用户名: 密码: 验证码:
骨折断端微动的中医理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:一、整理总结《黄帝内经》中关于人体骨与运动的理论,探讨中医伤科治疗骨折中夹板固定和练功疗法的理论源流;二、根据中医伤科固定骨折的指导理论,设计动物实验,探讨在骨折愈合过程中骨折断端轴向活动度的变化规律。
     研究意义:一、从中医基础理论的角度对中医伤科治疗骨折固定方法和练功疗法的思想基础和指导理论作出了具体的分析,结果表明《黄帝内经》对于人体骨、骨与运动关系方面的认识已经建立起了一个非常完整的理论体系。中医伤科治疗骨折的方式和方法就是在这个理论体系的指导下,经过长期临床实践逐步形成的、切实可行的治疗方法;二、动物实验结果首次明确了家兔胫骨骨折模型愈合过程中断端轴向活动度的变化规律,印证了中医伤科骨折治疗中功能锻炼按时间分期定量安排的科学性,为以后的治疗性干扰因素的评价,轴向活动度随时间变化数学模型的建立,提供了基础数据和实验平台。
     第一部分理论研究阐述:
     固定是骨折治疗的中心环节,在骨折愈合过程中,断端的固定和活动是人们最早并持续关注的问题之一。随着临床经验的总结和动物实验的探索,人们对于骨折治疗中断端固定相关问题的认识逐步深入,目前大多数的学者认为断端存在一定程度的轴向微动能够促进骨折的愈合,但对于这种活动的时机、幅度和频率等问题尚存在一定的争议;而关于断端的剪切活动和转动对骨折愈合的影响还没有明确统一的认识。因此,对于愈合过程中最佳的合理的断端微动方式的观测和探索,是骨折治疗领域的重要研究方向。
     夹板绑缚外固定和分期有序的康复锻炼,是中医骨伤科治疗骨折的特色之
     一,对于其适应症下的骨折治疗,能够最大程度地保护断端的血液循环,保持伤肢关节的运动功能,常能够促进骨折部位的早期愈合。然而在既往的动物实验条件下通过现代观测技术发现,与石膏外固定和钢板内固定方式相比较,在骨折愈合的早中期夹板固定下的骨折断端轴向微动位移量是最大的,在后期才趋向一致。这种现象表明了夹板绑缚技术的不超关节外固定和分期定量的肢体功能锻炼所共同引发的生理性断端微动,有可能与其能够促进骨折早期愈合的临床表现之间存在着机制性的联系。
     中医骨伤科采用夹板绑缚技术固定骨折断端,并在治疗过程中重视伤肢有序的功能活动,这不是历史发展的偶然,而是中国古代伤科医家长期临床应用,理性思辨之后所作出的选择。这一选择的完成,以及各种疗法的有机组合,是在共同的中医学基础理论指导下,经过无数的医疗实践总结完成的。中医学基础理论成熟的标志是《黄帝内经》,她主要融汇了中国汉代以前诸多医家对人体的解剖记录和治疗经验,并进行了高度的归纳和总结,历代各科医家在进行中医理论阐释时皆奉之为圭臬。《黄帝内经》理论对于人体骨,以及骨与肢体运动的关系有一个系统全面的认识,在这些内容里,以“骨属屈伸”和“豁谷属骨”理论最具有代表性,与中医伤科治疗骨折的固定和练功疗法的关系也最密切。
     “骨属屈伸”理论包括了髓的概念、液的概念、液对于髓的补益作用、骨属的概念、骨空的概念、骨属活动对于液分布的促进作用及其具体实现环节等诸方面的内容。“骨属”和“骨空”都是《黄帝内经》人体理论中与骨相关的部位或结构概念,其中“骨属”作为肢体关节屈伸活动的部位,它的功能直接和“液”的充盈和流注输布相关;“骨空”则相对而言在人体的分布更加广泛,而且外连冲、任、督脉,内连“脑髓”,因而作为“骨”的附属结构,其重要价值不言而喻。在描述化生于五谷的“液”经由“骨”的包围向内补益“脑髓”的过程中,“骨属”和“骨空”分别作为外在的动力和内在的结构,共同用于阐释这一机制,所以,二者在“骨”与“髓”关系,以及有关“脑髓”补养的机制中,发挥着至关重要的作用。“骨属屈伸”理论指出了肢体运动与营养物质分布之间的密切关系,其中也包括了骨的营养供应。
