用户名: 密码: 验证码:
格栅式水泥土挡墙的稳定性问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
格栅式水泥土挡墙作为重力式挡土墙的一种延伸和发展,主要仍以结构自身重力来维持围护结构在侧向土压力作用下的稳定,同时兼具有支护和止水功能,而且具有施工噪音低,造价经济,可在密集建筑群中进行施工,对周围建筑物及地下管线影响较小等优点,一般适用于软土地区深度小于7m的基坑工程,如结合其它的支护型式,则适用范围会大大拓宽。本文在大量调研的基础上,对格栅式水泥土挡墙的稳定性问题作了较深入的研究,主要在以下几个方面取得了具体成果:
     1.水土压力的计算方法
     本文认为挡土墙与周围土体之间的相互作用力即水土压力的计算,对于透水性较强的土,宜按水土分算的原则进行;而对于透水性较弱的土,采用水土合算原则则更便于工程运用。另外,考虑渗流影响时,墙体周围土体中的水压力不再是静水压力。实际上,地下水的渗流效应将使挡土墙后土体中的水压力减小,同时使挡土墙前土体中的水压力增大。所以根据水流连续性原理,本文提出了一个考虑渗流及墙体宽度影响的水土压力简化计算方法,同时用有限元法计算了多种工况下的水压力的变化规律。结果表明,水头损失主要发生在相对弱透水层,且水压力系数明显地受到土层分布、墙体尺寸、基坑内外的水头差的影响;并且地下水的渗流一般使墙后土体作用在墙上的侧压力减小,而当被动土压力系数小于1.176时,墙前土体作用在墙上的侧压力增大。
     2.稳定性验算
     一般的,格栅式水泥土挡墙按重力式挡土墙进行设计计算,即包括抗倾覆、抗水平滑动、抗圆弧滑动、抗渗流稳定性验算、挡土墙本身的强度以及墙基的承载力验算等。通过对比有地下水时多种工况下考虑及不考虑渗流影响的格栅式水泥土挡墙的抗倾覆和抗水平滑动稳定分项系数证实地下水的渗流对格栅式水泥土挡墙的稳定性有很大影响:随着基坑内外水头差及土体的内摩擦角的增大,考虑与不考虑渗流影响的稳定抗力分项系数之间的差异越来越大;随着墙底及基坑以下土体透水性的减弱,考虑渗流影响的稳定抗力分项系数越来越小。这说明常规的不考虑渗流影响的格栅式水泥土挡墙稳定性的分析有时过于保守,而有时又偏于危险。为提高格栅式水泥土挡墙的抗倾覆和抗水平滑动稳定性,在保证渗流稳定的前提下,可以采用降低基坑内水位、墙底进入相对强透水层、适当增强坑底土的透水性等方法。
     本文从理论上证实了格栅式水泥土挡墙的抗倾覆稳定性不仅受墙体两侧土压力的大小、
    
    郑州大学硕士学位论文
    分布,墙体的几何尺寸及自重影响,而且还受控于墙底土体的承载力。通过引入Vesic公式
    计算墙基能够承受偏心极限荷载,得到了墙基能够为抵抗挡墙倾覆失稳提供的极限力矩,据
    此本文建议了新的评价格栅式水泥土挡墙抗倾覆稳定性的方法。计算结果表明,墙底土体内
    摩擦角越大,挡土墙倾覆转动中心越靠近墙趾,抗倾覆抗力分项系数越大。即软弱地基上的
    格栅式水泥土挡墙的抗倾覆稳定性显著低于坚硬地基上的挡土墙的抗倾覆稳定性。现行规范
    方法由于没有考虑墙底土体的承载力,仅适用于坚硬地基上的格栅式水泥土挡墙,当墙基土
    体较软时,会高估格栅式水泥土挡墙的抗倾覆稳定性,这样根据其结果设计的挡土墙抗倾覆
    稳定性可能是不够的。
     另外,本文认为,在重视流土(流砂)这类突发性渗流破坏的同时,还要重视管涌对基
    坑的危害,尽管后者的发生是渐进的。
     3.水平位移计算
     本文认为格栅式水泥土挡墙的稳定性也可通过墙体的水平位移来反映,并建议按土与墙
    体相互作用的原理进行挡土墙水平位移的计算。在平面应变假定下,忽略开挖引起的土体回
    弹,当桩长与墙宽之比较小时,把格栅式水泥土挡墙视为刚体,同时假定在土体处于弹性状
    态时,作用在挡墙上的土压力和位移之间呈线性关系,且弹簧系数可用“m”法计算,从而提
    出一个计算格栅式水泥土挡墙水平位移的近似计算方法。该方法可同时得到墙体两侧土体的
    屈服范围、实际土压力的分布,由墙两侧土体的屈服情况即可判定其稳定性。计算结果表明,
    当开挖深度较浅时,墙体两侧土体处于弹性状态,墙顶水平位移基本上随深度增大而线性增
    加,当开挖深度增加到一定程度后,随着开挖深度的增加,墙体两侧土体开始进于屈服状态
    且屈服范围越来越大,同时墙顶水平位移与开挖深度的关系曲线越来越陡,直到最后墙体倾
    覆为止。另外还探讨了墙体尺寸对格栅式水泥土挡墙水平位移的影响。为了控制水平位移,
    可以增宽墙体和增大桩长。但是当墙体较宽或桩长较大时,再这样作效果并不明显。
     最后,用双曲线模型讨论了土体与水泥土挡墙之间的非线性相互作用。在对非线性平衡
    方程组求解时,将其转化为求极值问题的极值点。通过和线性模型有关结果的比较,可以看
    出:两种模型算得的墙顶水平位移随开挖深度变化的规律基本相似,但双曲线模型的结果较
    大;基坑开挖较浅时,两种模型算得的土压力分布相差不大,但是随着基坑开挖深度的增大,
    土体的屈服范围越来越大,两种模型算得的土压力分布的差异会越来越大,即土体的非线性
    的影响也越来越显著。
As a kind of gravity-typed supporting structures, the grid-typed cement-soil retaining walls, whose stability under lateral pressures depends mainly on their gravity, provided with two functions such as supporting and waterstop, having advantages of the low noise during the construction and the low cost, the applicability to the construction in serried building groups and the little influence on the surrounding buildings and underground pipes, can be applicable to the excavations with depth less than 7 m, and even deeper if it is combined with the other supporting structures. The stability of this kind of walls is researched after brief reviews on the results of research performed in the field over decades. And the main achievements are made in the following three aspects:
    1. Method to calculate the water and earth pressures
