用户名: 密码: 验证码:
深圳湾水环境综合评价及环境容量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济社会的快速发展,海洋开发规模与强度持续加大,近海海域遭到越来越严重的污染,海域环境质量日趋恶化。海洋环境质量评价和海洋环境容量研究是环境保护的一项基础性工作,也是进行环境管理的重要手段之一。开展海洋环境质量评价方法研究,建立准确、有效、可操作性强的环境质量评价方法可以使评价过程更加简便,评价结果更具合理性;在全面了解海洋污染现状、正确评价海洋环境质量的基础上,开展海域主要污染物的环境容量研究,对制订区域特征污染物减排计划、减轻海洋污染压力、改善海洋环境具有重要意义。深圳湾是深圳、香港两地的界湾,承纳着深港两地的主要污染物,湾内严重的水污染问题与深港两地的高速城市发展形成较大反差,已成为制约深港两地和谐发展的主要因素。本文以“深圳湾环境容量与污染总量控制”研究项目为依托,在深圳湾2008年调查实测的数据之上,开展了深圳湾水环境综合评价及主要污染物环境容量研究,以期为实施深圳湾水质目标管理、污染物总量控制、海湾环境保护、海域有偿使用和海岸带综合管理提供科学依据。主要研究内容及研究成果如下:
     1、根据2008年深圳湾环境现状调查各因子的统计结果,选取10个水质指标进行了时空变化特征分析。结果表明:夏季水温最高、盐度最低,冬季水温最低、盐度最高,CODMn浓度雨季高于旱季;温、盐、CODMn的空间分布形态皆为冬季由湾内向湾外分布而其它三季由西岸向东岸分布;雨季非点源污染是湾内CODMn含量增高的主要原因。营养盐DIN浓度雨季大于旱季,而DIP和硅酸盐浓度旱季大于雨季;各营养盐空间分布并不相同,但均为湾内浓度最高。陆源排污、海底沉积物营养盐交换和珠江口水系雨季带来的高氮低磷低硅的海水是导致整个深圳湾海水中氮、磷、硅营养盐时空分布不尽相同的主要原因。石油类浓度的最高值皆出现在湾内深圳河口、湾中大沙河口和蛇口渔港附近海域,表明陆源排污和港口排污是深圳湾石油类的主要来源。重金属Pb、Hg的浓度旱季低于雨季,而Zn的季节变化恰好相反。Pb、Zn、Hg四个季节的空间分布并无一定的规律。陆源排污、大气—海洋双向输入以及深圳湾外围水质重金属浓度变化是导致整个深圳湾海水中不同性质重金属浓度时空分布不尽相同的主要原因。
     2、根据三类海水水质标准,在单因子评价的基础上,对原始数据的初值化采用以水质评价标准为约束的极值化方法,构建了基于线性隶属函数初值化方法的灰色关联评价模型,对深圳湾海水环境质量进行了综合评价。评价结果表明:深圳湾海水环境质量均属于Ⅳ类水质标准,污染的总体趋势是湾内大于湾中大于湾口;河口、码头处污染最严重。与常用的灰色关联评价模型相比,改进的灰色关联评价模型结合了灰色评价和模糊评价的优点,评价结果更加真实可靠。
     3、将三维斜压流干湿网格技术引入到POM模型中,对深圳湾海域的三维潮流场进行了模拟。计算结果表明:深圳湾海域属不正规半日潮,水平潮流属典型的往复流性质,潮流受地形约束基本呈西南—东北走向;落潮流速略大于涨潮流速;湾口流速大于湾内流速;表、中、底三层流场在结构上类似,受底摩擦的影响,表层流速略大于中层流速大于底层流速,且在潮流转流时刻,湾口一带都会出现一个逆时针的环流。整个流场垂向流速较小,存在着湾内上升、湾外下降的上下环流过程。
     4、将带有衰减项的物质输运方程耦合到带有干湿网格的POM模型中,采用分担率法计算了深圳湾COD、DIN和DIP的环境容量,并提出了根据水动力模型计算的响应系数场和分担率来确定混合区距离的公式。结果表明:深圳河和大沙河是影响全海域各种污染物含量的主要污染源。对COD,除大沙河雨季无排放容量外,其余各季各污染源均有排放容量。整个海域雨、旱季DIN和DIP都已经严重超标,无剩余容量,在总量控制中应采取严格的削减措施。
     5、针对深圳湾COD、DIN和DIP三种污染物的不同污染状况,分别提出了符合各个污染物污染特征的减排方案。结果表明:为使各污染物达到三类水质标准,在现状条件下,COD需少量减排,DIP需大幅度减排;在开边界水质DIN浓度达标的前提下,DIN也需大幅度减排。
As the rapid development of economy, the scale and intensity of ocean development increase continuously. Coastal waters have being suffered more and more serious pollution, and the marine environment quality is deteriorating. Marine environment quality assessment and environmental capacity study is a basic task for environmental protection, and is also an important means for environmental management. According to study on marine environment quality assessment method, an accurate, effective and workable environment quality assessment method can be established, which can make the evaluation process more simple, the evaluation result more reasonable. Based on a comprehensive understanding of marine pollution status and a correct evaluation of marine environment quality, environmental capacity study on the main pollutants is great important for designing a emission reduction scheme of regional pollutants, reducing the pressure on marine pollution and improving the marine environment quality. Shenzhen Bay is a boundary bay between Shenzhen and Hong Kong, and the major pollutants of the two areas are inpoured into the sea. A large contrast between the serious water pollution problems in the bay and the rapid urban development of Shenzhen