     “谿谷属骨”是《黄帝内经》中关于人体解剖结构相互联系的一个基本理论。“豁谷”一词在书中多次出现,是人体重要的基本结构之一,其连属于骨,定位于肌肉相互交会的层次;这个部位,走行着孙脉与络脉,因此也是人体的荣卫气血交会的场所;这个部位,同时也是邪气侵入人体后能够留客的地方,如果邪气进一步深入就会伤及到内部的骨,形成骨病;这个部位,分布于周身,是通过针刺疗法以激励正气、疏泄邪气的结构。豁谷通过冲脉和中焦与全身气血形成联系,同时又由于豁谷连属于骨,进而它是中焦和经脉中的气血对骨起灌注营养作用的关键环节部位,通过谿谷的联络作用,骨与人体的经脉、脏腑、气血津液产生了广泛的联系。
     “谿谷”与“骨属”同为连属于骨的结构性概念,但是“谿谷”分布部位比较广泛,处于肌肉的交会之处并向内连属于骨,强调了骨与人体经脉气血的关系;“骨属”则多集中与骨关节的部位,侧重了骨关节参与运动,以及其对于“液”补益脑髓的促进作用。由是可以清晰地看出,《黄帝内经》理论关于从水谷入于胃后,脾胃运化的精微物质通过经脉系统由“豁谷”向骨流注布散的完整过程。“骨属屈伸”在整体水平上指出了骨关节的运动与其营养物质布散关系,而“豁谷属骨”理论则从解剖的角度上给予了这一理念细节上的支持。
     《黄帝内经》中的骨、骨与运动相关的学术思想,在伤科治疗骨折的疗法上的具体实现,就是在兼顾固定的同时重视伤肢的关节活动,在保证关节活动的前提下,又强调分期定量、循序渐进的功能康复活动。这些学术思想对于中医伤科骨折固定方式和练功方法的形成均具有指导作用,是其治疗思想的源流。
     第二部分动物实验方法:
     肢体的运动来源于肌肉力在骨之间的传导,这种传导在骨折部位更加集中,并引起局部愈合组织的应力——应变变化,其中应变的综合外在表现就呈现为断端的微动。在骨折的愈合过程中,何时,采用何种方式,以何种运动量进行伤肢的康复锻炼活动,外在的肢体活动与内在的局部断端微动的关系如何,如何全面地评价断端微动对于骨折愈合的影响,如何有效地观测断端活动的位移程度并依此制定最佳的康复锻炼方案,目前这些都是世界性的骨科医学科研问题。
     中医伤科对于骨折的治疗有着悠久的历史和丰富的临床经验,既往实验表明,无论在临床还是动物实验,夹板固定和练功疗法均能使适应症下的骨折达到早期满意的愈合。中医伤科在治疗骨折的过程中所传承的相对固定技术、分期定量的康复锻炼,以及蕴涵于其中的理论观念,是非常值得现代医疗研究和临床参考的。因此,我们有充分的理由认为,找到在此种固定方式下由患者外在有序活动引起的断端规律才是最有价值的。依照中医伤科治疗骨折的理论和临床经验,动物实验的观察采用了家兔胫骨横断模型,在滑动固定架外固定条件下,对家兔骨折愈合过程中自然活动时的断端轴向活动度进行测量,观测其在愈合过程中移随时间推移的而变化趋势,探讨其变化规律。
     实验使用健康成年大耳白兔34只,体重2.Okg-4.5kg,雌雄不拘。购入后适应性喂养一周,然后麻醉造模并安装滑动外固定架。自实验家兔造模后第一日开始,每三日一次将其取出兔笼置于地面,待其熟悉环境后,将安装于滑动固定架的位移传感器连入数据采集装置,观察其在自由活动时骨折断端轴向活动度的变化。每只实验家兔每次测量的骨折断端活动度值为当次活动时所采集到的最大位移与最小位移的差值,每个时间点的测量3-4次,取其平均值。将每个时间点测试所收集的数据,输入计算机保存。实验结束后,按照测试编号顺序依次将所有数据调出,制表计算绘图,并进行统计学描述。根据既往经验设定测量周期为4周,并自造模后第一日开始,每二周一次行双下肢正、侧位X线拍片,以了解骨折愈合情况。
     最终共有27只家兔完成设定观察程序,其中雌性6只,雄性21只,体重2.70±0.80kg(M±Q),经x线拍片证实,在造模4周后骨折断端有梭形骨痂生长,骨折线模糊。测量周期内骨折块之间轴向活动度的实验测试值为69.52±86.91μm(M±Q),最小值为14.07μm,最大值为825.68μm,与文献相符合,说明在自制滑动外固定架固定条件下实验家兔胫骨横断骨折的断端位移,在其自然活动时,是处于理想范围内的。在骨折愈合过程中,实验家兔骨折断端的轴向活动度多半呈现出有小到大,再变小的规律。从实验家兔骨折断端变化趋势的统计描述来看,在骨折愈合过程中,存在两个峰值,第一个峰值出现在术后第4天,这很可能主要是由于伤后血肿开始消散,疼痛缓解后,肢体活动强度相对增加造成的;第二个峰值出现在术后第21天,这可能主要是由于伤后肌力逐渐恢复,肢体活动强度绝对增加造成的;而这个时间段内,骨折断端经历了出血,血肿形成,血肿极化,软骨痂初步形成的过程,因此随着早期伤肢活动强度的相对稳定,表现为活动度的一次下降。在愈合后期,尽管伤肢肌力逐渐恢复至正常,伤肢活动强度逐渐增大,而断端也逐渐转化为骨痂,故而活动度逐渐减小消失。从临床的角度来看,在第二个峰值之后断端活动度的下降,说明此时骨折断端的强度已经增高并达到能够在自然活动状态下增加断端轴向稳定程度的阶段。
