用户名: 密码: 验证码:
经穴注射BMSCs联合益气活血方对DM后肢缺血大鼠血管再生作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究益气活血方血清对骨髓间充质干细胞(Bone Mesenchymal Stem Cells, BMSCs)增殖活力的影响,以及经穴注射BMSCs联合益气活血中药促进糖尿病大鼠后肢缺血血管再生的机制,为临床中医血管外科防治下肢动脉缺血性疾病提供新的思路和方法。
     方法:(一)体外实验:采用全细胞贴壁培养法纯化BMSCs,用流式细胞术鉴定BMSCs。采集空白对照大鼠、益气药、活血药、益气活血方灌胃大鼠的含药血清,应用MTT法检测10%浓度以上四种不同含药血清对第3代BMSCs增殖活力的影响;以及5%、10%、20%不同浓度空白血清与益气活血含药血清对第3代BMSCs增殖活力的影响;(二)体内实验:80只SD大鼠随机分为8组:正常血糖假手术组、糖尿病大鼠假手术组、糖尿病大鼠缺血组、益气活血中药治疗组、局部注射BMSCs组、局部注射BMSCs+益气活血方治疗组、穴位注射BMSCs组、穴位注射BMSCs+益气活血方治疗组,每组10只。
     DM模型:采用空腹腹腔注射50.0mg/Kg的STZ;缺血模型:剥离切除DM大鼠左后肢股动脉和所有侧支血管。于术后2、7、14、21天进行大鼠一般行为学观察,记录血糖水平,体重等;应用PeriScan PIM型激光多普勒血流成像仪,比较各组间大鼠后肢血流变化;免疫组织化学法检测肌动蛋白(α-actin)、血小板内皮细胞粘附分子(platelet endothelial cell adhesion molecule-1, PEC AM-1/CD31、血管性血友病因子(von willebrand factor,vWF)标记的血管密度;免疫组织化学检测血管内皮细胞生长因子(vascular endothelial cell growth factor, VEGF)、碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF)在肌肉组织中的表达量;(三)用ELISA去检测益气活血中药对后肢缺血大鼠血清VEGF、G-CSF、SDF-1浓度的影响。
     结果:(一)体外实验:采用全骨髓贴壁法获取的BMSCs形态多为椭圆或长梭形,呈旋涡状生长。流式细胞术检测第三代BMSCs,CD44、CD106呈阳性表达,基本不表达CD45、CD34.(1)不同方含药血清培养BMSCs,在第2、4、5天细胞快速增长,均较前一天增长明显,第6天时活血方血清组与益气活血方血清组细胞增长已呈下降趋势,其他三组在第6天细胞增殖达最大,第7天时呈下降趋势。BMSCs去除基线增殖率组间比较,培养第2天时,各组间比较虽无差异,但活血方血清组达最大;第4天时,益气活血方组达最大,活血方血清组次之;培养第6天时,益气方血清组较其他三组大,益气活血方血清组次之,活血方血清组最低;(2)在不同浓度含药血清培养下,10%益气活血方血清培养BMSCs从第2天起呈快速增长,去除基线增殖率达最大(69.95±7.50%),而20%空白血清、20%益气活血血清组对BMSCs增殖活力的影响仅高于10%FBS组。(二)体内实验:在本实验中,本方法制造糖尿病模型,成模率为87.14%,成模率高,成模稳定;采用结扎并切除DM大鼠股动脉及其侧支血管的方法制造后肢缺血模型,存活率为88.52%。(1)一般行为学观察:缺血造模后的大鼠状态萎靡,术后患肢冰凉,颜色苍白,甚至紫暗,多数出现肢体跛行、溃疡;剥离切除DM大鼠左后肢股动脉组大鼠PUI值明显低于假手术组,造模成功;(2)各组PUI差值比较,穴位+中药组PUI差值大幅增加,缺血后肢情况改善最明显,其次为穴位注射组、局部+中药组,中药组与局部注射组改善相对较小;(3)各组术侧与健侧后肢a-actin、CD31表达量比较均有所升高;穴位注射BMSCs+中药组后肢缺血DM大鼠术侧骨骼肌中VEGF mRNA、bFGF mRNA表达量明显升高、a-actin、CD31表达量平均光密度较其他组最高,而vWF的表达下降最明显;(三)注射BMSCs缺血组、BMSCs联合益气活血中药组大鼠血清中VEGF,SDF-1, G-CSF质量浓度较其他组显著升高。
     结论:全细胞贴壁培养的大鼠BMSCs在细胞形态与表形表达上均具备BMSCs特征。(1)活血方血清对BMSCs增殖影响出现最早,益气方血清对BMSCs增殖影响持续时间最长,益气活血全方含药血清对培养BMSCs的体外增殖活力影响最大;10%益气活血中药含药血清可明显提高BMSCs的体外增殖能力;(2)经穴注射BMSCs联合益气活血中药能显著改善缺血DM大鼠后肢的血流灌注,可促进DM大鼠后肢缺血骨骼肌VEGF、 bFGF表达增加,血管内皮细胞与血管平滑肌细胞的增生,对预防动脉硬化有一定作用。(3)经穴注射BMSCs联合益气活血中药可明显促进大鼠血清中VEGF、SDF-1、G-CSF的表达。
Objective:
     To study the influence of Qi-tonifying and Blood-activating Chinese herb (YQHX) serum on the proliferous ability of bone mesenchymal stem cells (BMSCs) and angiogenesis mechanism of ischemic vessel on diabetic rats with hind limbs ischemia by injection BMSCs and administering YQHX herb, thereby providing new understandings and methods for preventing and treating lower limb arterial ischemic diseases.
     Methods:(1) In vitro, BMSCs was purified by all cells adherent culture method, which identified by flow cytometry. The serum was extracted from the rats in control group and the rats were given Qi-tonifying (YQ) herbs and Blood-activating (HX) herbs by intragastric administration. MTT assay was used to detect the influence of10%concentration of4different drug serums on the proliferous ability of the third generation of BMSCs and to detect the influence of5%,10%and20%concentration of control and Yiqihuoxue serum on the proliferous ability of the third generation of BMSCs.
     (2) In vivo,80Sprague Dawley (SD) rats were randomly divided into8groups:normal blood sugar control (NMC) group, diabetes control (DMC) group, diabetes ischemic (DMI) group, Yiqihuoxue (YQHX) group, local injection BMSCs (L-BMSCs) group, L-BMSCs+YQHX group, acupoint injection BMSCS (Acu-BMSCs) group, and Acu-BMSCs+YQHX group,10rats per group. Establishing animal model of diabetic mellitus:50mg/kg of Streptozotocin (STZ) per rat was injected intraperitoneally. Ischemic model:arteria femoralis as well as all of collateral artery in the left hind limb of the rats were excised. The general state, level of blood sugar and weight were observed at the2nd,7th,14th and21th day after modeling. The change of blood flow in hind limb of the rats was detected by Laser Doppler Perfusion Imager (PeriScan PIM). Immunohisto-chemistry was used to detect the vascular density which signed by a-actin, platelet endothelial cell adhesion molecule-1(PECAM-1/CD31), and von Willebrand factor (vWF), and the expression of vascular endothelial cell growth factor (VEGF) and basic fibroblast growth factor (bFGF) in muscular tissue. Elisa method was used to detect the serum level of VEGF, G-CSF and SDF-1.