and Hong Kong has been formed and has become a main factor which restricts the harmonious development of the two cities. In this paper, supported by the research project of "Environmental Capacity and Pollution Total Amount Control of Shenzhen Bay", comprehensive assessment of water environment and environmental capacity of main pollutants are researched based on the monitoring data of Shenzhen Bay in 2008. Main contents and conclusions are as follows:
     1.According to the statistical results of Shenzhen Bay in 2008, ten indicators are selected to analyze their spatial and temporal variations. The results show that:the water temperature in summer is higher than that in winter, and the salinity in summer is lower than that in winter. The CODMn in rainy season is higher than that in dry season. The spatial distribution patterns of temperature, salinity and CODMn contours are consilient that the distribution is from the inner bay to the outer bay in winter and from the west coastline to the east coastline in other seasons. The non-point sources pollution in rainy season is the main reason for the increased values of CODMn. The DIN in rainy season is higher than that in dry season and is adverse for the DIP and silicon. The spatial distribution of nutrients is varied, but the highest concentration always appears at the inner bay. This is mainly caused by the high nitrogen, low phosphorus and low silicon sea water from the Pearl River in summer besides the terrestrial runoff and sediment nutrient exchanges. The highest concentration of oil always appears at the estuary of Sham Chun River, Dashahe and snake port sea area which shows that the sewage from land-based sources and port are the main source of oil in the bay. The Pb and Hg in dry season are lower than that in rainy season, and is adverse for the Zn. There are no disciplinary changes to follow for the temporal distribution of heavy metals including Pb, Zn and Hg. These are mainly caused by the land-based sources of sewage, the two-way input from the atmosphere-sea and the concentration changes of the heavy metals in external sea area.
     2.According to the third class standard, a single-factor evaluation method is used to evaluate the water quality. To restrict the extremum with the water quality standard, a further comprehensive evaluation is done by constructing a grey correlation evaluation model based on the value initialized method by using a linear membership function. The results show that:the water quality in Shenzhen Bay is in the fourth class standard and the overall pollution trends indicate that the inner bay is more serious than the middle of the bay, the middle of the bay is more serious than the mouth of the bay, and the estuaries and piers are the most serious. Compared with the common grey correlation evaluation model, the model in this paper combines with the advantages of grey and fuzzy evaluations, and can truly reflects the comprehensive characteristics of water quality in the actual evaluation.
