用户名: 密码: 验证码:
鄂尔多斯盆地上古生界流体赋存特征及成藏机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地是我国重要的能源生产基地,其上古生界天然气资源主要来自煤系地层,多属致密砂岩气藏范畴。近年来的勘探、开发实践表明,在多个天然气开发区见到不同程度的产水现象,气、水分布规律复杂,流体的赋存特征、成藏机制研究尚需进一步深化。故本研究既可探索致密砂岩中流体的赋存规律,也为揭示天然气成藏机制提供了重要依据,具有较为重要的理论和实践意义。
     论文将储层的微观孔隙结构与油气的动态成藏过程相结合,选择盆地西部的鄂托克旗、东部的榆林-子洲地区作为解剖对象,并进行了对比研究。根据1000余口井的地质、测井、试气及动态资料,采用岩心观察、水化学成分分析、压汞测试和相对渗透率参数等分析测试手段,剖析、讨论了影响流体分布的宏观和微观地质因素,在此基础上探讨了鄂尔多斯盆地上古生界天然气藏的形成机制。
     研究表明,鄂尔多斯盆地上古生界内流体的宏观分布具有明显的差异性。下部成藏组合产气区主要在伊陕斜坡东部连片分布,伊盟隆起和产气区西南部主要产水;中部成藏组合产气区主要分布在伊陕斜坡西部,在伊盟隆起和产气区西部主要产水;上部成藏组合产气区主要在伊陕斜坡西部小范围分布。
     该盆地上古生界产出水以正常地层水为主。氢、氧同位素和溴的研究显示,盆地西部鄂托克旗地区地层水源于经过强烈水-岩作用和蒸发浓缩作用的陆相成因水。该区地层水封闭条件好,有利于天然气聚集和保存。结合盖层分析,该区地层水主要是弱动力成藏过程中的残余地层水。
     分析了天然气和地层水所在砂岩在沉积相、成岩相、地层压力和储层微观孔隙结构等方面的差异性。东部子洲地区山2段天然气主要赋存在孔隙结构中等的储层内,中值孔喉半径平均为0.51μm,个别优质储层孔喉半径大但分选性差;地层水主要赋存在中值孔喉半径平均为1.0μm、分选性好的主河道构造下倾部位,产出水类型以自由水为主。西部鄂托克旗地区盒8段产气井储层的中值孔喉半径、孔隙度和渗透率与气水同产井相似,产气区内储层物性越好,含气饱和度越高;产水井主要表现为气水同产,产出水类型以毛细管水为主。
     盆地上古生界不同含气组合均具有垂向运移成藏的特征。盆地东部下部含气组合山2段源储剩余压力差达5.99MPa,油气充注动力大且孔隙结构较好:盆地西部鄂托克旗地区盒8段源储剩余压力差为4.76MPa,天然气充注动力较弱且孔隙结构较差,决定了两个地区流体分布特征迥异。
The Ordos basin is one of the main bases for energy production in China. The natural gas resource in this basin is mainly derived from the Upper Paleozoic coal-bearing strata, which is mainly belonged to tight sandstone gas reservoir. According to exploration and production practical in recent years, the distribution and occurrence characteristics of natural gas in this basin is very complicated, for water production phenomenon is common in many production areas, so it's difficult to clarify the distribution of natural gas and formation water underground. The phenomenon of high formation water production not only seriously constrains the improvement of natural gas production, but also blocks the arrangement of exploration disposition. Seeking for the occurrence rule of fluids in tight sandstone is one of the hot topics in the field of petroleum geology, which can provide key evidences for exposing the mechanism of natural gas accumulation. Therefore, this study is important either in practical aspect or in theoretical aspect.
     The idea to combine the dynamic accumulation processes and static microcosmic pore framework of reservoir is employed in this study. Two case study areas i.e. Otog gas field in the west and Yulin-Zizhou gas field in the eastern Ordos basin are chosen to anatomizing and comparing study. The main technical data include drilling, wire-line logging, gas test and dynamic data based on more than1000boreholes, as well as core description, water geochemistry analysis, physical parameters examination for rock and so on. Macro and micro distribution characteristics of different type of fluids in natural gas reservoir, as well as the factors affecting the distribution of fluid are analyzed. As a result the forming mechanism of natural gas reservoir in Upper Paleozoic in the Ordos basin is discussed.