     Results:Most of the BMSCs obtained by all cells adherent culture method was elliptical and long-fusiform shape, and grow spirally in vitro. The membranes of third generation of BMSCs were positive for CD44and CD106and negative for CD45and CD34detected by flow cytometry. BMSCs cultured by various medicated serum increased significantly on the2nd,4th and5th day compared with the previous day. On the6th day, BMSCs proliferation by HX serum and YQHX serum began to decrease, on the other hand, the other three groups reached a peak proliferation, and decreased on the7th day. There was no significant difference among each group on the2nd day, but BMSCs cultured by HX serum increased the most. On the4th day, BMSCs cultured by YQHX serum was highest of all groups, and HX serum group was the second. On the6th day, BMSCs YQHX group was second then followed by HX group which was still higher than the control group.(2) Among different concentration of medicated serum, only10%YQHX serum cultured BMSCs began to increased significantly on the2nd day. BMSCs cultured by20%control and YQHX serum were higher than the10%FBS group. In vivo, there was87.14%rats induced diabetes. The DM rat model rat of DM was high and stable. The survival rate of ischemic rat model established by excising arterial femoral is as well as all of collateral artery in the left hind limb was88.52%in DM rats.(1) Ethological results:the rat models exhibited cachexia, pallid and pale limb, even turning dark purple, claudication and ulcer in some. The PUI of the DM rats was lower than the control group.
     (2) The PUI of ischemic hind limb of the rats in the Acu-BMSCs+YQHX group increased most obviously, second were Acu-BMSCs and L-BMSCs+YQHX group, and lastly the YQHX and Acu-BMSCs group.(3) The expression of a-actin and CD31in the ischemic limb were higher than the healthy limb in each group. The expression of VEGF and bFGF mRNA, a-actin and CD31increased, and VWF decreased in the Acu-BMSCs+YQHX group compared with other groups. The levels of VEGF, SDF-1and G-CSF in rat serum tested by ELISA of Acu-BMSCs and Acu-BMSCs+group were higher than other groups.
     Conclusion:The rat BMSCs cultured by all cells adherent culture method has features of BMSCs in cellular morphology and phenotypic expression.(1) The influence of HX serum on proliferation capacity of BMSCs appeared earliest of all. The influence of YQ serum on proliferation activation of BMSCs continued longest of all. The influence of YQHX serum on proliferous capacity of BMSCs was biggest of all. In vitro, the proliferous capacity of BMSCs was markedly increased obviously by10%concentration of YQHXsemn.(2) The blood flow of the ischemic hind limb of the DM rats improved efficiency and the expression of VEGF and bFGF increased by injecting BMSCs and YQHX medicine at acupuncture points. It also enhances the hyperplasia of vascular endothelial cells and vascular smooth muscle cells and prevents atherosclerosis.(3)The expression of VEGF, SDF-1and G-SGF in serum was increased in injection BMSCs group and Acu-BMSCs+YQHX medicine group.
引文
[1]Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers [J]. Cell Tissue Kinet,1987, 20(3):263-72.
    [2]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. ProQuest Health & Medical Complete,1999,284(5411):143-147.
    [3]Eriko TY, Hiroaki M, Toyoaki M, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells a pilot study and a randomized controlled trial [J]. Lancet,2002,360(9331):427-435.
    [4]Tremain N, Korkko J, Ibberson D, et al. MicroSAGE analysis of 2353 expressed genes in a single cellderived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages [J]. Stem Cells,2001,19(5):408-418.
    [5]Galmiche M, Koteliansky, Briere J, Herve P, Charbord P. Stromal cells from human marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway [J]. Blood,1993.82(1):66-76.
    [6]Al-Khaldi A, Al-Sabti H, Galipeau J,et al. Therapeutic angiogenesis using autologous bone marrow stromal cells:improved blood flow in a chronic limb ischemia model [J]. Ann Thorac Surg,2003,75(1):204-209.
    [7]Davies N, Dobner S, Bezuidenhout D, et al. The dosage dependence of VEGF stimulation on scaffold neovascularisation [J]. Biomaterials,2008,29(26):3531-3538.
    [8]Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis [J]. Nat Rev Mol Cell Biol,2007,8(6):464-478.
    [9]Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis [J]. Science,1997,275(5302):964-967.
    [10]Xu S, Zhu J, Yu L, Fu G. Endothelial progenitor cells: current development of their paracrine factors in cardiovascular therapy [J]. J Cardiovasc Pharmacol,2012,59(4): 387-396.
    [11]Palmer-Kazen U, Wariaro D, Luo F, et al. Vascular endothelial cell growth factor and fibroblast growth factor 2 expression in patients with critical limb ischemia [J]. J Vasc Surg 2004,39(3):621-628.
    [12]Tuomisto TT, Rissanen TT, Vajanto I, et al. HIF-VEGF-VEGFR-2, TNF-alpha and IGF pathways are upregulated in critical human skeletal muscle ischemia as studied with DNA array [J]. Atherosclerosis,2004,174(1):111-120.
    [13]Van WV, Deckers MM, Grimbergen JM, et al. Vascular endothelial growth factor overexpression in ischemic skeletal muscle enhances myoglobin expression in vivo [J]. Circ Res,2004,95(1):58-66.
    [14]Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen [J]. Science,1989,246 (4935):1306-1309.
    [15]Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability factor, an endothelial cellmitogen related to PDGF [J]. Science,246:1309-1312.
    [16]RisauW. Mechanisms of angiogenesis [J]. Nature,1997,386:671-674.
    [17]Ladoux A, Frelin C. Expression of vascular endothelial growth factor by cultured endothelial cells from brain micro vessels [J]. Biochem Biophys ResCommun,1993, 94(2):799-803.
    [18]Tischer E, Mitchell R, Hartman T, et al. The human gene for vascular endothelial growth factor, multiple protein forms are encoded through alternativeexon splicing [J]. J Biol Chem,1991,266(18):11947-11954.
    [19]Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis:signaling pathways, biological responses and therapeutic inhibition [J]. Trends Pharmacol Scim, 2001,22(4):201-207.
    [20]Mustonen T, Alitalo K. Endothelialr receptor tyrosine kinases involved in angiogenesis [J]. J Cell Biol,1995,129(4):895-898.
    [21]Spanholtz TA, Theodorou P, Holzbach T, et al. Vascular Endothelial Growth Factor (VEGF 165) Plus Basic Fibroblast Growth Factor (bFGF) Producing [J]. J Surg Res,2011, 171(l):329-38.
    [22]Detillieux KA, Sheikh F, Kardami E, et al. Biological activities of fibroblast growth factor-2 in the adult myocardium [J]. Cardiovasc Res,2003,57(1):8-19.
    [23]Pu LL, Holme KR, Symes JF. Heparinase enhances collateral vessel development in the ischemic limb [J]. Int Surg,2002,87(4):260-268.
    [24]Shi Q, Rafii S, Wu MH, et al.Evidence for circulating bone marrow-derived endothelial cells[J]. Blood,1998,92(2):362.
    [25]Rakue H, Nakajima H, Katoh T, et al. Low-dose basic fibroblast growth factor and vaseular endothelial growth factor for angiogenesis in canine acute hindlimb insufficiency [J]. Jpn CireJ,1998,62(12):933-942.
    [26]Cooke JP, Bhatnagar R, Szuba A, et al. Fibroblast growth factor as therapy for critical limb ischemia: a case report [J]. Vase Med,1999,4:89-97.
    [27]Capoccia BJ, Shepherd RM, Link DC. G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism [J]. Blood,2006, 108(7):2438-2445.
    [28]Seiler C, Pohl T, Wustmann K, et al. Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease: a randomized, double-blind, Placebo-controlled study[J]. Circulation,2001,104(17): 2012-2017.
    [29]Kuethe F, Figulla HR, Voth M, et al. Mobilization of stem cells by granulocyte colony stimulating factor for the regeneration of myocardial tissue after myocardial infarction[J]. Dtsch Med Wochenschr,2004,129(9):424-428.