     3.A three-dimensional, baroclinic wetting and drying scheme is introduced into POM model to simulate the three-dimensional flow field of Shenzhen Bay. The simulation results show that:the tide in Shenzhen Bay is an irregular semidiurnal tide, the horizontal tidal current is a reciprocating current and mainly in southwest-northeast direction by the restriction of the terrain. The tidal current velocity of ebb tide is slightly larger than that of flood tide. A similar structure has been shown in the flow fields of surface, middle and bottom layers. Influenced by the bottom friction, the tidal current velocity in the surface layer is slightly larger than that in the middle layer, and velocity in middle layer larger than that in the bottom layer. At the tidal current turning moment, a counter-clockwise circulation current always appears in the mouth of the bay. The vertical velocity of the whole flow field is slower. There exists a circulation current process which is up in the inner bay and down in the outer bay in Shenzhen Bay.
     4.A material transport equation with an attenuation item is coupled into the POM model. The sharing rate method is used to calculate the environmental capacity of COD, DIN and DIP and a distance formula of mixing zone based on the response coefficient and the sharing rate attained from the hydrodynamic model is proposed. The simulation results show that the Sham Chun River and Dashahe are the main pollution sources that influence the whole sea area. There are discharge capacities of COD in all pollution sources in the whole year except that there is no discharge capacity of COD in Dashahe in rainy season. The DIN and DIP throughout the sea area are far excessive and there is no remaining capacity both in rainy season and in dry season. A strict emission reduction scheme should be taken in total amount control.
     5.Three different emission reduction schemes for COD, DIN and DIP are proposed according to their different contamination status. The simulation results indicate that in order to agree with the third class standard, a little reduction for COD and a large reduction for DIP should be performed based on the status quo, and a large reduction for DIN is also needed based on the precondition that the DIN concentration at the open boundary meets the third class standard.
引文
[1]国家海洋局.2009年中国海洋环境质量公报.2010.
    [2]李祚泳,丁晶,彭荔红.环境质量评价原理与方法.北京:化学工业出版社,2004.
    [3]国家海洋局.江河入海污染物总量及河口区环境质量监测技术规程.2002.
    [4]国家海洋局.建设项目海洋环境影响跟踪监测技术规程.2002.
    [5]国家海洋局.陆源排污口邻近海域监测技术规程.2002.
    [6]国家海洋局.海水增养殖区监测技术规程.2002.
    [7]刘硕,朱建平,蒋火华.对几种环境质量综合指数评价方法的探讨.中国环境监测,1999,15(5):33-37.
    [8]刘绮,潘伟斌.环境质量评价.广州:华南理工大学出版社,2004.
    [9]Deng J L. Introduction to grey systems theory. The Journal of Grey System,1989,1(1):1-24.
    [10]Cai W. Method of matter elements analysis. BUSEFAL,1984,20:52-56.
    [11]蔡文.物元模型及其应用.北京:科学技术文献出版社,1994.
    [12]赵克勤.集对分析及其初步应用.杭州:浙江科学技术出版社,2000.
    [13]张立明.人工神经网络的模型及其应用.上海:复旦大学出版社,1993.
    [14]Chen F C. Back-propagation neural networks for nonlinear self-tuning adaptive. IEEE TRANS. On Control System Magazine,1990,10(3):44-48.
    [15]王小平,曹立明.遗传算法——理论应用与软件实现.西安:西安交通大学出版社,2002.
    [16]陈伟琪,张珞平.近岸海域环境容量的价值及其价值量评估初探.厦门大学学报(自然科学版),1999,38:896-901.
    [17]张亭亭.海域环境容量的价值评估:(硕士学位论文).厦门:厦门大学,2009.
    [18]邓海峰.环境容量的准物权化及其权利构成.中国法学,2005:59-66.
    [19]罗杰,珀曼,马越.自然资源与环境经济学.北京:中国经济出版社,2002.
    [20]王修林,李克强,石晓勇.胶州湾主要化学污染物海洋环境容量.北京:科学出版社,2006.
    [21]张永良.水环境容量基本概念的发展.环境科学研究,1992,5(3):59-61.
    [22]GESAMP. Environmental Capacity:An Approach to Marine Pollution Prevention. UNEPREG. SEAS REP. STUD.1986, (80):62.
    [23]张永战,张大奎.海岸带——全球变化研究的关键地区.海洋通报,1993,16(3):69-80.
    [24]汪兆椿.面向21世纪的海洋行动纲领.海洋开发与管理,1995,12(4):15.
    [25]吴宇华.海岸带研究的深远意义.地球信息科学,1997,2:55-56.