    It is advisable that the water and earth pressures are calculated respectively for those soils with high permeability, while they are done as a whole for those ones with low permeability with a view to engineering practice. In addition, the water pressure in the surrounding soils of the walls is no more the hydrostatic pressure in view of the seepage of groundwater. In fact, the effect of the latter will make the water pressure in the soils out of the pit decrease, and the water pressure under the pit increase. Therefore, a simplified method to calculate these pressures considering the effect of the seepage and the breadth of the wall based on the principle of liquid continuity is suggested, and the water pressures acting on the back of the wall under some operating conditions are computed by using the finite element method. The computed results illustrate that the water head will lose in the soil layers with low permeability, and the magnitude of water pressure is distinctly affected by the distribution of
    the soil layers, the size of the wall and the difference of hydraulic head between both sides of the wall. It is also proved that the seepage generally makes the lateral pressure acting on the back of the wall decrease while it does the lateral pressure acting on the face of the wall increase if the coefficient of passive pressure is less than 1.176.
    2. Checking computations on the stability of the cement-soil wall
    The checking computations on the stability of this kind of walls include popularly: overturning, the sliding along the base of wall, circular sliding, seepage deformation, material strength of wall body and bearing capacity of the foundation soils. The comparison to the safety factors of
    
    
    overturning and plane sliding for some operating conditions between considering the seepage and not proves that the seepage has great influence on the stability of the wall: the difference of safety factors between considering the seepage and not will increase with the increase of the internal friction angles or the difference between both sides of the wall; the safety factors considering the seepage will decrease with the decrease of the water permeability of the soil under the wall or inside the pit. Therefore, the conventional method to analyze the stability of the wall is suspectable, and some methods such as making the ground water level under the pit decrease, inserting the piles into the soil layers with high permeability are applicable to improve the capability of the walls to overturn and slide along the base of the wall under the condition that the seepage failures don't occur.
    It is proved in theory that the overturning stability of this kind of walls is affected not only by the magnitude and the distribution of the earth pressure acting on both sides of the wall, the sizes and weight of the wall, but also by the subgrade bearing capacity. The limit moment of force for the soils under the walls to resist the walls overturning is obtained by introducing the Vesic formula to calculate the subgrade bearing capacity under the load with eccentricity. Hereby a new method to analyze the overturning stability of this kind of walls is suggested. The computed results by using the method ill
引文
1.陈愈炯,温彦锋.基坑支护结构上的水土压力.岩土工程学报,1999,21(2):139-143.
    2.陈忠汉,程丽萍.深基坑工程.北京:机械工业出版社,1999,10-54.
    3.方小兵.深层水泥土搅拌桩支护墙设计计算探讨.工程力学,1998,增刊:561-564.
    4.冯又全,杨敏,熊巨华.水泥土复合式围护结构的位移内力计算与形状分析.岩土工程技术,1999,(3):3-6.