     It's concluded that the fluids distribution in the Upper Paleozoic reservoirs show obvious heterogeneity in macro aspect. For the lower accumulation association, the gas-producing area is mainly continuously distributed in the eastern Yishan slope, while the major water-producing areas are located in the Yimeng uplift and to the southwest of the main gas-producing area. For the middle accumulation association, the main gas-producing area is located in the western Yishan slope, while the major water-producing areas are located in the Yimeng uplift and to the west of the main gas-producing area. The main gas-producing area in the upper accumulation association is sparsely distributed in the western Yishan slope.
     It's showed that the water production derived from the Upper Paleozoic in the Ordos basin mainly belongs to normal formation water. Combined the hydrogen and oxygen isotope examination and the rare bromine element analysis, it's indicated that the formation water in the Otog Banner of the western Ordos basin, is derived from continental origination, which experienced intense water-rock interaction and evaporation-concretion processes. The characteristics of formation water chemistry reveal that the formation water in this area has good closed condition and is propitious to natural gas accumulation and conservation. Combined with the analysis of hydrocarbon accumulation elements, the formation water type in the Otog Banner area mainly belongs to residual formation water forming in the weak accumulation processes.
     Compared the differentiation of hosted sandstones for natural gas and formation water in aspects of sedimentary facies, diagenesis facies, strata pressure and micro pore framework of reservoir, two conclusions are showed as follow. With respect to the second member of Shanxi Formation in Zizhou area, eastern Ordos basin, natural gas mainly hosted in pore framework with medium size. The mean pore throat radius is0.51μm. A few reservoirs have large pore throat radius while bad sizing. The formation water is mainly hosted in the down-dip part of major channel sand bodies with mean pore throat radius of1.Oμm and well sizing. The type of formation water is mainly belonged to free water and served as edge-bottom water. With respect to the eighth member of Lower Shihezi Formatin, in Otog area, western Ordos basin, there has similarity between the gas-producing wells and water-producing wells in aspects of medium pore throat radius, porosity and permeability. In the gas-producing areas, the better physical properities are corresponded with higher gas saturation. The water-producing wells are usually found to produce gas and water together in which the capillary water is considered to be the major water-producing type.
     It's indicated that the characteristics of vertical migration and accumulation are widely developed in various gas-bearing accociations. There is as high as5.99MPa overpressure difference between the source rock and reservoir in the second Member of Shanxi Formation in lower gas-bearing association in the east. There are strong filling power combined with better pore framework in this area. With respect of the Eighth Member of Lower Shihezi Formation in Otog area in the western Ordos basin, there is only4.76MPa overpressure difference between the source rock and reservoir. The relative lower filling power accompanied with worse pore framework in reservoir. Therefore the variety between filling power and reservoir physical properities result in the difference of fluid distribution between two case study areas.
引文
[1]Barnaby R. J., Getting G. C., and Gao Guoqiu. Strontium isotopic signatures of oil-field waters:Applications for reservoir characterization. AAPG Bulletin,2004,88:1677-1704
    [2]Birkle P., Rosillo J. J., Arago'n E., et al. Evolution and origin of deep reservoir water at the Activo Luna oil field, Gulf of Mexico, Mexico[J]. AAPG Bulletin,2002,86(3):457-484
    [3]Connolly C. A., Walter L. M., Baadsgaard H., et al. Origin and evolution of formation waters, Alberta Basins:Western Canada sedimentary basin[J]. Applied Ceochemistry,1990,5:375-395
    [4]Cumella S. P., Shanley K. W., Camp W. K.. Understanding, exploring, and developing tight-gas sands-2005 Vail Hedberg Conference[M]. AAPG Hedberg Series,2008, (3):1-4
    [5]Cumella S. P., Shanley K. W., Camp W. K.. Introduction [A]. In Understanding, exploring, and developing tight-gas sands-2005 Vail Hedberg Conference:AAPG Hedberg Series,2008,3:1-4.