     通过对实验数据的分析,断端轴向活动度的影响因素主要由伤肢活动强度和愈合强度所决定,伤肢的活动强度是随着损伤部位的疼痛、伤肢肌力恢复的情况而变化,并在一定程度上由伤者(或模型动物)的主观意志决定的;愈合强度则是遵循着生物学规律,并在伤肢活动刺激所引起的断端微动的环境下,随着具体的理化条件诱导而变化的。伤肢活动强度一般是愈合强度的主观反馈结果,同时又能够对愈合强度的改变产生刺激,因此断端活动度的变化,就是两个相关因素,在复杂的内、外部条件共同作用下,相互权衡的表现。
     结论:
     中医骨伤科使用夹板绑缚术固定骨折断端和愈合期按时间分阶段定量地指导伤者进行功能锻炼的治疗方法,在相对固定骨折断端的同时兼顾了骨折修复区域的血运和骨关节的运动功能,这种治疗模式是在中医的解剖学知识和人体基础理论指导下,经过长期的临床经验总结而形成的,其思想源泉可以追溯到《黄帝内经》中的“骨属屈伸”和“豁谷属骨”理论;
     在相对固定条件下,伤者在自然状态下的活动能够引起骨折断端的微动,正确地控制外在的活动方式,能够使骨折断端的微动刺激保持在一个良性的范围之内,并产生促进骨折愈合的效应。中医骨伤科在治疗骨折时非常重视分期定量,循序渐进的练功活动,这种有序的外部功能锻炼所引发的内部的断端微动效应目前尚不明了,但是其对于我们正确认识和深入探索骨折愈合过程中断端的变化规律有很大启迪意义;
     动物实验的数据显示,在骨折愈合过程中随着时间的变化,家兔自然活动时骨折断端的轴向活动度呈现出规律性的变化,总体趋势是先小后大,再由大变小并稳定在一个较低水平。这一规律的发现提示在骨折愈合过程中,最适的断端轴向活动度以时间为参数,存在一个有序的动态变化过程;支持了中医骨伤科学治疗骨折中采用的分期循序渐进的练功原则;为综合评判骨折愈合过程中断端微动影响因素提供了一个可操作的方案和基本思路;对于今后的数字化研究如数学模型的建立、智能控制应用、愈合指标的量化规范等方面具有普遍的指导意义。
There were two aims in this study, one was to summarize the original thoughts and theories of fracture fixation and exercise therapeutics in Chinese Orthpaedics and Traumatology, the other was to observe the changing trend of axial movement range of rabbit tibial fracture ends in healing process.
     The signification of this study is demonstrate that the therapeutics of fracture fixation and exercise in Chinese Orthpaedics and Traumatology are guided by credible basic theories about human body in Huangdi Neijing. So, followed these theories and principals we designed and fulfilled animal experiment. The outcome can provide later researching such as assessing treating factors and mathematic modeling with basic data.
     Part I theoretic researching.