    [30]Pingping Huang, Shanzhu Li, Mingzhe Han, et al. Autologous transplantation of peripheral blood stem cells as an effective therapeutic approach for severe arteriosclerosis obliterans of lower extremities[J]. Thrombosis and Haemostasis,2004,91(3):606-609.
    [31]Olic D, Kajstural J, Chimenti S, et al. Mobilized bone marrow cells repair the infracted heart improving function and survival[J]. PNAS,2001,98(18):10344-10349.
    [32]吴贤仁,杨敏,李玉光,等.骨髓干细胞动员对大鼠缺血肌的治疗作用[J].中国免疫学杂志,2004,20(7):471-474.
    [33]Lekas M, Lekas P, Mei HJS, et al. Tie2-Dependent Neovascularization of the Ischemic Hindlimb Is Mediated by Angiopoietin-2 [J]. PLoS ONE,2012,7(9):e43568.
    [34]Kim I, Kim HG, So JN, et al. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3'-Kinase/Akt signal transduction pathway [J]. Circ Res,2000,86(1): 24-29.
    [35]Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation [J]. Science,1998,282(5392):1318-1321.
    [36]Sullivan CC, Du L, Chu D, et al. Induction of pulmonary hypertension by an angiopoietin 1/TIE2/serotonin pathway [J]. Proc Natl Acad Sci USA,2003,100(21):12331-12336.
    [37]Gamble JR, Drew J, Trezise L, et al. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions [J]. Circ Res,2000,87(7): 603-607.
    [38]Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption regression and growth in tumors mediated by angiopoietins and VEGF [J]. Science,1999,284(5422):1994-1998.
    [39]Choi K, Kennedy M, Kazarov A, et al. A common precursor for hematopoietic and endothelial cells [J]. Development,1998,125(4):725-732.
    [40]Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization [J]. Blood,2003,102(4):1340-1346.
    [41]Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow derived endothelial cells [J].Blood,1998,92(2):362-367.
    [42]Jin K, Zhu Y, Sun Y, et al. Vascular endothelial growth factor stimulates neurogenesis in vitro and in vivo [J]. Proc Natl Acad Sci USA,2002,99(18):11946-11950.
    [43]Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization [J]. Circ Res,1999,85(3):221-228.
    [44]Quirici N, Soligo D, Caneva L, et al. Differentiation and expansion of endothelial cells from human bone marrow CD133+cells [J]. Br J Haematol,2001,115 (1):186-194.
    [45]Petri S, Satu M, Riitta A, et al. VEGFR-3 and CD133 identify a a population of CD34+ lymphatic/vascular endothelial precursor cells [J]. Blood,2003,101(1):168-172.
    [46]Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization [J]. Blood,2003,102(4):1340-1346.
    [47]Liu YJ, Lu SH, Xu B, et al. Hemangiopoietin, a novel human growth factor for the primitive cells of both hematopoietic and endothelial cell lineages [J]. Blood,2004, 103(12):4449-4456.
    [48]Wang XJ, Liu YJ, Lu SH, et al. Hemangiopoiet in modulates adhesive properties of endothelial cells [J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao,2006,28(3):364-367.
    [49]Chen Z, Liu F, Ren Q, et al. Hemangiopoietin promotes endothelial cell proliferation through PI-3K/Akt pathway [J]. Cell Physiol Biochem,2008,22(1-4):307-314.
    [50]Takahashi T, Kalka C, Masuda H, et al. Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization [J]. Nat Med, 1999,5(4):434-438.
    [51]Zheng PH, Huang YZ, Yang PD. Vascular endothelial progenitor cells and cytokines related to hematopoietic regulation--review [J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2005,13(5):918-920.
    [52]Oyama K, Ohnuki T, Ohnuki N, et al. The effect of basic fibroblast growth factor (bFGF) on early bronchial revascularization [J]. Nippon Kyobu GekaGakkai Zasshi,1996, 44(11):2032-2039.
    [53]Thurston G, Rudge JS, Ioffe E, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage [J]. Nat Med,2000,6(4):460-463.
    [54]Yoshida T, Owens GK. Molecular determinants of vascular smooth muscle cell diversity [J].Circ Res 2005,96(3):280-291.
    [55]Beamish JA, He P, Kottke Marchant K, et al. Molecular regulation of contractile smooth muscle cell phenotype:implications for vascular tissue engineering [J]. Tissue Eng Part B Rev,2010,16(5):467-491.
    [56]Yoshida T, Owens GK. Molecular determinants of vascular smooth muscle cell diversity [J]. Circ Res 2005,96(3):280-291.
    [57]Beamish JA, He P, Kottke Marchant K, et al. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. Tissue Eng Part B Rev 2010,16(5):467-491.
    [58]Armulik A, Genove G, Betsholtz C. Pericytes developmental physiological and pathological perspectives problems and promises [J]. Dev Cell,2011,21(2):193-215.
    [59]Anthony C. Bruce, Shayn M. Peirce. Exogenous Thrombin Delivery Promotes Collateral Capillary Arterialization and Tissue Reperfusion in the Murine Spinotrapezius Muscle Ischemia Model [J]. Microcirculation,2012,19(2):143-154.
    [60]Frid MG, Shekhonin BV, Koteliansky VE, et al. Phenotypic changes of human smooth muscle cells during development:late expression of heavy caldesmon and calponin [J]. Dev Biol,1992,153 (2):185-193.
    [61]Glukhova MA, Kabakov AE, Frid MG, et al. Modulation of human aorta smooth muscle cell phenotype:a study of muscle-specific variants of vinculin, caldesmon, and actin expression [J]. Proc Natl Acad Sci USA,1988,85(24):9542-9546.
    [62]Caligiuri G, Rossignol P, Julia P, et al. Reduced immunoregulatory CD31+T cells in patients with atherosclerotic abdominal aortic aneurysm [J]. Arterioscler Thromb Vase Biol, 2006,26(3):618-623.
    [63]Woodfin A, Voisin MB, Nourshargh S. PECAM-1:a multi-functional molecule in inflammation and vascular biology [J]. Arterioscler Thromb Vase Biol,2007,27(12): 2514-2523.
    [64]DeLisser HM, Newman PJ, Albelda SM. Molecular and functional aspects of PECAM-1/CD31 [J]. Immunol Today,1994,15(10):490-495.
    [65]Fawcett J, Buckley C, Holness CL, et al. Mapping the homotypic binding sites in CD31 and the role of CD31 adhesion in the formation of interendothelial cell contacts [J]. J Cell Biol,1995,128(6):1229-1241.
    [66]Piali L, Hammel P, Uherek C, et al. CD31/PECAM-1 is a ligand for alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium [J]. J Cell Biol,1995,130(2):451-460.
    [67]Agu O, Hamilton G, Baker DM, et al. Endothelin receptors in the aetiology and pathophysiology of varicose veins [J]. Eur J Vase Endovasc Surg,2002,23(2):165-171.
    [68]Piali L, Hammel P, Uherek C, et al. CD31/PECAM-1 is a ligand for alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium [J]. J Cell Biol,1995,130(2):451-460.
    [69]Cao G, Fehrenbach ML, Williams JT, et al. Angiogenesis in platelet endothelial cell adhesion molecule-1-null mice [J]. Am J Pathol,2009,175(2):903-915.
    [70]Caligiuri G, Rossignol P, Julia P, et al. Reduced immunoregulatory CD31+T cells in patients with atherosclerotic abdominal aortic aneurysm [J]. Arterioscler Thromb Vasc Biol, 2006,26(3):618-623.