    [6]Fisher J. B., Boles J. R.. Water-rock interaction in Tertiary sandstones, San Joaquin basin, California, USA:diagenetic controls on water composition [J]. Chemical Geology,1990,82:83-101
    [7]Gautier D. L., Dolton G. L., Takahashi K. I., et al.1995 national assessment of United States oil and gas resources—results, methodology, and supporting data [A].1995, U.S.Geological Survey Digital Data Series DDS-30,1 CD-ROM
    [8]Golab A. N., Knackstedt M. A., Averdunk H., et al.3D porosity and mineralogy characterization in tight gas sandstones[J]. The Leading Edge,2010,29(12):1476-1483
    [9]Hayes B. J.. Evolution of tight gas sandstone plays and production, Western Canada Sedimentary Basin[A].in 2008 AAPG annual convention and exhibition; abstracts volume, Anonymous.2008
    [10]Land L. S. Na-Ca-Cl saline formation water, Frio Formation (Oligocene),South Texas,USA:products of diagenesis[J]. Geochimica et Cosmochimica Acta,1995,59(11):2163-2174
    [11]Law Ben. E.. Basin-Centered Gas Systems[J]. AAPG Bulletin,2002,86 (11):1891-1919
    [12]Mark W., Stephen O., Bitrus P., et al. Overpressures in the Taranaki Basin: Distribution, causes, and implications for exploration[J]. AAPG Bulletin,2011,95(3):339-370
    [13]Masters J. A.. Deep Basin gas trap, western Canada[J]. AAPG Bulletin,1979,63 (2).152-181
    [14]Miller M., Shanley K.. Petrophysics in tight gas reservoirs—key challenges still remain [J]. The Leading Edge,2010,29(12):1464-1469
    [15]Schmoker, J. W..1995, Method for assessing continuous-type (unconventional) hydrocarbon accumulations [A]. In D. L. Gautier,G. L. Dolton, K. I. Takahashi, and K. L. Varnes, eds.,1995 national assessment of United States oil and gas resources—results, methodology, and supporting data.1995, U.S. Geological Survey Digital Data Series DDS-30,1 CD-ROM.
    [16]Shanley K. W., Cluff R. M., Cumella S. P.,, et al. Key unresolved issues in tight-gas exploration and production[A].in 2008 AAPG annual convention and exhibition; abstracts volume, Anonymous.2008
    [17]Shanley K. W., Cluff R. M., Robinson J. W.. Factors controlling prolific gas production from low-permeability sandstone reservoirs[J]. AAPG Bulletin,2004,88(8):1083-1121.