    [26]Margeta J, Baric A, Gacic M. Environmental capacity of the Kastela Bay. Eighth International Ocean Disposal Symposium,1989:9-13.
    [27]Horyia K et al. Evaluating Method of the Marine Environmental Capacity for Coastal Fisheries and Its Application to Osaka Bay. Marine Pollution Bulletin,1991,23:253-257.
    [28]Ernestova L S et al. The Effect of Photochemical Oxygen Activation Products on the Self-purification Capacity of Natural Waters. Water Resource,1994,21(3):334-338.
    [29]Krom M D et al. Determination of the environmental capacity of Haifa Bay with respect to the input of mercury. Mar Pollut Bull,1990,21:349-354.
    [30]Duka G G et al. Investigation of natural water self-purification capacity under simulated conditions. Water Resource,1996,23(6):619-622.
    [31]张存智,夏进.大连湾污染排放总量控制研究:海湾纳污能力计算模型.海洋环境科学,1998,17(3):1-5.
    [32]张越美,孙英兰.河口、陆架和海洋模式在胶州湾的应用.海洋环境科学,2000,19(4):13-17.
    [33]赵亮,魏皓,赵建中.胶州湾水交换的数值研究.海洋与湖沼,2002,33(1):23-29.
    [34]蒋凤华.营养盐在胶州湾沉积物——海水界面上的交换速率和通量研究:(硕士学位论文).青岛:青岛海洋大学,2002.
    [35]葛明,王修林,阎菊等.胶州湾营养盐环境容量计算.海洋科学,2003,27(3):36-42.
    [36]万修全,鲍献文,吴德星等.胶州湾及邻近海域潮流和污染物扩散的数值模拟.海洋科学,2003,27(5):31-36.
    [37]李克强,王修林,阎菊等.胶州湾石油烃污染物环境容量计算.海洋环境科学,2003,22(4):13-17.
    [38]李克强.胶州湾石油烃污染物环境容量模型研究及其应用:(硕士学位论文).青岛:中国海洋大学,2004.
    [39]张银英,张慕贞.珠江口咸淡水交汇区水中CODMn,油类,砷自净规律的试验研究.热带海洋,1995,14:67-74.
    [40]管卫兵,王丽娅,潘建明等.POM模式在河口湾污染物质输运过程模拟中的应用.海洋学报,2002,24(3):9-17.
    [41]管卫兵,王丽娅,许东峰.珠江河口氮和磷循环及溶解氧的数值模拟Ⅰ.模式建立.海洋学报,2003,25(1):52-60.
    [42]管卫兵,王丽娅,许东峰.珠江河口氮和磷循环及溶解氧的数值模拟Ⅱ.模拟结果.海洋学报,2003,25(1):61-68.
    [43]王修林,邓宁宁,李克强等.渤海夏季石油烃污染现状及其环境容量估算.海洋环境科学,2004,23(4):14-18.
    [44]詹兴旺.安海湾环境容量及其应用研究:(硕士学位论文).厦门:国家海洋局第三海洋研究所,2001.
    [45]牛志广.近岸海域水环境容量的研究:(博士学位论文).天津:天津大学,2005.
    [46]郭森.纳污海域水环境容量计算与总量分配方法研究——以钦州湾为例:(硕士学位论文).北京:中国环境科学研究院,2006.
    [47]黄秀清,王金辉,蒋晓山等.象山港海洋环境容量及污染物总量控制研究.北京:海洋出版社,2008.
    [48]朱建荣.海洋数值计算方法和数值模式.北京:海洋出版社,2003.
    [49]http://www.softwarelist.cn/?fsid=56&id=2779&cpath=ADAA
    [50]储鏖.Delft3D在天文潮与风暴潮耦合数值模拟中的应用.海洋预报,2004,21(3):29-36.
    [51]谢亚力.钱塘江河口区治江围涂对杭州湾风暴潮影响研究:(硕士学位论文).中国海洋大学,2006.
    [52]栗苏文,李红艳,夏建新.基于Delft3D模型的大鹏湾水环境容量分析.环境科学研究,2005,18(5):91-95.