    [71]Kim SW, Kim H, Cho H, et al. Human peripheral blood-derived CD31+cells have robust angiogenic and vasculogenic roperties and are effective for treating ischemic vascular disease [J]. J Am Coll Cardiol,2010 August 10; 56(7):593-607.
    [72]刘丹,孙汉英,刘文励,等.川芎嗪对同基因骨髓移植小鼠骨髓细胞PECAM-1/CD31分子表达与造血重建的作用[J].中国实验血液学杂志,2004,12(4):489-493.
    [73]黄晓琳,韩肖华.电针结合经颅磁刺激对脑缺血大鼠VEGF164mRNA和CD31表达的影响[J].中华物理医学与康复杂志,2006,28(1):10-13.
    [74]Lataillade JJ, Domenech J, Le-Bousse-Kerdiles MC. Stromal cell-derived factor-1 (SDF-1) /CXCR4 couple plays multiple roles on haematopoietic progenitors at the border between the old cytokine and new chemokine worlds:survival, cell cycling and trafficking[J].Eur Cytokine Netw,2004,15 (3):177-188.
    [75]Zheng H, Fu GS, Dai T, et al. Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1 alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway[J]. J Cardiovasc Pharmacol,2007,50 (3):274-280.
    [76]Dimmeler S, Zeiher AM. Akt takes center stage in angiogenesis signaling [J]. Circ Res, 2000,86(1):4-5.
    [77]R. Mohle, M.A. Moore, R.L. et al. Transendothelial migration of CD34+and mature hematopoietic cells: an in vitro study using a human bone marrow endothelial cell line [J]. Blood,1997,89(1):72-80
    [78]Li M, Yu J, Li Y, et al. CXCR4+progenitors derived from bone mesenchymal stem cells differentiate into endothelial cells capable of vascular repair after arterial injury [J]. Cell Reprogram,2010,12(4):405-415
    [79]Sadler JE. New concepts in von Willebrand disease [J]. Annu Rev Med,2005, 56:173-191.
    [80]Spiel AO, Gilbert JC, Jilma B. von Willebrand factor in cardiovascular disease: focus on acute coronary syndromes [J]. Circulation,2008,117(11):1449-1459.
    [81]Denis CV, Andre P, Saffaripour S, Wagner DD. Defect in regulated secretion of P-selectin affects leukocyte recruitment in von Willebrand factor-deficient mice [J]. Proc Natl Acad Sci USA,2001,98(7):4072-4077.
    [82]Pendu R, Terraube V, Christophe OD, et al. P-selectin glycoprotein ligand 1 and beta2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor [J]. Blood, 2006,108(12):3746-3752.
    [83]Hodivala-Dilke K. alphavbeta3 integrin and angiogenesis:a moody integrin in a changing environment [J]. Curr Opin Cell Biol,2008,20(5):514-519.
    [84]Somanath PR, Malinin NL, Byzova TV. Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis [J]. Angiogenesis,2009,12(2):177-185.
    [85]Cheresh DA. Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor [J]. Proc Natl Acad Sci USA,1987,84(18):6471-6475.
    [86]Huang J, Roth R, Heuser JE, Sadler JE. Integrin alpha(v)beta(3) on human endothelial cells binds von Willebrand factor strings under fluid shear stress [J]. Blood,2009, 113(7):1589-1597.
    [87]Sporn LA, Marder VJ, Wagner DD. Inducible secretion of large, biologically potent von Willebrand factor multimers [J]. Cell,1986,46(2):185-190.
    [88]Wagner DD, Saffaripour S, Bonfanti R, et al. Induction of specific storage organelles by von Willebrand factor propolypeptide [J]. Cell,1991,64(2):403-413.
    [89]Metcalf DJ, Nightingale TD, Zenner HL, Lui-Roberts WW, Cutler DF. Formation and function of Weibel-Palade bodies [J]. J. Cell Sci,2008,121(1):19-27.
    [90]Richard D. Starke, Francesco Ferraro, Koralia E. Paschalaki, et al. Endothelial von Willebrand factor regulates angiogenesis [J]. Blood,2011,117(3):1071-1080.
    [91]Shuang Feng Chen, Zuo Li Xia, et al. Increased active von Willebrand factor during disease development in the aging diabetic patient population [J]. AGE,2013,35:171-177.
    [92]Nilsson TK, Spence JD, Nilsson PM, et al. Quantitative measurement of carotid atherosclerosis in relation m levels of von Willebrand factor and fibrinolytic variables in plasna-2 year follow study[J]. J Cardiovasc Risk,2002,9(4):215-221.
    [93]Estes JM, Pomposelli FB Jr. Lower extremity arterial reconstruction in patients with diabetes mellitus [J]. Diabetic Med,1996, 13(1):S43-47.
    [94]Gavin A, Stess RM, Goldstone J. Prevention and treatment of foot problems in diabetes mellitus: a comprehensive program [J]. West J Med,1993,158(1):47-55.
    [95]Smith DG, Barness BC, Sands AK, et al. Prevalence of radiographic foot abnormalities in patients with diabetes [J]. Foot Ankle Int,1997,18(6):342-346.
    [96]Chou E, Suzuma I, Way KJ, et al. Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States:a possible explanation for impaired collateral formation in cardiac tissue[J]. Circulation,2002, 105(3):373-379.
    [97]Brownlee M. Biochemistry and molecular cell biology of diabetic complications [J]. Nature,2001,414(6865):813-820.
    [98]Pustovrh MCI, Jawerbaum A, Capobianco E, et al. Increased matrix metalloproteinases 2 and 9 in placenta of diabetic rats at midgestation [J]. Placenta,2005, 26(4):339-348.
    [99]Blau HM, Banfi A. The well tempered vessel [J]. Nat Med,2001,7(5):532-534.
    [100]Carmeliet P. Mechanisms of angiogenesis and arteriogenesis [J]. Nat Med,2000,6(4): 389-395.
    [101]Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms [J]. Circulation,2004, 109(12):1543-1549.
    [102]Silva GV, Litovsky S, Assad JA, et al. Mesenchymal Stem Cells Differentiate into an Endothelial Phenotype, Enhance Vascular Density, and Improve Heart Function in a Canine Chronic Ischemia Model[J]. Circulation,2005,111(2):150-156.
    [103]方利君,付小兵,孙同柱,等.骨髓间充质干细胞分化为血管内皮细胞的实验研究[J].中华烧伤杂志,2003.19(1):22-24.
    [104]Wu Chunpeng, Zhang Qian, Fang Ning, et al. Angiogenesis in lower limb ischemia of diabetic rats after bone mesenchymal stem cells transplantation[J]. Chinese Journal of Tissue Engineering Research,2012,16(1):76-80.
    [105]张英杰.大鼠骨髓间充质干细胞(MSCs)移植治疗实验性大鼠股动脉闭塞症的研究[D].大连医科大学,硕士毕业论文.
    [106]Hamano K, Li TS, Kobayashi T, et al. The induction of angiogenesis by the implantation of autologous bone marrow cells: a novel and simple therapeutic method [J]. Surgery, 2001,130(1):44-54.
    [107]谷涌泉,张建,齐立行,等.骨髓动员刺激后自体骨髓源单个核细胞移植治疗下肢缺血的初步临床研究[J].中国修复重建外科杂志.2006,20(10):1017-1020.
    [108]谷涌泉,郭连瑞.自体干细胞移植在治疗下肢缺血性疾病中的应用及疗效评价[J].中华医学信息导报,2006,21(2):21.