    [18]Tobin R. C., Clain T. M., Lieber R. B., et al. Reservoir quality modeling of tight-gas sands in Wamsutter field: Integration of diagenesis, petroleum systems, and production data [J]. AAPG Bulletin, 2010,94(8):1229-1266
    [19]Zeng L. b.. Microfracturing in the Upper Triassic Sichuan Basin tight-gas sandstones: Tectonic, overpressure, and diagenetic origins [J]. AAPG Bulletin,2010,94(12):1811-1825
    [20]Zhang Y., Gable C. W., Zyvoloski G. A.,, et al. Hydrogeochemistry and gas compositions of the Uinta Basin:A regional-scale overview[J]. AAPG Bulletin,2009,93 (8):1087-1118
    [21]蔡春芳,梅博文,李伟.塔里木盆地油田水文地球化学[J].地球化学,1996,25(6):614-623
    [22]蔡春芳,梅博文,李伟.塔中古生界油田水化学与流体运移和演化[J].石油勘探与开发,1997,24(1):18-21
    [23]蔡春芳.沉积盆地流体—岩石相互作用研究的现状[J].地球科学进展,1996,11(6):575-579
    [24]蔡春芳.塔中古生界油田水的成因和混合的证据[J].地球化学,2000,29(5):504-510
    [25]蔡希源.深层致密砂岩气藏天然气富集规律与勘探关键技术—以四川盆地川西坳陷须家河组天然气勘探为例[J].Oil & Gas Geology,2010,31(6):707-714
    [26]曹锋,邹才能,付金华,等.鄂尔多斯盆地苏里格大气区天然气近源运聚的证据剖析[J].岩石学报,2011,27(3):857-866
    [27]曹海防,夏斌,张娣,等.松辽盆地地层水化学特征及其流体—岩石相互作用探讨[J].天然气地球科学,2006,17(4):566-572
    [28]曹青,赵靖舟,付金华,等.鄂尔多斯盆地上古生界准连续型气藏气源条件[J].石油与天然气地质,2013,34(5):584-591
    [29]曹青.鄂尔多斯盆地东部上古生界致密储层成岩作用特征及其与天然气成藏耦合[D].西安:西北大学,2013
    [30]陈荷立,罗晓容.泥岩压实曲线研究与油气运移条件分析[J].石油与天然气地质,1987,8(3):233-241
    [31]陈荷立,罗晓容.砂泥岩中异常高流体压力的定量计算及其地质应用[J].地质论评,1988,34(1):54-63
    [32]陈全红,李文厚.鄂尔多斯盆地西南部晚古生代早—中期物源分析[J].现代地质,2006,20(4):628-634
    [33]陈全红.鄂尔多斯盆地上古生界沉积体系及油气富集规律研究[D].西安:西北大学,2007
    [34]陈瑞银,罗晓容,陈占坤,等.鄂尔多斯盆地埋藏演化史恢复[J].石油学报,2006,27(2):43-47
    [35]陈世加,张纪智,姚泾利,等.鄂尔多斯盆地华庆地区长8油藏局部油水分布复杂成因分析[J].石油实验地质,2012,34(3):281-284
    [36]陈中红,王黎,杨勇,等.济阳坳陷沾化凹陷古近系水化学场对湖盆演化的响应及其油气意义[J].古地理学报,2009,11(5):551-560
    [37]崔迎春,李天太,李天才,等.榆林气田山2气藏产水特征及其影响因素[J].油气地质与采收率,2008,15(6):86-88
    [38]单秀琴,李剑,胡国艺,等.利用流体包裹体分析和计算油气的充注史和古流体势—以鄂尔多斯盆地榆林地区上古生界为例[J].石油与天然气地质,2007,28(2):159-165
    [39]邓林,汤磊,康志宏,等.盆地三维古水动力数值模拟方法及其应用[J].石油勘探与开发,2000,27(1):7-11
    [40]窦伟坦,刘新社,王涛.鄂尔多斯盆地苏里格气田地层水成因及气水分布规律[J].石油学报,2010,31(5):767-773
    [41]杜强,胡伏生,万力,等.鄂尔多斯北部盆地古流体动力场的演化特征[J].煤田地质与勘探,2000,28(6):23-27