    [53]http://www.softwarelist.cn/?fsid=56&id=5499&cpath=AQAL
    [54]MELLOR G L. Users guide for a three-dimensional, primitive equation, numerical ocean model. New Jersey:Princeton University,2004.
    [55]孙洪亮,黄卫民.北部湾潮汐潮流的三维数值模拟.海洋学报,2001,23(2):1-8.
    [56]李庆红,赵军方,张永刚.大连附近海域潮汐潮流的三维数值模拟.海洋测绘,2003,23(2):48-52.
    [57]Liu H. Annual Cycle of Stratification and Tidal Fronts in the Bohai Sea:A Model Study.Journal of Oceanography,2007,63:67-75.
    [58]Liu H, Yin B S, Xu Y Q et al. Numerical simulation of tides and tidal currents in Liaodong Bay with POM. PROGRESS IN NATURAL SCIENCE,2005,15(1):47-55.
    [59]刘浩,尹宝树.泉州湾潮汐、潮流及浅滩干湿变化的数值研究.水动力学研究与进展,Ser.A,2006,21(6):693-699.
    [60]申霞,姚琪,王鹏.动边界技术在POM模型中的研究与应用.海洋通报,2006,25(1):1-7.
    [61]Zhang J, Sun X L, Lin J G et al. Application of an Improved Wetting and Drying Scheme in POM.2009 International Conference on Energy and Environmental Technology,2009,10:427-432.
    [62]刘浩,尹宝树.辽东湾氮、磷和COD环境容量的数值计算.海洋通报,2006,25(2):46-52.
    [63]周巧菊.大亚湾海域温排水三维数值模拟.海洋湖沼通报,2007,4:37-46.
    [64]Liu H, Yin B S. Annual cycle of carbon, nitrogen and phosphorus in the Bohai Sea:A model study. Continental Shelf Research,2007,27:1399-1407.
    [65]Blumberg A F, Mellor G L. A description of a three-dimensional coastal ocean circulation model. Three Dimensional Coastal Models, Amer. Geographies. Union,1987,1-16.
    [66]Tetra T, Inc. Ocean Circulation and Plume Dispersion Modeling Review, with Emphasis on Orange County Sanitation District's Offshore Outfall and Wastewater Plume. Lafayette, CA,2000: B1-B3.
    [67]朱建荣,丁平兴,朱首贤.黄海东海夏季环流的数值模拟.海洋学报,2002,24(增刊1):123-133.
    [68]朱建荣,朱首贤.ECOM模式的改进及在长江河口、杭州湾及邻近海区的应用.海洋与湖沼, 2003,34(4):364-374.
    [69]张燕.海湾入海污染物总量控制方法与应用研究:(博士学位论文).青岛:中国海洋大学,2007.
    [70]堵盘军ECOMSED模式在杭州湾海域流场模拟中的应用.海洋学报,2007,19(1):7-16.
    [71]Tetra T, Inc. USER'S MANUAL for ENVIRONMENTAL FLUID DYNAMICS CODE. Fairfax, Virginia,2002.
    [72]Ji Z G, Hu G D, Shen J A et al. Three-dimensional modeling of hydrodynamic processes in the St. Lucie Estuary. Estuarine Coastal and Shelf Science,2007,73(1-2):188-200.
    [73]Ji Z G, Morton M R, Hamrick J M. Wetting and drying simulation of estuarine processes.Estuarine Coastal and Shelf Science,2001,53(5):683-700.
    [74]郑晓琴,丁平兴,胡克林.长江口及邻近海域夏季温盐分布特征数值分析.华东师范大学学报(自然科学版),2008,6:14-23.
    [75]王翠,孙英兰,张学庆.基于EFDC模型的胶州湾三维潮流数值模拟.中国海洋大学学报(自然科学版),2008,38(5):833-840.
    [76]Luyten P J. COHERENS A Coupled Hydrodynamical-Ecological Model for Regional and Shelf Seas. MAS3-CT97-0088. User Documentation.MUMM Internal Report, Management Unit of the Mathematical Models,1999.
    [77]Luyten P J. An analytical and numerical study of surface and bottom boundary layers with variable forcing and application to the North Sea. Journal of Marine Systems,1996, (8):171-189.