    [109]谷涌泉,齐立行,张建,等.自体骨髓单个核细胞移植治疗下肢缺血的中期疗效.中国修复重建外科杂志[J].2009,23(30):341-344.
    [110]张会峰,赵志刚,白卫星.自体骨髓干细胞血管腔内移植治疗糖尿病下肢动脉闭塞症[J].中国组织工程研究与临床康复,2010,14(32):6040.
    [111]赵锦,徐艳,王卓,窦艳华.自体骨髓干细胞移植治疗严重下肢动脉硬化闭塞症15例[J].中国组织工程研究与临床康复,2009,13(40):7959-7963.
    [112]章亭,谭允育,潘彦舒.四物汤对红细胞免疫及骨髓干细胞增殖能力的影响[J].北京中医药大学学报,2000,23(1):36-38.
    [113]孙汉英,房明皓,任天华,等.川芎嗪对骨髓移植小鼠骨髓造血的影响[J].中国中西医结合杂志,2002,22(5):365-368.
    [114]刘勇,许彦钢.川芎嗪对脑血管内皮细胞粘附因子(ICEM-1)表达的影响[J].基础医学与临床,1997,17(4):73.
    [115]周龙恩,王文杰,白金叶,等.银杏内酯B对大鼠中性白细胞花生四烯酸代谢酶和细胞内钙水平的影响[J].药学学报,2001,36(2):92-95.
    [116]唐旭东,姜建青,赁常文,等.三七总皂甙对心肌缺血-再灌注中中性粒细胞浸润的影响及其核转录机制的实验研究[J].成都中医药大学学报,2002,25(3):29.
    [117]苏晓华,王孝铭,焦选茂,等.大鼠心脏缺血再灌注线粒体内膜体电子偶联和氧化磷酸化变化及丹参素的作用[J].中国病理生理杂志,1996,12(2):186.
    [118]耿东升,刘发.黄连素的抗炎及免疫调节作用[A].抗炎免疫药理学进展[M].第2版.上海:第二军医大学出版社,168-175.
    [119]祝小玲,祝彼得.黄芪体外作用对贫血小鼠骨髓基质细胞分泌SCF的影响[J].细胞与分子免疫学杂志,2002,18(4):396-398.
    [120]张英,贺新怀,王盛民.细胞因子在造血干细胞移植中作用及中药的调节效应[J].陕西中医学院学报,2003,26(1):51-52.
    [121]谷涌泉,张建,齐立行骨髓动员刺激后自体骨髓源单个核细胞移植治疗下肢缺血的初步临床研究[J].中国修复重建外科杂志.2006,20(10):1017-1020.
    [122]谷涌泉,张建,郭连瑞,等.自体骨髓干细胞移植治疗下肢严重缺血:32例报告[J].中国临床康复,2004,8(35):7970-7972.
    [123]张文生,朱陵群,牛福玲,等.红景天苷对缺氧/缺糖损伤神经细胞的保护作用[J].中国中药杂志,2004,29(5):459-462.
    [124]项鹏,夏文杰,王连容,等.丹参注射液诱导间质干细胞分化为神经元样细胞[J].中山医科大学报,2001,22(5):321-324.
    [125]Zhang L, Yu H, Sun Y, Lin X, et al. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells [J]. Eur J Pharmacol.2007; 64(1):18-25.
    [126]梁天成,黄家应,向友,等.补肾生血药促进大鼠缺血后肢血管新生的实验研究[J].中国现代普通外科进展,2006,9(3):165-167.
    [127]王瑞华.骨髓间充质干细胞移植联合参芪通脉汤治疗大鼠后肢缺血的实验研究[M].山东中医药大学,2004.
    [128]李檀,邓秀君,孙丽明,等.同种异体骨髓源干细胞蛛网膜下腔移植联合中药治疗对缺血性脑卒中大鼠脑脊液中VEGF含量的影响[J].中西医结合心脑血管病杂志,2011,8(2):209-211.
    [129]李广斌,苏金玲,姜希娟,等.心复康促进血管新生对移植骨髓间充质干细胞的保护作用[J].辽宁中医药大学学报,2009,11(10):178-180.
    [130]Luo Y, Qin Z, Hong Z, et al. Astragaloside IV protects against ischemic brain injury in a murine model of transient focal ischemia [J].Neurosci Lett,2004,363(3):218-223.
    [131]Zhang WD, Zhang C, Liu RH, et al. Preclinical pharmacokinetics and tissue distribution of a natural cardioprotective agent AstragalosidelVin rats and dogs [J]. Life Sci,2006, 79(8):808-815.
    [132]Li Z, Cao Q. Effects of astragaloside A on myocardial calcium transport and cardiac function in ischemic rats [J].Acta Pharmacol,2002,23(10):898-904.
    [133]Zhang W, Hufnagl P, Binder B, et al. Antiinflammatory activity of astragalosideⅣis mediated by inhibition of NF-kappaB activation and adhesion molecule expression [J].Thromb Haemost,2003,9(5):904-914.
    [134]Yang Q, Lu J, Zhou AW, et al. Antiinflammatory activity of astragaloside IV is mediated by inhibition of NF-kappaB activation and adhesionmolecule expression [J].Acta Pharmacol,2001,22(9):809-812.
    [135]Luo Y, Qin Z, Hong Z, et al. Astragaloside IV protects against ischemic brain injury in a murine model of transient focal ischemia [J].Neurosci Lett,2004,363(3):218-223.
    [136]冷水龙,董晓先.基因芯片技术筛选不同中药诱导大鼠骨髓间充质干细胞分化为神经样细胞的差异表达基因[J].神经疾病与精神卫生.2005,5(4):253-256.
    [137]撒亚莲,李海标.三七总皂苷诱导骨髓间充质干细胞分化为神经元样细胞[J].中山医科大学学报,2002,23(6):409.
    [138]原清涛,邓宇斌,刘晓刚,等.隐丹参酮诱导猴骨髓间充质干细胞分化为神经元样细胞[J].中国病理生理杂志,2005,21(5):993.
    [139]夏文杰,项鹏,张丽蓉,等.丹参酮ⅡA定向诱导骨髓间质干细胞分化为神经元样细胞的研究[J].中国病理生理杂志,2006,19(7):865.
    [140]赵红斌,刘云云,葛宝丰,等.川芎嗪诱导小鼠骨髓间充质干细胞分化为神经元样细胞的研究[J].医用生物力学,2009,suppl(24):88.
    [141]陈兵,尹延庆,柯俊龙,等.川芎嗪诱导大鼠骨髓间充质干细胞分化为神经元样细胞:最佳诱导剂量筛选.中国组织工程研究与临床康复[J].2010,14(6):1072-1077.
    [142]撒亚莲,李海标.川芎嗪诱导大鼠骨髓间充质干细胞分化为神经元样细胞的研究[J].解剖学报,2003,34(5):514.
    [143]陈东风,杜少辉,李伊为,等.龟板含药血清体外诱导成年大鼠骨髓间充质干细胞分化为神经元[J].广州中医药大学学报,2003,20(3):224.
    [144]董晓先,刘金保,董燕湘,等.天麻诱导骨髓间质干细胞分化为神经元样细胞的实验研究[J].中国中西医结合杂志,2004,24(1):51.
    [145]王新生,崔慧先,刘华,等.黄芪诱导骨髓间充质干细胞分化进程中细胞内钙离子浓度的动态变化[J].中国组织工程研究与临床康复,2007,11(42):8469.
    [146]项平,李海标.黄连素诱导大鼠骨髓间质干细胞分化为神经元样细胞[J].中国病理生理杂志,2004,20(1):51.