    [42]樊爱萍,赵娟,杨仁超,等.苏里格气田东二区山1段、盒8段储层孔隙结构特征[J].天然气地球科学,2011,22(3):482-487
    [43]冯乔,耿安松,徐小蓉,等.鄂尔多斯盆地上古生界低压气藏成因[J].石油学报,2007,28(1):33-37
    [44]付广,薛永超,付晓飞.油气运移输导系统及其对成藏的控制[J].新疆石油地质,2001,22(1):24-26
    [45]付金华.鄂尔多斯盆地上古生界天然气成藏条件及富集规律[D].西安:西北大学,2004
    [46]傅诚德主编.鄂尔多斯深盆气研究[M].北京:石油工业出版社,2001
    [47]傅家谟,刘德汉.天然气运移、储集及封盖条件[M].北京:科学出版社,1992
    [48]傅锁堂,席胜利,魏新善,等.鄂尔多斯盆地东部上古生界成藏组合特征分析[J].低渗透油气田,2006,第3期:8-11
    [49]高星,陈洪德,朱平,等.苏里格气田西部盒8段储层成岩作用及其演化[J].天然气工业,2009,29(3):17-20
    [50]高星.苏里格西部地区山1、盒8段成岩作用及储层特征研究[D].成都:成都理工大学,2009
    [51]管俊芳,侯瑞云.煤储层基质孔隙和割理孔隙的特征及孔隙度的测定方法[J].华北水利水电学院学报,1999,20(1):23-27
    [52]郭春华,周文,康毅力,等.靖边气田气井产水成因综合判断方法[J].天然气工业,2007,23(5):23-27
    [53]郭德运.鄂尔多斯盆地东部上古生界沉积体系研究[D].西安:西北大学,2009
    [54]郭秋麟,李建忠,陈宁生,等.四川合川—潼南地区须家河组致密砂岩气成藏模拟[J].石油勘探与开发,2011,38(4):409-417
    [55]过敏,李仲东,杜少林,等.杭锦旗地区上古生界地层水成因及其与油气的关系[J].矿物岩石,2009,29(1):99-105
    [56]何东博,贾爱林,田昌炳,等.苏里格气田储集层成岩作用及有效储集层成因[J].石油勘探与开发,2004,31(3):69-71
    [57]侯明才,窦伟坦,陈洪德,等.鄂尔多斯盆地苏里格气田北部盒8、山1段成岩作用及有利储层分布[J].矿物岩石,2009,29(4):66-74
    [58]胡朝元,钱凯,王秀芹,等.鄂尔多斯盆地上古生界多藏大气田形成的关键因素及气藏性质的嬗变[J].石油学报,2010,31(6):879-884
    [59]胡文瑞.开发非常规天然气是利用低碳资源的现实最佳选择[J].天然气工业,2010,30(9):1-8
    [60]华保钦,林锡祥,杨小梅.鄂尔多斯盆地下古生界负压气藏及运移[J].沉积学报,1994,11(2):105-112
    [61]贾爱林,唐俊伟,何东博,等.苏里格气田强非均质致密砂岩储层的地质建模[J].中国石油勘探,2007年,第1期:12-16
    [62]江兴福,谷志东,赵容容,等.四川盆地环开江—梁平海槽飞仙关组地层水的地化特征及成因研究[J].天然气勘探与开发,2009,32(1):5-7
    [63]姜振学,林世国,庞雄奇,等.两种类型致密砂岩气藏对比[J].石油实验地质,2006,28(3):210-214
    [64]金文辉.苏西48区盒8段气水分布规律[D].成都:成都理工大学,2010,61-65
    [65]李会军,吴泰然,马宗晋.苏里格气田优质储层的控制因素[J].天然气工业,2004,24(8):10-16
    [66]李建奇,李安琪,张振文,等.靖边气田马五1+2气藏相对富水区成因及开发[J].天然气工业,2005,25(9):89-91
    [67]李军,赵靖舟,凡元芳,等.鄂尔多斯盆地上古生界准连续型气藏天然气运移机制[J].石油与天然气地质,2013,34(5):592-600
    [68]李明诚.在油气初次运移研究中压实曲线的应用[J].地球科学,1986,11(3):309-314
    [69]李明诚编著.石油与天然气运移(第三版)[M].北京:石油工业出版社,2004:50-64
    [70]李明瑞,窦伟坦,蔺宏斌,等.鄂尔多斯盆地神木地区上古生界盖层物性封闭能力与石千峰组有利区域预测[J].中国石油勘探,2006,23(5):21-25
    [71]李明瑞.鄂尔多斯盆地北部上古生界主要含气砂体沉积特征及储层控制因素研究[D].成都:成都理工大学,2011
    [72]李鹏春,刘春晓,张渊,等.塔中奥陶系地层水化学特征及其成因与演化[J].石油与天然气地质,2007,28(6):802-808
    [73]李荣西,邸领军,席胜利.鄂尔多斯盆地米脂气田天然气逸散:流体包裹体证据[J].中国科学D辑:地球科学,2007,37(增刊Ⅰ):103-109
