondary shootdevelopment of wild cherry (Prunus avium L.). Forest Ecology and Management,2011,261(3):764-769.
    Sprugel D G, Rascher K G, Gersinde R, et al. Spatially explicit modeling of overstory manipulations inyoung forests: Effects on stand structure and light. Ecological Modelling,2009,220(24):3565-3575.
    Stage A R. An expression for the effect of aspect, slope, and habitat type on tree growth. Forest Sci,1976,22(4):457-460.
    Stoltman A M, Radeloff V C, Mladenoff D J. Computer visualization of pre-settlement and current forests inWisconsin. Forest Ecology and Management,2007,246(2-3):135-143.
    Sullivan A D, Clutter J L. A simultaneous growth and yield model for loblolly pine. Forest Science,1972,18(1):76-86.
    Tahvanainen L. Forest management and public perceptions-visual versus verbal information. Landscape andUrban Planning,2001,53(1-4):53-70.
    Tyrv inen L, Gustavsson R, Konijnendijk C, Ode A. Visualization and landscape laboratories in planning,design and management of urban woodlands. Forest Policy and Economics,2006,8(8):811-823.
    Ulbricht C A. Vantage Point: An Interactive Landscape Simulation Tool for Engineering Design. Seattle:University of Washington,1994.
    Umeki K, Lim E M, Honjo T. A GIS-based simulation program to predict multi-species size-structuredynamics for natural forests in Hokkaido, northern Japan. Ecological Informatics,2008,3(3):218-227.
    Uusitalo J, Orland B. Virtual forest management: possibilities and challenges. International Journal of ForestEngineering,2001,12(2):57-66.
    Wang M L, Renndls. Tree diameter distribution modeling: introducing the loglt-loistic distribution. CanadianJournal Forest Research,2005b,35(6):1305-1313.
    Wilson J S, Mcgaughey R J. Presenting landscape scale forest information: what is sufficient and what isappropriate. Journal of Forestry,2000,98(12):21-28.
    Wu X M, Zhang H Q, Lin H, et al. Research on Interactive Visual Simulation Method of Chinese Fir StandGrowth And Cutting Process. Proceedings2012IEEE international conference on computer science andautomation engineering (CSAE),2012,2:682-686.
    Yan H P, Kang M Z, De Reffye P, et al. A dynamic, architectural plant model simulation resource-dependentgrowth. Annals of Botany,2004,93(5):591-602.
    Zachara T. The influence of selective thinning on the social structure of the young scots pine stand. PraceInstytutu Badawczego Lesnictwa Seria A,2000,3:35-61.
    Zamuda A, Brest J. Environmental framework to visualize emergent artificial forest ecosystems. InformationSciences,2013,220:522-540.
    Zhao D, Bruce B, Machelle W. Individual tree diameter growth and mortality models for bottomland mixedspecies hardwood stands in the lower Mississippi alluvial valley. Forest Ecology and Management,2004,199(2):307-322.
    Zhou W C. Risk-based selection of forest regeneration methods. Forest Ecology and Management,1999,115(1):85-92.
    Zobrist K, McCarter J B, Hanley D P. Inventory wizard: a new tool that makes it easy to get started with thelandscape management system. WA: Washington State University Press,2004.
    毕永华.兴安落叶松林不同间伐强度林分生长模型的研究.哈尔滨:东北林业大学,2001.
    陈昌雄,刘健,余坤勇,等.基于空间结构优化的马尾松阔叶树混交林模拟采伐.西南林学院学报,2010,30(6):29-32,37.
    陈崇成,唐丽玉,权兵,等.基于信息管理的一种虚拟森林景观构建及应用探讨.应用生态学报,2005,16(11):2047-2052.
    陈东来,张春生,刘忠柱.树木生长模型及拟合精度分析.河北林果研究,1997,12(2):131-137.
    陈端吕,陈晚清.基于GIS技术的森林经营优化与辅助决策系统.中南林业调查规划,2002,21(3):44-47.
    邓成.以相对直径为竞争指标的单木直径生长模型研究.林业资源管理,2011,(1):40-43.
    范玉顺.工作流管理技术基础.北京:清华大学出版社,2001.