    [78]Luyten P J, Rippeth T P. A comparison study of turbulence closure schemes for tidal flows with application to the Irish Sea. Presented at the 29th Li'ege Colloquium on Marine Hydrodynamics. Turbulence Revisited, Li'ege,1997, (5):5-9.
    [79]Luyten P J, De M T. A module representing surface fluxes of momentum and heat. Technical Report No.9 MAST-0050-C(MUMM),1992.
    [80]Tett P, Parameterising a microplankton model. Report,Napier University, Edinburgh,1998.
    [81]范学平,曾远.COHERENS模型的三维潮流及物质输运数值模拟.人民长江,2008,39(2):23-24.
    [82]江朕荣.以数值模式探讨台风涌升流之时空变化:(硕士学位论文).台湾:国立中山大学,2004.
    [83]朱静,王靖飞,田在峰等.海洋环境容量研究进展及计算方法概述.水科学与工程技术,2009,4:8-11.
    [84]张学庆.胶州湾三维环境动力学数值模拟及环境容量研究:(硕士学位论文).青岛:中国海洋大学,2003.
    [85]俞静,孙英兰,张越美等.宁波—周三海域入海污染物环境容量研究.环境污染与防治,2006,28(1):21-24.
    [86]李适宇,李耀初,陈炳禄等.分区达标控制法求解海域环境容量.环境科学,1999,20(4):96-99.
    [87]郭良波.渤海环境动力学数值模拟及环境容量研究:(硕士学位论文).青岛:中国海洋大学, 2005.
    [88]王悦.M2分潮潮流作用下渤海湾物理自净能力与环境容量的数值研究:(硕士学位论文).青岛:中国海洋大学,2005.
    [89]俞静.青岛市近岸海域污染控制规划研究:(硕士学位论文).青岛:中国海洋大学,2006.
    [90]牛志广,张宏伟.地统计学和GIS计算近海水环境容量的研究.天津工业大学学报,2006,25(1):74-77.
    [91]中华人民共和国国家标准.海水水质标准.GB3097-1997,北京:中国标准出版社,1997.
    [92]国家环境保护总局.近岸海域环境功能区管理办法.1999.
    [93]中华人民共和国国家标准.污水海洋处置工程污染控制标准.GB18486-2001,北京:中国环境科学出版社,2002.
    [94]吴航,王泽良,黄剑等.深圳市政污水排海工程排污混合区范围的确定.环境监测管理与技术,2002,14(6):37-40.
    [95]王琳,陈上群.深圳湾自然条件特征及治理应注意的问题.人民珠江,2001,6:4-7.
    [96]深圳市人民政府.深圳市海洋功能区划,2004.
    [97]http://gd.d0086.com/slm/shenzhen/TKM/bskk/drdm_4.htm
    [98]http://www.bycensus2006.gov.hk/sc/data/data3/statistical_tables/index_tc.htm#A1
    [99]http://www.sztj.com/main/xxgk/tjsj/tjgb/gmjjhshfzgb/200903243520.shtml
    [100]郭伟,朱大奎.深圳围海造地对海洋环境影响的分析.南京大学学报(自然科学),2005,41(3):286-296.
    [101]杨国标.深圳后海湾填海工程对泄洪能力的影响研究:(硕士学位论文).南京:河海大学,2007.
    [102]刘建,黄明华,娄鹏.深圳湾填海工程对出海河流泄洪能力影响的研究.水利水电技术,2006,37(2):98-102.
    [103]香港特别行政区政府环境保护署.2008年香港海水水质,2009.
    [104]罗加海,梁秩燊,罗均宏等.大沙河容许负荷量及新建工业区废、污水排放对河口和深圳湾的影响.南海研究与开发,1994,(4):1-11.
    [105]黄小平,李向东,岳维忠等.深圳湾沉积物中重金属污染累积过程.环境科学,2003,24(4):144-149.
    [106]黄奕龙,王仰麟,张利萍.深圳市近岸海域水体和沉积物环境质量评价.海洋环境科学,2006,25(4):28-32.
    [107]丘耀文,张干,郭玲利等.深圳湾生态系统多环芳烃(PAHs)特征及其生态危害.环境科学,2007,28(5):1056-1061.