    [74]李熙哲,冉启贵,杨玉凤.鄂尔多斯盆地上古生界盒8段—山西组深盆气压力特征[J].天然气工业,2003,23(1):126-127
    [75]李熙哲,冉启贵,杨玉凤.鄂尔多斯盆地深盆气气水分布特征与压力特征[A].傅诚德.鄂尔多斯盆地深盆气研究[C].北京:石油工业出版社,2001
    [76]李熙喆,张满郎,谢武仁.鄂尔多斯盆地上古生界岩性气藏形成的主控因素与分布规律[J].石油学报,2012,30(2):168-175
    [77]李贤庆,侯读杰,柳常青,等.地层流体化学成分与天然气藏的关系初探—以鄂尔多斯盆地中部大气田为例[J].断块油气田,2002,9(5):1-4
    [78]李贤庆,侯读杰,柳常青,等.鄂尔多斯中部气田下古生界水化学特征及天然气藏富集区判识[J].天然气工业,2002,22(4):10-14
    [79]李小强,赵彦超.东濮凹陷柳屯洼陷盐湖盆地超压成因[J].石油与天然气地质,2012,33(5):686-694
    [80]李艳霞,赵靖舟,李净红.鄂尔多斯盆地东部上古生界气藏成藏史[J].兰州大学学报(自然科学版),2011,47(3):29-34
    [81]李艳霞,赵靖舟,刘新社,等.鄂尔多斯盆地东部上古生界不同含气组合天然气地球化学特征[J].石油实验地质,2012,34(1):71-77
    [82]李仲东,过敏,李良,等.鄂尔多斯盆地北部塔巴庙地区上古生界低压力异常及其与产气性的关系[J].矿物岩石,2006,26(4):48-53
    [83]李仲东,张哨楠,李良,等.鄂尔多斯盆地上古生界压力演化及成藏过程分析[J].中国科技论文在线,2008,3(11):841-848
    [84]林耀庭,熊淑君.氢氧同位素在四川气田地层水中的分布特征及其成因分类[J].海相油气地质,1999,4(4):39-45
    [85]刘成林.鄂尔多斯盆地苏里格气田天然气储层与输导体系研究[D].北京:石油大学(北京),2004
    [86]刘方槐,颜婉荪编著.油气田水文地质学原理[M].石油工业出版社,1991:10-13
    [87]刘建章,陈红汉,李剑,等.鄂尔多斯盆地伊—陕斜坡山西组2段包裹体古流体压力分布及演化[J].石油学报,2008,29(2):226-230
    [88]刘孝汉,王欣,董钢,等.鄂尔多斯盆地上古生界气水分布和地层压力[J].低渗透油气田,1998,3(2):32-36
    [89]刘孝汉,王欣.鄂尔多斯盆地上古生界气水分布和地层压力[J].天然气工业,1998,3(2):32-36
    [90]刘新社,周立发,侯云东.运用流体包裹体研究鄂尔多斯盆地上古生界天然气成藏[J].石油学报,2007,28(6):37-41
    [91]刘新社.鄂尔多斯盆地东部上古生界岩性气藏形成机理[D].西安:西北大学,2008
    [92]柳广弟,李剑,李景明,等.天然气成藏过程有效性的主控因素与评价方法[J].天然气地球科学,2005,16(1):1-6
    [93]楼章华,程军蕊,金爱民.沉积盆地地下水动力场特征研究—以松辽盆地为例[J].沉积学报,2006,24(2):193-201
    [94]楼章华,朱蓉,金爱民,等.沉积盆地地下水与油气成藏-保存关系[J].地质学报,2009, 83(8):1188-1194
    [95]吕延防,付广,于丹.中国大中型气田盖层封盖能力综合评价及其对成藏的贡献[J].石油与天然气地质,2005,26(6):742-753
    [96]马新华,王涛,庞雄奇,等.深盆气藏的压力特征及成因机理[J].石油学报,2002,23(5):23-27
    [97]马新华.鄂尔多斯盆地上古生界深盆气特点与成藏机理探讨[J].石油与天然气地质,2005,26(2):230-236
    [98]马艳萍,刘池洋,赵俊峰,等.鄂尔多斯盆地东北部砂岩漂白现象与天然气逸散的关系[J].中国科学D辑:地球科学,2007,37(增刊Ⅰ):127-138
    [99]闵琪,付金华,席胜利,等.鄂尔多斯盆地上古生界天然气运移聚集特征[J].石油勘探与开发,2000,27(4):26-29
    [100]庞雄奇,方辉,汤良杰,等.深盆气分布范围理论预测模型与应用实例[A].傅诚德.鄂尔多斯深盆气研究[C].北京:石油工业出版社,2001:65-74
    [101]任战利,张盛,高胜利,等.鄂尔多斯盆地热演化程度异常分布区及形成时期探讨[J].地质学报,2006,80(5):674-684
    [102]任战利.鄂尔多斯盆地热演化史与油气关系的研究[J].石油学报,1996,17(1):17-24
    [103]孙向阳编译,刘方槐审校.沉积盆地中地层水化学特征及其地质意义[J].天然气勘探与开发,2001,24(4):47-53
    [104]唐泽尧主编.气田开发地质(一)[M].北京:石油工业出版社,1997:108-126