    5.高文华,杨林德.基于Mindlin板理论的深层搅拌桩墙体受力变形的空间效应.土木工程学报,1999,32(5):71-75.
    6.龚晓南.深基坑工程设计施工手册.北京:中国建筑工业出版社,1998.
    7.顾慰慈.挡土墙土压力计算.北京:中国建材工业出版社,2001.
    8.龚晓南.深基坑工程设计施工手册,北京:中国建筑工业出版社,1998.
    9.胡玉银.挡土墙抗倾覆稳定性分析.同济大学学报,1995,23(3):321-325.
    10.黄强.深基坑支护结构实用内力计算手册.北京:中国建筑工业出版社,1995.
    11.黄强.建筑基坑支护技术规程应用手册.北京:中国建筑工业出版社,1999.
    12.黄院雄,刘国彬,刘纯洁.基坑施工周围孔隙水压力变化规律及其应用.同济大学学报,1998,26(6):654-658.
    13.李广信.关于有渗流情况下的土压力计算.地基处理,1998,9(1):57-58.
    14.李建华,王志修,刘忠玉等.深基坑支护方案的优选.郑州工业大学学报,1999,20(增刊):103-106.
    15.李钧民.深基坑悬臂式支护桩设计计算的改进.岩土工程技术,1999,(1):9-12.
    16.梁仁旺,于宁.加筋水泥土梁力学性质的试验研究.岩土力学,2000,21(3):267-270.
    17.刘国彬,黄院雄,侯学渊.水及土压力的实测研究.岩石力学与工程学报,2000,19(2):205-210.
    18.刘建航,侯学渊.基坑工程手册.北京:中国建筑工业出版社,1997.
    19.刘忠玉.无粘性土中管涌的机理研究[博士学位论文],2001.
    20.刘忠玉,崔国游,宋聚奎等.刚性挡土墙的水平位移计算.郑州工业大学学报,2000,21(3):76-79.
    21.刘忠玉,尚仰宏,崔国游.渗流引起的水压力及对格栅式水泥土挡墙的影响.郑州工业大
    
    学学报,2001,22(1):36-39.
    22.娄仲连,罗国煜.深开挖过程中临近建筑物的保护.水文地质工程地质,1998,(5):55-57.
    23.况龙川,高大钊.上海软土基坑水泥土挡墙的可靠度指标研究.同济大学学报,1998,26(6):640-643.
    24.梅国雄,宰金珉.考虑变形的朗肯土压力模型.岩石力学与工程学报,2001,20(6):851-853.
    25.彭振斌.深基坑开挖与支护工程设计计算与施工.武汉:中国地质大学出版社,1997,113-115.
    26.刘建航,侯学渊.基坑工程手册.北京:中国建筑工业出版社,1997.
    27.孙介华.关于水泥搅拌桩挡墙水平位移的分析与控制.水文地质工程地质,1998,(5):58-59.
    28.王成华,郑虹.水泥土搅拌桩挡土墙倾覆机理复杂性分析.岩土工程界,2002,5(4):50-54.
    29.王元战,王海龙,张文忠.挡土墙土压力分布.中国港湾建设,2000,(4):1-5,14.
    30.王占生,张克绪.土-结构相互作用的修正刚度法及其在基坑工程中的应用.岩土工程学报,2002,24(5):652-654.
    31.魏汝龙.总应力法计算土压力的几个问题.岩土工程学报,1995,17(6):120-125.
    32.魏汝龙.基坑内外的水压力和渗流力.岩土工程师,1998,10(1):23-25.
    33.魏汝龙.深基坑开挖中的土压力计算.地基处理,1998,99(1):3-15.
    34.吴铭炳.软土地基深基坑支护中的土压力.工程勘察,1999,(2):15-17,25.
    35.熊巨华,裴健勇,杨敏.考虑桩顶冠梁效应的水泥土挡墙变形计算方法.岩土力学,1999,20(1):84-86.
    36.徐超,王琼辉,杨林德.重力式基坑支护系统的可靠性分析.水文地质工程地质,1998,(6):34-36.
    37.杨光华.深层搅拌桩等嵌入式重力挡土结构稳定与变形的计算.岩土工程学报,1996.18(4):91-94.
    38.杨斌,胡立强.挡土结构侧土压力与水平位移关系的试验研究.建筑科学,2000,16(4):14-20.
    39.杨晓军,龚晓南.基坑开挖中考虑水压力的土压力计算.土木工程学报,1997,30(4):58-62.
    40.应惠清.深基坑围护结构位移的估算及其控制.结构工程师,1996,(1):37-41.
    41.余志成,施文华.深基坑支护设计与施工.北京:中国建筑工业出版社,1997.
    
    
    42.余雄飞.地基软硬程度与挡土墙倾覆稳定性.岩土工程学报,1998,20(3):94-96.