    [147]刘树辉,马云胜,曹中伟,等.枸杞多糖诱导大鼠骨髓间充质细胞向神经元样细胞转化的实验研究[J].华北煤炭医学院学报,2006,8(3):281.
    [148]蔡光先,刘柏炎,林琳,等.地黄多糖诱导骨髓间充质干细胞分化为神经细胞最佳浓度探索[J].中国中医急症,2007,16(2):206.
    [149]赵汉宁.鹿茸精诱导大鼠骨髓间充质干细胞分化为神经元样细胞[J].现代医药卫生,2007,23(1):3.
    [150]姚晓黎,刘卫彬,柳太云,等.参芪液对成人骨髓间充质干细胞的诱导分化作用[J].中国神经精神疾病杂志,2004,30(3):211.
    [151]王媛,刘黎青,周盛年.刺五加注射液体外诱导大鼠骨髓基质细胞分化研究[J].山东中医药大学学报,2006,30(4):339.
    [152]肖庆忠,温冠媚,李浩威,等.麝香组分诱导成年大鼠骨髓间充质干细胞体外定向分化为神经元样细胞的能力[J].中山医科大学学报,2002,23(6):405.
    [153]吴云刚,张志平.右归饮含药血清对人髓基质干细胞诱导为成骨细胞的影响[J].江西中医药,2006,37(7):57-58.
    [154]肖鲁伟,武中庆,季卫锋,等.右归饮诱导胎兔骨髓基质细胞向软骨细胞分化的实验研究[J].中国中医药科技,2005,12(3):154.
    [155]徐展望,张建新,谭国庆,等.中药骨碎补提取液对兔骨髓基质细胞体外成骨分化的影响[J].中医正骨,2006,6(18):15-16.
    [156]黎晖,周健洪,陈东风,等.龟板对大鼠骨髓间充质干细胞向成骨分化的影响[J].中药新药与临床药理,2005,3(16):159-161.
    [157]邓展生,张璇,邹冬青,等.骨碎补有效成分柚皮苷对人骨髓间充质干细胞的影响[J].湘南学院学报:自然科学版,2005,7(4):5.
    [158]刘钰瑜,姚卫民,艾春媚,等.大黄素对体外大鼠骨髓基质细胞向成骨细胞方向分化的影响[J].中国临床药理学与治疗学,2005,10(2): 191.
    [159]马慧萍,贾正平,张汝学,等.淫羊蕾总黄酮含药血清促进骨髓间充质干细胞增殖与成骨性分化[J].中国骨质疏松杂志,2004,10(4):420.
    [160]Tomita S, Nakatani T, Fukuhara S, et al. Bone marrow stromal cells contract synchronously with cardiom yocytes in a coculture system [J]. Jpn J Thorac Cardiovasc Surg,2002,50(8):321-324.
    [161]孔晓丹,曲鹏,王彦,等.三七皂甙诱导骨髓基质细胞分化为心肌样细胞的实验研究[J].中国心血管病研究杂志,2005,3(7):528-530.
    [162]李志泉,冼绍祥,汪朝辉,等.三七总皂苷对骨髓间充质干细胞增殖和向心肌样细胞分化的影响[J].广州中医药大学学报,2007,24(6):470.
    [163]汪朝辉,冼绍祥,杨忠奇,等.人参总皂苷诱导骨髓间充质干细胞分化为心肌样细胞的实验研究[J].广州中医药大学学报,2006,23(2):100.
    [164]朱瑾波,李玉鼎.黄芪治疗慢性皮肤溃疡对血管生成过程的机理探讨[J].河北中医,1996,18(4):21-22.
    [165]雷燕,高倩,李悦山,等.黄芪、当归及其组方促血管内皮细胞增殖作用的研究[J].中国中西医结合杂志,2003,23(10):753-756.
    [166]张腾,曹洪欣,盛小禹,等.温心胶囊对大鼠实验性缺血心肌细胞凋亡及Bcl-2、Fas蛋白表达的影响[J].中国中西医结合杂志,2003,23(10):769-771.
    [167]张莽,赵如同,赵艳明.成体组织干细胞与“肾先天之精”的相关性研究概述[J].中医杂志增刊,2006,47:234-235.
    [168]桂蜀华,袁颖.当归补血汤对小鼠造血功能的影响[J].江西中医学院学报,2000,12(4):167-169.
    [169]张树成,吴志奎,王蕾,等.研究中药血管生成活性和作用的鸡绒毛尿囊膜实验模型的应用[J].中国中医基础医学杂志,1999,5(5):16-19.
    [170]王蕾,吕新霞,吴志奎,等.补肾生血药对金黄地鼠子宫组织bFGF、VEGF表达水平的影响[J].中国中医基础医学杂志,2000,6(12):795-798.
    [171]张树成,刘效群,张志洲,等.补肾调经方药对人着床子宫内膜血管生成因子及其受体的影响[J].中国中医基础医学杂志,2002,8(5):64-66.
    [172]吴以岭.络病科学求证[M].科学出版社.2007年3月.
    [173]王文健,傅晓东,陈伟华,等.通心络促血管生成作用的实验研究[J].疑难病杂志,2003,2(1):2-4.
    [174]Estes JM, Pomposelli FB Jr. Lower extremity arterial reconstruction in patients with diabetes mellitus [J]. Diabetic Med,1996, 13 (1):S43-47.
    [175]Gavin A, Stess RM, Goldstone J. Prevention and treatment of foot problems in diabetes mellitus: a comprehensive program [J].West J Med,1993,158(1):47-55.
    [176]董建勋,冯凯,王伏声,等.辨证循经注射自体骨髓单个核细胞联合中药治疗后肢动脉缺血性疾病的临床研究[J].北京中医药大学学报,2007,31(1):64-66.
    [177]董建勋,朱朝军,李健,等.经穴注射骨髓间充质干细胞对后肢缺血大鼠血管活性物质的影响[J].北京中医药大学学报,2010,33(3):171-174.
    [178]诸毅晖,陈玉华.论穴位注射的穴药效应[J].中国针灸,2005,25(1):46-48.
    [179]李镨.穴位注射疗法临床大全[M].北京:中国中医药出版社,1996:17.
    [180]Phinney DG, Kopen G, Isaacson RL, et al. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice:variations in yield, growth, and differentiation [J]. J Cell Biochem.1999,72(4):570-585.
    [181]Evelien Schurgers, Hilde Kelchtermans, Tania Mitera, et al. Discrepancy between the in vitro and in vivo effects of murine mesenchymal stem cells on T-cell proliferation and collagen-induced arthritis [J]. Arthritis Research & Therapy,2010,12:R31.
    [182]Minguell JJ, Erices A, Conget P. Mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2001,226(6):507-520.
    [183]杨丽,张荣华,谢厚杰,等.建立大鼠骨髓间充质干细胞稳定分离培养体系与鉴定[J].中国组织工程研究与临床康复,2009,13(6):1064-1068.
    [184]Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells[J]. J Ceil Physiol.1999,181(1):67.
    [185]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999,284(5411):143.
    [186]祝小玲,祝彼得.黄芪体外作用对贫血小鼠骨髓基质细胞分泌SCF的影响[J].细胞与分子免疫学杂志,2002,18(4):396-398.
    [187]王晓玲,汪涛,汪雅妮,等.当归补血汤载药血清对骨髓基质细胞增殖及细胞因子表达的影响[J].辽宁中医杂志.2011,38(2):363-363.
    [188]古今.当归补血汤中黄芪对小鼠造血功能的影响[J].中国中医基础医学杂志,2009,15(3):215-217.
    [189]孙汉英,房明皓,任天华,等.川芎嗪对骨髓移植小鼠骨髓造血的影响[J].中国中西医结合杂志,2002,22(5):365-368.