    [105]陶一川,范士芝,陈义贤,等.辽河西部凹陷超压带的分布及某些初步认识[J].地球科学,1986,11(3):315-322
    [106]陶一川.油气运移聚集的流体动力学机理问题[J].石油与天然气地质,1983,4(3):255-267
    [107]田世澄,李纯菊.泌阳凹陷孔隙流体压力及油气运移特征[J].地球科学,1986,11(3):323-327
    [108]王飞雁,魏新善,王怀厂.鄂尔多斯盆地上古生界古压力分布特征及其压力降低原因浅析[J].低渗透油气田,2004,9(1):10-14
    [109]王国茹.鄂尔多斯盆地北部上古生界物源及层序岩相古地理研究[D].成都:成都理工大学2011
    [110]王建麾,李仲东,过敏,等.杭锦旗地区上古生界地层水成因[J].新疆石油地质,30(1):65-67
    [111]王若谷,李积海,何太洪,等.苏里格东区苏77、召51井区山西组—下石盒子组沉积微相及气水分布规律研究[J].地下水,2013,35(1):26-28
    [112]王世艳,罗群,宋子学,等.鄂尔多斯盆地苏里格盒8段深盆气藏含水层成因及其物理模拟[J].石油与天然气地质,2007,28(3):413-418
    [113]王庭斌.中国天然气储产量快速增长的主要因素[J].石油勘探与开发,2009,36(3):290-296
    [114]王晓梅,王震亮.鄂尔多斯盆地中生界地下水动力系统[J].石油与天然气地质,2008,29(4):479-484
    [115]王晓梅,赵靖舟,刘新社,等.鄂尔多斯盆地东部上古生界现今地层压力分布特征及成因[J].石油与天然气地质,2013,34(5):646-651
    [116]王晓梅,赵靖舟,刘新社,等.苏里格地区致密砂岩地层水赋存状态和产出机理探讨[J].石油实验地质,2012,34(4):400-405
    [117]王晓梅,赵靖舟,刘新社,等.苏里格气田西区致密砂岩储层地层水分布特征[J].石油与天然气地质,2012,33(5):802-810
    [118]王运所,许化政,王传刚,等.鄂尔多斯盆地上古生界地层水分布与矿化度特征[J].石油学报,2010,31(5):748-761
    [119]王震亮,陈荷立.神木-榆林地区上古生界流体压力分布演化及对天然气成藏的影响[J].中国科学D辑:地球科学,2007,37(增刊Ⅰ):49-61
    [120]王震亮,张立宽,孙明亮,等.鄂尔多斯盆地神木—榆林地区上石盒子组—石千峰组天然气成藏机理[J].石油学报,2004,25(3):37-43
    [121]王震亮.改造型盆地流体动力学的发育特点[J].石油与天然气地质,2000,21(1):24-27
    [122]王震亮.盆地流体动力学及油气运移研究进展[J].石油实验地质,2002,24(2):99-103
    [123]席胜利,李文厚,魏新善,等.鄂尔多斯盆地上古生界两大气田不同石英砂岩储层特征对比研究[J].沉积学报,2009,27(6):221-229
    [124]夏崇双.不同类型有水气藏提高采收率的途径和方法[J].天然气工业,2002,22(增刊):73-77
    [125]夏新宇,宋岩.沉降及抬升过程中温度对流体压力的影响[J].石油勘探与开发,2005,28(3):8-11
    [126]邢正岩,陶国秀,许坚.透镜状“水包油”特殊岩性油藏[J].石油勘探与开发,2000,27(6):58-59
    [127]许浩,张君峰,汤达祯,等.鄂尔多斯盆地苏里格气田低压形成的控制因素[J].石油勘探与开发,2012,39(1):64-68
    [128]严卫宏.鄂尔多斯盆地西北部上古生界沉积体系与层序地层学研究[D].西安:西北大学,2002
    [129]杨华,刘新社,孟培龙.苏里格地区天然气勘探新进展[J].天然气工业,2011,31(2):1-8
    [130]杨华,付金华,刘新社,等.鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J].石油勘探与开发,2012,39(3):295-303
    [131]杨俊杰,李克勤,张东生,等.中国石油地质志,12卷,长庆油田[M].北京:石油工业出版社,1992
    [132]杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002
    [133]杨露.子洲地区山西组2段气藏储集层流体分布特征研究[D].成都:成都理工大学,2009
    [134]杨胜来,魏俊之编著.油层物理学[M].北京:石油工业出版社,2008:117
    [135]杨绪充.论含油气盆地地下水动力环境[J].石油学报,1989,10(4):27-34