    [108]左平,汪亚平,闵凤阳等.深圳湾海域表层和柱样沉积物中的重金属分布特征.海洋学报,2008,30(4):71-79.
    [109]秦华鹏,倪晋仁,梁林.基于水动力学数学模型的海湾填海岸线选择.水动力学研究与进展,Ser.A.2002,17(1):92-100.
    [110]黄海涛,黄明华.深圳湾填海工程对大沙河泄洪能力的影响和对策.广东水利水电,2005,(2):8-10.
    [111]陈介中,王丽娅.引调大鹏湾海水对深圳湾的影响.深圳特区科技,2005,(21):248-257.
    [112]文卫.深圳市深圳湾潮位特征.有色冶金设计与研究.2007,28(4):73-75.
    [113]万由鹏.深圳湾水动力时间参数计算及营养盐减排效果分析:(硕士学位论文).北京:清华大学,2009.
    [114]厉红梅,孟海涛.深圳湾底栖动物群落结构时空变化环境影响因素分析.海洋环境科学,2004,23(1):37-40.
    [115]冷科明,江天久.深圳海域近20年赤潮发生的特征分析.生态科学,2004,23(2):166-170.
    [116]李秋霞,黄玉源,雷泽湘.深圳湾的综合效益及人为造成地理、环境变化的影响分析.现代商贸工业.2007,19(5):13-16.
    [117]香港特别行政区环境保护署.珠江三角洲水质模型最终研究报告.2008.10:3-6.
    [118]中华人民共和国国家标准.海洋监测规范.GB17378-2007,北京:中国标准出版社,2008.
    [119]刘宁,吕锐锋.深圳河湾水污染水环境治理.北京:中国水利水电出版社,2006.
    [120]深圳市海洋局.2008年深圳市海洋环境质量公报,2009.
    [121]孙丕喜,王宗灵,战闰等.胶州湾海水中无机氮的分布与富营养化研究.海洋科学进展,2005,23(4):466-471.
    [122]姜胜,冯佳和,冯洁娉等.广州海域营养盐的质量浓度及分布特征.海洋科学,2006,30(4):36-39.
    [123]陈佳荣.水化学.北京:中国农业出版社,1996.
    [124]宋金明,罗延馨,李鹏程.渤海沉积物—海水界面附近磷与硅的生物地球化学循环模式.海洋科学,2000,24(12):30-32.
    [125]http://www.hudong.com/wiki/%E6%B5%B7%E6%B4%8B%E9%87%8D%E9%87%91%E5 %B1%9E%E6%B1%A1%E6%9F%93
    [126]http://www.hudong.com/wiki/%E9%94%8C%E6%B1%A1%E6%9F%93
    [127]黄小平,田磊,彭勃等.珠江口海域环境污染研究进展.热带海洋学报,2010,29(1):1-7.
    [128]冯新斌,仇广乐,付学吾等.环境汞污染.化学进展,2009,21(2):436-457
    [129]深圳市人民政府.关于印发深圳市近岸海域环境功能区划的通知(深府办[1999]39号)1999.
    [130]杜虹,黄长江,陈善文等.粤东柘林湾海域富营养化评价与分析.生态科学,2003,22(1):13-17
    [131]王肇鼎,彭云辉,孙丽华.大鹏澳网箱养鱼水体自身污染及富营养化研究.海洋科学,2003, 27(2):77-81.
    [132]苏畅,沈志良,姚云等.长江口及其邻近海域富营养化水平评价.水科学进展,2008,19(1):99-105.
    [133]姚桂莹,赵东风,赵朝成.大气环境质量评价的加权灰色关联分析法.油气田环境保护,2006,16(4):39-41.
    [134]汪家权,刘万茹,钱家忠等.地下水环境质量评价Fuzzy_Grey模式.农业环境科学学报,2003,22(4):73-77.
    [135]李玉文,关兆红,任彩银.灰色关联分析在建设项目环境影响评价中的应用.环境污染治理技术与设备,2003,4(10):91-94.
    [136]杜宝汉,李永安.用灰色关联度模型评价湖泊富营养化.四川环境,1999,18(4):48-52.