    郝林倩.杉木人工林的三维可视化建模及其生长经营模拟研究.福州:福建农林大学,2009.
    胡红玲,张怀清.退耕还林造林决策支持系统开发.林业科学,2006,42(增刊1):120-126.
    胡艳波,惠刚盈.优化林分空间结构的森林经营方法探讨.林业科学研究,2006,19(1):1-8.
    黄家荣.马尾松人工林生长的人工神经网络研究模型.北京:北京林业大学,2005.
    惠刚盈.角尺度—一个描述林木个体分布格局的结构参数.林业科学,1999,35(1):37-42.
    惠刚盈,Gadow K v,Albert M.一个新的林分空间结构参数—大小比数.林业科学研究,1999,12(1):1-6.
    惠刚盈,Gadow K v,胡艳波,等.结构化森林经营.北京:中国林业出版社,2007.
    李长银.杉木人工林采伐作业可视化模拟研究.北京:中国林业科学研究院,2011.
    李际平,邓湘文,李志辉.杉木人工林林分经营专家系统研究.中南林学院学报,2001,21(2):18-22.
    李际平,刘素青.亚热带天然混交林森林生态系统经营的决策模型.南京林业大学学报(自然科学版),2008,32(5):110-114.
    李荣江.论抚育间伐及技术要点.内蒙古林业,2007,5:15.
    李永亮,鞠洪波,张怀清,等.基于林分特征的林木个体信息估算可视化模拟技术.林业科学,2013,49(7):99-105.
    梁诗博.杉木林分生长与环境交互过程可视化模拟研究.北京:中国林业科学研究院,2011.
    刘海,张怀清,林辉.森林经营可视化模拟研究.世界林业研究,2010,23(1):21-27.
    刘海,张怀清,林辉.森林经营可视化管理系统设计与实现.科技资讯,2010,(17):240-242.
    刘佩云.秃杉大径级用材林抚育采伐技术的研究.林业科技,2011,36(2):38-40.
    刘强,朱珠,张晖.落叶松人工整枝的研究.林业科技情报,2011,43(4):20-21.
    刘荣其.基于聚类和时序分析的林分生长模型.福州:福建农林大学,2009.
    刘兆刚,李凤日.樟子松人工林树冠结构模型及三维图形可视化模拟.林业科学,2009,45(6):55-61.
    刘兆刚,李凤日,于金成.落叶松人工林单木模型的研究.植物研究,2003,23(2):238-243.
    卢康宁.基于生理生态模型的杉木形态结构变化可视化模拟研究.北京:中国林业科学研究院,2012.
    吕勇.杉木人工林生长率模型的研究.林业科学,2002,38(1):146-149.
    吕勇,李际平,张晓蕾.会同杉木人工林的树高分布模型.中南林学院学报,1999,19(1):68-70.
    吕勇,熊露桥,臧颢.青椆混交林间伐指数初探.林业资源管理,2012,(5):89-93.
    马赤军.人工杉木中幼林经营措施.湖南林业科技,2005,32(4):69-70.
    马永春.杨树人工林修枝机理及修枝技术体系的研究.南京:南京林业大学,2012.
    孟宪宇.测树学.北京:中国林业出版社,1996.
    庞丽.密云水源林造林规划设计系统的研究与实现.北京:北京林业大学,2011.
    彭菲.基于JOBOWA林隙模型的人工混交林生长可视化模拟研究.北京:中国林业科学研究院,2012.
    权兵.基于虚拟森林环境的林分生长和经营模拟研究.福州:福州大学,2005.
    权兵,唐丽玉,陈崇成,等.虚拟地理环境下的林分生长可视化研究.福建林学院学报,2004,24(3):224-228.
    沈国舫.森林培育学.北京:中国林业出版社,2001.
    沈疆海,王德玲.基于WF的勘探经营管理系统设计与实现.长江大学学报(自然科学版),2011,8(3):78-80.
    施双林,薛伟.落叶松人工林抚育间伐技术的研究.森林工程,2009,25(3):53-56.
    施向东.马尾松抚育间伐强度对其生长量影响试验.湖北林业科技,2008,(149):16-18.