    [136]叶成林,王国勇,何凯,等.苏里格气田储层宏观非均质性——以苏53区块石盒子组8段和山西组1段为例[J].石油与天然气地质,2011,32(2):236-244
    [137]叶萍,张从军,蔡鹤生,等.锶(Sr)同位素示踪水—岩相互作用的研究进展[A].晁念英,刘存富,万军伟等主编.同位素水文学最新研究进展[C].武汉:中国地质大学出版社,2006:21-26
    [138]于轶星,王震亮.松辽盆地南部致密砂岩储层油气成藏期次研究[J].断块油气田,2011,18(2):203-206
    [139]袁际华,柳广弟.鄂尔多斯盆地上古生界异常低压分布特征及形成过程[J].石油与天然气地质,2005,26(6):792-799
    [140]张海涛,时卓,任战利,等.鄂尔多斯盆地苏里格气田盒8气藏含水特征及气水分布主控因素分析[J].现代地质,2011,25(5):931-937
    [141]张建林,陶一川,陈荣书,等.塔里木盆地北部油气田水文地质及水文地球化学特征[J].地球科学—中国地质大学学报,1995,20(3):349-354
    [142]张金川,金之钧,袁明生,等.基于运移动力暂时平衡条件下的运移气[J].天然气工业,2001,22(5):101-103
    [143]张金川,唐玄,边瑞康,等.游离相天然气成藏动力连续方程[J].石油勘探与开发,2008,35(1):73-79
    [144]张金川,张杰.深盆气成藏平衡原理及数学描述[J].高校地质学报,2003,9(3):458-466
    [145]张金川.从“深盆气”到“根缘气”[J].天然气工业,2006,26(2):46-48
    [146]张琴,汪宗余,王广源,等.永安地区地层水成因分析及与油气的关系[J].石油天然气学报(江汉石油学院学报),2009,31(2):174-178
    [147]张文忠,林文姬,赵广民.苏里格气田石盒子组地层水特征与天然气聚集[J].新疆石油天然气,2008,4(3):1-8
    [148]张文忠.苏里格地区上古生界气田异常低压成因研究[D].北京:中国地质大学(北京),2009
    [149]张小莉,查明,赫拴柱,等.渤海湾盆地廊固凹陷地层水化学纵向分带性与油气富集[J].石油实验地质,2006,28(2):187-195
    [150]张宗峰,查明,高长海.大港油田埕北断阶区地层水化学特征与油气成藏[J].石油与天然气地质,2009,30(3):268-274
    [151]赵靖舟,曹青,王晓梅,等.鄂托克旗地区盒8、山1段天然气成藏富集规律与勘探目标评价选[R].西安:西安石油大学,2010
    [152]赵靖舟,付金华,姚泾利,等.鄂尔多斯盆地准连续型致密砂岩大气田成藏模式[J].石油学报,2012年,33(增刊Ⅰ):37-52
    [153]赵靖舟,李军,曹青,等.论致密大油气田成藏模式[J].石油与天然气地质,2013,34(5):573-583
    [154]赵靖舟,李艳霞,王晓梅,等.鄂尔多斯盆地东部上古生界多层系天然气成藏机理与有利勘 探目标优选[R].西安:西安石油大学,2007
    [155]赵靖舟,王晓梅,曹青,等.鄂尔多斯盆地上古生界低渗透储层气、水分布规律[R].西安:西安石油大学,2010
    [156]赵克斌,刘崇禧,李伟.含油气盆地水文地球化学规律[J].石油实验地质,2008,30(2):154-161
    [157]赵忠新,王华,郭齐军,等.油气输导体系的类型及其输导性能在时空上的演化分析[J].石油实验地质,2002,24(6):527-532
    [158]周德志.束缚水饱和度与临界水饱和度关系的研究[J].油气地质与采收率,2006,13(6):81-83
    [159]朱蓉,楼章华,金爱民,等.鄂尔多斯盆地上古生界深盆气藏流体动力学特征及成藏过程分析[J].地质科学,2003,38(1):31-43
    [160]朱蓉,楼章华,云露,等.塔河油田奥陶系油藏地层水赋存分布[J].地质科学,2008,43(2):228-237
    [161]朱筱敏,刘成林,曾庆猛,等.我国典型天然气藏输导体系研究—以鄂尔多斯盆地苏里格气田为例[J].石油与天然气地质,2005,26(6):724-729
    [162]朱亚东,王允诚,童孝华·苏里格气田盒8段气藏富水层的识别与成因[J]·天然气工业,2008,28(4):46-48
    [163]邹才能,陶士振,袁选俊,等.连续型油气藏形成条件与分布特征[J].石油学报,2009,30(3):324-331
    [164]邹才能,陶士振,朱如凯,等.“连续型”气藏及其大气区形成机制与分布—以四川盆地上三叠统须家河组煤系大气区为例[J].石油勘探与开发,2009,36(3):307-319

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700