    [190]张英,贺新怀,王盛民.细胞因子在造血干细胞移植中作用及中药的调节效应[J].陕西中医学院学报,2003,26(1):51-52.
    [191]Estes JM, Pomposelli FB Jr. Lower extremity arterial reconstruction in patients with diabetes mellitus [J]. Diabetic Med,1996, 13(1):S43-47.
    [192]Gavin A, Stess RM, Goldstone J. Prevention and treatment of foot problems in diabetes mellitus: a comprehensive program [J]. West J Med,1993,158(1):47-55.
    [193]Ishak NA, Ismail M, Hamid M, et al. Antidiabetic and hypolipidemic activities of curculigo latifolia fruit:root extract in high fat fed diet and low dose STZ induced diabetic rats [J].Evid Based Complement Altemat Med,2013,2013:601838.
    [194]Bas AL, Demirci S, Yazihan N, et al. Nerium oleander distillate improves fat and glucose metabolism in high-fat diet-fed streptozotocin-induced diabetic rats [J]. Int J Endocrinol, 2012,2012:947187.
    [195]Yang Z, von Ballmoos MW, Diehm N, et al. Call for a reference model of chronic hind limb ischemia to investigate therapeutic angiogenesis [J]. Vascul Pharmacol,2009, 51(4):268-274.
    [196]Zhang Z, Xue HL, Liu Y, et al. Yi-Qi-Zeng-Min-Tang, a Chinese medicine, ameliorates insulin resistance in type 2 diabetic rats [J]. World J Gastroenterol,2011,17(8):987-995.
    [197]Takako G, Naoto F, Akira AKI, et al. Search for appropriate experimental methods to create stable hind-limb ischemia in mouse [J].Tokai J Exp Clin Med,2006,3(31): 128-132.
    [198]Ishak NA, Ismail M, Hamid M, et al. Antidiabetic and hypolipidemic activities of curculigo latifolia fruit: root extract in high fat fed diet and low dose STZ induced diabetic rats [J].Evid Based Complement Alternat Med,2013,2013:601838.
    [199]Bas AL, Demirci S, Yazihan N, et al. Nerium oleander distillate improves fat and glucose metabolism in high-fat diet-fed streptozotocin-induced diabetic rats [J]. Int J Endocrinol 2012,2012:947187.
    [200]Yang Z, von Ballmoos MW, Diehm N, et al. Call for a reference model of chronic hind limb ischemia to investigate therapeutic angiogenesis [J]. Vascul Pharmacol,2009, 51(4):268-274.
    [201]Zhang Z, Xue HL, Liu Y, et al. Yi-Qi-Zeng-Min-Tang, a Chinese medicine, ameliorates insulin resistance in type 2 diabetic rats [J]. World J Gastroenterol,2011,17(8):987-995.
    [202]陈群力,杨五彪,马灵摘.实验性糖尿病足大鼠模型的建立[J].河南预防医学杂志,2004,15(1):1-2.
    [203]Hamano K, Li TS, Kobayashi T, et al. The induction of angiogenesis by the implantation of autologous bone marrow cells:a novel and simple therapeutic method [J]. Surgery, 2001,130(1):44-54
    [204]Biscetti F, Straface G, Arena V, et al. Pioglitazone enhances collateral blood flow in ischemic hindlimb of diabetic mice through an Akt-dependent VEGF-mediated mechanism, regardless of PPAR-gamma stimulation. Cardiovasc Diabetol,2009,8(8):49.
    [205]赵玉明,宋可新,晏晓青,等.糖尿病大鼠模型急性下肢缺血的血流变化[J].基础医学与临床,2008,28(8):873-875.
    [206]Iwase T, Nagaya N, Fujii T, et al. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia [J]. Cardiovasc Res,2005,66(3):543-551.
    [207]Hockel M, Schlenger K, Doctrow S, et al.Therapeutical angiogenesis[J].Arch Surg,1993, 128(4):423-429.
    [208]Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischemia by autologous transplantation of bone-marrow cells:a pilot study and a randomized controlled trial [J].Lancet,2002,360(9331):427-435.
    [209]Lu D B, Jiang Y Z, Liang Z W, et al. Autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia [J]. J Med Colleges PLA,2008,23(2):106-115.
    [210]董建勋,冯凯,王伏声,等.辨证循经注射自体骨髓单个核细胞联合中药治疗下肢动脉缺血性疾病的临床研究[J].北京中医药大学学报,2007,30(1):64-66.
    [211]Juha P. Laurilaa, Lilja Laatikainena, et al. Human embryonic stem cell derived mesenchymal stromal cell transplantation in at hind limb injury model [J]. Cytotherapy, 2009,11(6):726-737.
    [212]华兴邦,李辞荣,周浩良,等.实验动物与动物实验.1991,1:1-5.
    [213]Melton LJ, Kathleen MM, Palumbo P, et al. Incidence and prevalence of clinical eripheral vascular disease in a population-based cohort of diabetic patients [J]. Diabetes Care,1980,3(6):650-654.
    [214]朱朝军,董建勋,张美吉,路广林,等.穴注射骨髓间充质干细胞对后肢缺血大鼠血流的影响[J].中国针灸.2009,29(12):987-992.
    [215]王晓玲,汪涛,汪雅妮,等.当归补血汤载药血清对骨髓基质细胞增殖及细胞因子表达的影响[J].辽宁中医杂志,2011,38(2):363-363.
    [216]孙汉英,房明皓,任天华,等.川芎嗪对骨髓移植小鼠骨髓造血的影响[J].中国中西医结合杂志,2002,22(5):365-368.
    [217]张英,贺新怀,王盛民.细胞因子在造血干细胞移植中作用及中药的调节效应[J].陕西中医学院学报,2003,26(1):51-52.
    [218]Gage FH. Cell therapy [J]. Nature,1998,392(11):18-24.
    [219]Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow[J]. J Clin Invest,2002,109(3):337-346.
    [220]Piali L, Hammel P, Uherek C, et al.CD31/PECAM-1 is a ligand for alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium [J]. J Cell Biol,1995,130(2): 451-460.
    [221]Sporn LA, Marder VJ, Wagner DD. Inducible secretion of large, biologically potent von Willebrand factor multimers[J]. Cell,1986,46(2):185-190.
    [222]Blau HM, Banfi A. The well-tempered vessel[J]. Nat Med,2001,7(5):532-534.
    [223]Carmeliet P. Mechanisms of angiogenesis and arteriogenesis [J]. Nat Med,2000, 6(4):389-395.
    [224]Silva GV, Litovsky S, Assad JA, et al. Mesenchymal Stem Cells Differentiate into an Endothelial Phenotype, Enhance Vascular Density, and Improve Heart Function in a Canine Chronic Ischemia Model[J]. Circulation,2005,111(2):150-156.
    [225]周龙恩,王文杰,白金叶,等.银杏内酯B对大鼠中性白细胞花生四烯酸代谢酶和细胞内钙水平的影响[J].药学学报,2001,36(2):92-95.
    [226]唐旭东,姜建青,赁常文,等.三七总皂甙对心肌缺血-再灌注中中性粒细胞浸润的影响及其核转录机制的实验研究[J].成都中医药大学学报,2002,25(3):29.
    [227]苏晓华,王孝铭,焦选茂,等.大鼠心脏缺血再灌注线粒体内膜体电子偶联和氧化磷酸化变化及丹参素的作用[J].中国病理生理杂志,1996,12(2):186.
    [228]祝小玲,祝彼得.黄芪体外作用对贫血小鼠骨髓基质细胞分泌SCF的影响[J].细胞与分子免疫学杂志,2002,18(4):396-398.