    [137]付会,孙英兰,孙磊等.灰色关联分析法在海洋环境质量评价中的应用.海洋湖沼通报,2007,3:127-131.
    [138]张戈,于大涛,袁仲杰等.海水水质评价方法比较分析.海洋开发与管理,2009,26(10):102-105.
    [139]韩胜娟SPSS聚类分析中数据无量纲化方法比较.科技广场,2008,3:229-231.
    [140]张文鸽,李会安,蔡大应.水环境质量评价的模糊综合评判方法.华北水利水电学院学报,2004,25(4):70-73.
    [141]孙文心,江文胜,李磊.近海环境流体动力学数值模型.北京:科学出版社,2004.
    [142]Leendertse J J. A Water-quality Simulation Model for Well-mixed Estuaries and Coastal Seas. Vol.1, Principles of Computation. Rand, Santa Monica, February.1970, RM-6230-RC.
    [143]Kourafalou V H, Oey L Y et al. The fate of river discharge on the continental shelf: 1.modeling the river plume and inner shelf coastal current. Journal of Geophysical Research.1996, Vol.101, No.C2:3415-3434.
    [144]Kourafalou V H, Thomas N L, Sun J et al. The fate of river discharge on the continental shelf: 2.transport of coastal low salinity waters under realistical wind and tidal forcing. Journal of Geophysical Research.1996, Vol.101, No.C2:3435-3455.
    [145]Kourafalou V H. River plume development in semi-enclosed Mediterranean regions:North Adriatic Sea and Northwestern Aegean Sea. Journal of Marine Systems,30(2001):181-205.
    [146]刘浩.渤海生态系统关键物理生物过程的数值研究:(博士学位论文).青岛:中国科学院研究生院,2005.
    [147]孙健,陶建华.潮流数值模拟中动边界处理方法研究.水动力学研究与进展,Ser.A,2007, 22(1):44-52.
    [148]Balzano A. Evaluation of methods for numerical simulation of wetting and drying in shallow water flow models. Coastal Engineering,1998,34:83-107.
    [149]Li M K, Hou Y J, Wei Z X. Three dimensional numerical simulation of tides and currents in Fushan Bay, Qingdao. Journal of Hydrodynamics, Ser.B,2004,16(5):646-650.
    [150]孙英兰,张越美.胶州湾三维变动边界的潮流数值模拟.海洋与湖沼,2001,32(4):355-362.
    [151]Shi F Y, Sun W X, Wei G S. A WDM method on a generalized curvilinear grid for calculation of storm surge flooding. Applied Ocean Research,1997,19:275-282.
    [152]Xie L, Pietrafesa L J, Peng M. Incorporation of a massconserving inundation scheme into a three-dimensional storm surge model. J Coast Res,2004,20:1209-1223.
    [153]Uchiyama Y. Wetting and drying scheme for POM and its application to San Francisco Bay. In: Cheng L, Yeow K (eds) Hydrodynamics Ⅵ—theory and application.Taylor & Francis Group, London,2004,293-299.
    [154]Oey L. A wetting and drying scheme for POM. Ocean Model,2005,9:133-150.
    [155]Oey L. An OGCM with movable land-sea boundaries. Ocean Model,2006,13:176-195.
    [156]Oey L, Ezer T, Hu C et al. Baroclinic tidal flows and inundation processes in Cook Inlet, Alaska:numericalmodeling and satellite observations. Ocean Dynamics,2007,57:205-221.
    [157]Mellor G L. Oscillatory bottom boundary layers. J Phys Oceanogr,2002,32:3075-3088.
    [158]Xue H J, Du Y. Implementation of a wetting and drying model in simulating the Kennebec-Androscoggin plume and the circulation in Casco Bay. Ocean Dynamics,2010.
    [159]陈长胜.海洋生态系统动力学与模型.北京:高等教育出版社,2003.
    [160]张学庆.近岸海域环境数学模型研究及其在胶州湾的应用:(博士学位论文).青岛:中国海洋大学,2006.
    [161]王修林,李克强.渤海主要化学污染物海洋环境容量.北京:科学出版社,2006.
    [162]魏娥华.青岛市崂山区海域环境容量研究:(硕士学位论文).青岛:中国海洋大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700