    43.张尚根,陈志龙,曹继勇.深基坑周围地表沉降分析.岩土工程技术,1999,(4):7-9.
    44.郑刚.水泥土重力式挡墙倾覆破坏的分析.岩土力学,2001,22(2):192-194.
    45.水利水电工程地质勘察规范(GB50287-99).北京:中国计划出版社,1999.
    46.岩土工程勘察规范(GB50021-2001).北京:中国建筑工业出版社,2002.
    47.建筑地基基础设计规范(GB5007-2002).北京:中国建筑工业出版社,2002.
    48.建筑基坑工程技术规范(YB 9258-97).北京:冶金工业出版社,1998.
    49.建筑基坑支护技术规程(JGJ 120-99).北京:中国建筑工业出版社,1999.
    50. Bowels, J E. Foundation Analysis and Design (3rd ed). Mc Graw-Hill Book Company, 1982.
    51. Chen, W F. Limit analysis and soil plasticity. Amsterdam: Elsevier, 1975.
    52. Chen, W F, and Rosenfarb, J L. "Limit analysis solutions of earth pressure problems." Soils and Foundations, 1973, 13(4): 45-60.
    53. Day, R W. "Behavior of Cantilever Retaining Wall: Discussion." Journal of Geotechnical Engineering, 1995, 121(2): p237-238.
    54. Duncan, J M, and Mokwa, R L. "Passive earth pressure: theories and tests." Journal of Geotechnical and Geoenvirmental Engineering, 2001, 127(3): 248-257.
    55. Fang, Y S, Chen, J M, and Chen, C Y. "Earth pressures with sloping backfill." Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123(3): 250-259.
    56. Fang, Y-S, Ho, Y-C, Chen, T-J. "Passive Earth Pressure with Critical State Concept." Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(8): 651-659.
    57. Ghaly, A M. "Stability of Retaining Walls Against Overturning."Journal of Geotechnical & Geoenvironmental Engineering, 1999, 125(3): 228-229.
    58. Graham, J. "Calculation of passive pressure in sand." Canadian Geotechnical Journal, 8(4): 566-579.
    59. Griffiths, D V. "Rationalised charts for the method of fragments applied to congined seepage." Geotechnique, 1984, 34(2): 229-239.
    60. Hazarika, H, and Matsuzawa, H. "Wall displacement modes dependent active earth pressure analyses using smeared shear band method with two bands." Computers and Geotechanics, 1996, 19(3): 193-219.
    61. Hu, Z F, Yue, Z Q, Zhou, J, and Tham, L G. "Design and construction of a deep excavation in soft soils adjacent to the Shanghai Metro tunnels." Canadian Geotechnical Journal, 2003, 40(5): 933-948.
    
    
    62. Lambe, T W, and Whitman R V. Soil mechanics. New York: Wiley, 1969.
    63. Luan, M, and Nogami, T. "Variational analysis of earth pressure on a rigid earth-Retaining wall." Journal of Engineering Mechanics, 1997, 123(5):524-530.
    64. Rahardjo, H, and Fredlund, D G. "General limit equilibrium method for lateral earth forces." Canadian Geotechnical Journal, 1984, 21(1): 166-175.
    65. Sellmeijer, J B, and Koenders, M A. "A mathematical model for piping." Applied Mathematical modelling, 1991, 15:646-651.
    66. Smith, I M, and Griffiths, D V. Programming the finite element method (3rd Ed). New York: Wiley, 1998.
    67. Soubra, A-H, and Regenass, E "Three-dimensional passive earth pressures by kinematical approach." Journal of Geotechnical and Geoenvirmental Engineering, 2001, 26(11): 969-978.
    68. Soubra, A-H, Kastner, R, and Benmansour, A. "Passive earth pressures in the presence of hydraulic gradients." Geotechnique, 1999, 49(3): 319-330.
    69. Sowers, G F. Introductory soil mechaincs & foundation geotechnical engineering (4th ed.). Londan: Macmillan.
    70. Spencer, E. "Forces on retaining walls using the method of slices." Civil Engineering, 1975, 45: 18-23.
    71. Terzaghi, K. Theoretical soil mechanics. New York: Wiley, 1943.
    72. Terzaghi, K, and Peck, R. Soil mechanics in engineering practice (2nd ed.). New York: Wiley, 1967.
    73. Verruijt, A. Theory of groundwater flow. London: Macmillan, 1970.
    74. Vesie, A S. Bearing capacity of shallow foundations, Hand book of foundation engingeering, New York, 1974.
    75. Yang, Y W, Yin, J H, Yuan, J X, and Schulyer, J N. "An expert system for selection of retaining walls and groundwater controls in deep excavation." Computers & Geotechnics, 2003, 30(8): 707-719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700