    石小云.森林经营决策模拟系统研究-以天然混交林为例.长沙:中南林业科技大学,2007.
    舒娱琴.虚拟森林经营管理系统的设计与实现.林业科学,2007,43(10):138-144.
    孙洪刚,张建国,段爱国,等.杉木人工林单木断面积生长动态模拟.林业科学研究,2010,23(5):738-743.
    孙晓梅.长白落叶松人工林间伐林分的生长模拟.林业科学研究,1999,12(5):500-504.
    谭伟.基于组件GIS的造林决策支持模型的研究.北京:北京林业大学,2005.
    汤孟平.森林空间结构分析与优化经营模型研究.北京:北京林业大学,2003.
    唐守正,李希菲,孟昭和.林分生长模型研究的进展.林业科学研究,1993,6(6):672-679.
    唐守正.广西大青山马尾松全林整体生长模型及应用.林业科学研究,1991,4(增刊):8-13.
    王超,翟明普,马润国.基于空间结构单元的风景林抚育间伐研究.林业调查规划,2006,31(6):6-11.
    王家军,张海涛.落叶松人工林抚育间伐主要技术指标及方法的研究.黑龙江生态工程职业学院学报,2006,19(4):24-25.
    王敏,列淦文,黄香兰,等.皆伐对杉木林土壤物理性质的短期影响.湖南林业科技,2012,39(3):18-20,45.
    王树力,袁伟斌,杨振,等.长白落叶松(Larix olgensis)工业人工林的模拟间伐.植物研究,2006,26(6):750-755.
    王孝安,段仁燕,王明利.太白红杉单木胸径生长模型的研究.武汉植物学研究,2005,23(2):157-162.
    王义弘,滕文华,李俊涛,等.蒙古栎的更新造林和幼林生长.东北林业大学学报,2000,28(5):28-30.
    魏晓慧,孙玉军,郭孝玉.森林多功能经营技术研究综述.林业资源管理,2011,6:88-93.
    魏占才.长白落叶松人工林林分模型的应用.东北林业大学学报,2006,34(4):31-33.
    吴学明.杉木人工林林分经营过程可视化模拟技术研究.长沙:中南林业科技大学,2012.
    徐国巧.华北落叶松人工林抚育间伐效果研究.保定:河北农业大学,2008.
    徐宏远,陈章水.不同密度Ⅰ-69杨丰产林林分的生长预测及数量成熟龄.东北林业大学学报,1994,22(2):17-23.
    许文强,唐丽玉,陈崇成,等.森林景观模拟与管理信息系统的设计与实现.中国农业科技导报,2009,11(5):83-89.
    于秀勇.杉木人工林单木生长模型的研究.福州:福建农林大学,2009.
    曾群英,周元满,李际平.基于生态系统经营的林分采伐决策方法.东北林业大学学报,2010,38(9):31-35.
    曾思齐,欧阳君祥.马尾松林抚育间伐计算机决策系统的研制.中南林学院学报,2001,21(1):26-29.
    翟明普.现代森林培育理论与技术.北京:中国环境科学出版社,2011.
    张建国,段爱国.理论生长方程与直径结构模型的研究.北京:科学出版社,2004.
    张敏.森林经营可视化模拟技术研究-以抚育间伐为例.北京:北京林业大学,2009.
    张水松,陈长发,吴克选,等.杉木林间伐强度试验20年生长效应的研究.林业科学,2005,41(5):56-65.
    张星云,刘善喜.森林定量抚育采伐强度的研究.林业勘查设计,2004,(4):48.
    张雄清,雷渊才.北京山区天然栎林直径分布的研究.西北林学院学报,2009,24(6):1-5.
    周宏,东昌山,杨玉林,等.樟子松人工林抚育间伐初始期及强度的探讨.西北林学院学报,2011,26(1):187-189.
    周蔚,杨华,亢新刚.择伐强度对长白山区天然云冷杉针阔混交林空间结构的影响.西北林学院学报,2012,27(4):7-12.
    孜来比·买木提名,杨华,赵广亮,等.单木竞争指标的研究进展.西北林学院学报,2012,27(6):152-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700