    [229]董建勋,朱朝军,路广林经穴注射骨髓间充质干细胞对缺血大鼠促血管生长相关因子的影响[J].中国中医基础医学杂志.2010,16(8):728-730.
    [230]Caligiuri G, Rossignol P, Julia P, et al. Reduced immunoregulatory CD31+T cells in patients with atherosclerotic abdominal aortic aneurysm [J]. Arterioscler Thromb Vase Biol,2006,26(3):618-623,
    [231]Su MY, Cheung YC, Fruehauf JP. Correlation of dynamic contrast enhancement MRI parameters with micro vessel density and VEGF for assessment of angiogenesis in breast cancer [J]. Magn Reson Imaging,2003,18(4):467-477.
    [232]Blann AD, et al. Plasma von Willebrand factor, thrombosis, and the endothelium:the first 30 years [J]. Thromb Haemost,2006,95(23):49-55.
    [233]管街,刘志明,李光伟,等.50岁以上糖尿病人群周围动脉闭塞性疾病相关因素分析[J],中华医学杂志,2007,87(1):23-27.
    [234]Morishita R, Aoki M, Hashiya N, et al. Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat Peripheral arterial disease[J].Hypertension,2004,44(2): 203-209.
    235 Werner Risau. Angiogenic growth factors [J]. Pro In growth factor Res,1990,2:71.
    [236]Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science,1989,246 (4935):1306-1309.
    [237]Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability factor, an endothelial cellmitogen related to PDGF [J]. Science,246:1309-1312.
    [238]Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis:signaling pathways, biological responses and therapeutic inhibition [J]. Trends Pharmacol Sci,2001 22(4):201-207.
    [239]Werner Risau. Angiogenic growth factors [J]. Pro In growth factor Res,1990,2:71.
    [240]Montesano R, Vassalli JD, Baird A, et al. Basic fibroblast growth factor induces angiogenesis in vitro [J]. Proc Natl Acad Sci USA,1986,83(19):7297-7301.
    [241]Detillieux KA, Sheikh F, Kardami E, et al. Biological activities of fibroblast growth factor-2 in the adult myocardium [J]. Cardiovasc Res,2003,57(1):8-19.
    [242]Pu LL, Holme KR, Symes JF. Heparinase enhances collateral vessel development in the ischemic limb [J]. Int Surg,2002,87(4):260-268.
    [243]Kinnard T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral Perfusion through paracrine mechanisms [J]. Circulation,2004, 109(12):1543-1549.
    [244]Kinnaird T, stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms [J]. Circ Res,2004,94(5):678-685.
    [245]Hamano K, Li TS, Kobayashi T, et al. The induction of angiogenesis by the implantation of autologous bone marrow cells:a novel and simple therapeutic method [J]. Surgery, 2001,130(1):44-54.
    [246]张腾,曹洪欣,盛小禹,等.温心胶囊对大鼠实验性缺血心肌细胞凋亡及Bcl-2, Fas蛋白表达的影响[J].中国中西医结合杂志,2003,23(10):769-771.
    [247]雷燕,高倩,李悦山,等.黄芪、当归及其组方促血管内皮细胞增殖作用的研究[J].中国中西医结合杂志,2003,23(10):753-756.
    [248]Morishita R, Aoki M, Hashiya N, et al. Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheral arterial disease[J]. Hypertension,2004,44: 203-209.
    [249]Sharif F, Daly K, Crowley J, et al. Current status of catheter-and stent-based gene therapy [J]. Cardiovase Res,2004,64:208-216.
    [250]诸毅晖,陈玉华.论穴位注射的穴药效应[J].中国针灸,2005,25(1):46-48.
    [251]Collinson DJ, Donnelly R. Therapeutic angiogenesis in peripheral arterial disease:can biotechnology produce an effective collateral circulation [J]? Eur J Vase Endovasc Surg, 2004,28(1):9-23.
    [252]Yla-Herttuala S, Rissanen TT, Vajanto I, et al. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine [J]. J Am Coll Cardiol,2007,49(10):1015-1026.
    [253]Moulton KS. Plaque angiogenesis and atherosclerosis [J]. Curr Atheroscler Rep,2001,3: 225-233.
    [254]Carr AN, Howard BW, Yang HT, et al. Efficacy of systemic administration of SDF-1 in a model of vascular insufficiency:support for an endothelium-dependent mechanism [J]. Cardiovasc Res,2006,69:925-935.
    [255]R. Mohle, M.A. Moore, R.L. Nachman, S. Rafi. Transendothelial migration of CD34+ and mature hematopoietic cells: an in vitro study using a human bone marrow endothelial cell line [J]. Blood,1997,89:72-80
    [256]R.J. Miller, G. Banisadr, B.J. Bhattacharyya, CXCR4 signaling in the regulation of stem cell migration and development[J]. Neuroimmunol,2008,198:31-38
    [257]Lataillade JJ, Domenech J, Le-Bousse-Kerdiles MC. Stromal cell-derived factor-1 (SDF-1)/CXCR4 couple plays multiple roles on haematopoietic progenitors at the border between the old cytokine and new chemokine worlds:survival, cell cycling and trafficking[J].Eur Cytokine Netw,2004,15 (3):177-188.
    [258]Zheng H, Fu GS, Dai T, et al. Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1 alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway[J]. J Cardiovasc Pharmacol,2007,50 (3):274-280.
    [259]Dimmeler S, Zeiher AM. Akt takes center stage in angiogenesis signaling [J]. Circ Res, 2000,86 (1):4-5.
    [260]Capoccia BJ, Shepherd RM, Link DC. G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism[J]. Blood, 2006,108(7):2438-2445.
    [261]Kuethe F, Figulla HR, Voth M, et al. Mobilization of stem cells by granulocyte colony stimulating factor for the regeneration of myocardial tissue after myocardial infarction[J]. Dtsch Med Wochenschr,2004,129:424-428.
    [262]Pingping Huang, Shanzhu Li, Mingzhe Han, et al. Autologous transplantation of peripheral blood stem cells as an effective therapeutic approach for severe arteriosclerosis obliterans of lower extremities[J]. Thrombosis and Haemostasis,2004,91(3):606-609.
    [263]Belgore FM, Blann AD, Lip GY. Measurement of free and complexed soluble vascular endothelial growth factor receptor, FIt-1, in fluid samples:development and application of two new immunoassays [J]. Clin Sci (Lond),2001,100(5):567-575.
    [264]Blann AD, Belgore FM, McCollum CN, et al. Vascular endothelial growth factor and its receptor, Flt-1, in the plasma of patients with coronary or peripheral atherosclerosis, or type Ⅱ diabetes [J]. Clin Sci (Lond),2002,102:187-194.
    [265]Ronald C.W. Ma, Juliana C.N. Chan. Type 2 diabetes in East Asians:similarities and differences with populations in Europe and the United States [J]. Ann. N.Y. Acad. Sci., 2013,1281:64-91.
    [266]Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China [J]. N. Engl. J. Med,2010,362(12):1090-1101.
    [267]Estes JM, Pomposelli FB Jr. Lower extremity arterial reconstruction in patients with diabetes mellitus [J]. Diabetic Med,1996 13 (1):S43-47.
    [268]Gavin A, Stess RM, Goldstone J. Prevention and treatment of foot problems in diabetes mellitus:a comprehensive program [J].West J Med,1993,158(1):47-55.
    [269]董建勋,朱朝军,李健,等.经穴注射骨髓间充质干细胞对后肢缺血大鼠血管活性物质的影响[J].北京中医药大学学报,2010,33(3):171-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700