     Fixation is a key section in fracture treatment. The motion and immobilization of fracture ends are crucial issues in fracture healing which raised clinician's attention persistently from early time. For now, although there is a agreement with suitable axial micromovement of the fracture fragments promoting callus formation, some aspects such as the opportunity, amplitude and frequency of this axial micromovement are still the subjects of widespread controversy. Furthermore, the effects of shear motion and rotation of fracture ends are not clear yet. So, it is very significant to observing and exploring the most optimal micromovement of fragments for fracture healing research.
     Bandage-splint fixation and exercises for functional rehabilitation has been used from antiquity to the present day in China, which are characteristics of Orthpaedics and Traumatology of Chinese Medicine in treating fractures. Chinese osteosynthesis has been proved a proper measure in treating fractures for its following the principles below:keep the fracture ends in a relatively state to reach secondary healing; blood supply of fracture site is not be compromised when applying fixation; maintaining the articular function all the while in healing process.
     The therapeutic principles of Chinese osteosynthesis are originated from the basic theory of Traditional Chinese Medicine. The fundamental classic of basic theories in Traditional Chinese Medicine is Huangdi Neijing, which has a comprehensive knowledge on the nourishment and function about human bones. Gu Shu flexing and Xi Gu belonging to bone are two primary theories among them. Gu Shu and Xi Gu are both anatomical structural conceptions which attach to bone, but Xi Gu are widespread over a body while Gu Shu are mainly distributed at articular ends of bones. Xi Gu are located at fascicles' converging points through which Qi and blood are irrigating bones, and Gu Shu can accelerate this procedure by their flexing movement. The theory of Gu Shu flexing shows the relationship between joint motion outside and nourishment spreading inside. Meanwhile, the theory of Xi Gu belonging to bone provide former with detail evidence in anatomy.
     Part II animal experiment.
     Body kinematics is drive from muscular force transmission in skeleton. These transmission will produce stress concentration and callus strain when they pass through fracture site. Then callus strain is expressed in the form of fragmentary movement. Therefore the interfragmentary motion can reflect the stress-strain state of fracture site.
     To observe the changing regularity of axial movement range of fracture ends in healing process, a rabbit experiment was designed and performed following the therapeutic theories of fracture in Orthpaedics and Traumatology of Chinese Medicine.34 adult healthy rabbits were used to create tibial diaphysial transection fracture model, and stabilized with sliding external fixator frame. The axial movement range of fracture ends were measured by displacement transducer which was installed on the slide bar. Data were recorded in computer while rabbit moving naturally every 3 days and fracture site X-rayed every 2 weeks from osteotomy.
     Finally,27 rabbits accomplished observation on schedule. X-ray evidence showed that laminal callus has formed around the fracture site and clinical union has been achieved at 4 weeks after osteotomy. There is 2 peak values in the changing trend of axial fragmentary motion, one is at 4 day and the other is at 21 day after osteotomy. Since 3 weeks after modeling the motion range became decrease to a low level. The statistic of measurement data is 69.52±86.91μm(M±Q), the minimum value is 14.07μm while the maximum is 825.68μm, which is consistent with literature. The curve based on experimental dara demonstrated that the axial fragmentary movement range of rabbit fracture model chanded from little to large, then became little again and stabilized in a small range. There are two peak value in this curve, one appeared at 4 days after operation showed that rabbit increased its activity due to disappearing of pain, the other appeared at 21 days after operation showed that the strength of wounded muscles was recovering. The curve decreased to a small range from the second peak value which indicated the fracture site has arrived at a state of stabilization.
     In conclusion, the theoretic researching results suggest that the basic theories on human bones and exercises, especially the theories of Gu Shu flexing and Xi Gu belonging, in Huangdi Neijing are the original thoughts and theoretic guidance of fracture fixation and exercise therapeutics in Orthpaedics and Traumatology of Chinese Medicine. the experimental results suggested that there is regular trend relative to time going in axial movement range of fracture ends while rabbit model acting physical motion. The regular trend support the method that take gradual tolerance of exercise intensity by healing phases in fracture treatment in Orthpaedics and Traumatology of Chinese Medicine. It can provide comprehensive assessing the effect of interfragmentary micromovement in healing process with a available way and a fundmental thoughts, and it is of great clinical significance in technical improvement and innovation to treat fractures.
引文
[1]Sarmiento A, Schaeffer JF, Beckerman L, et al. Fracture healing in rat femora as affected by functional weight-bearing[J]. J Bone Joint Surg Am.1977,59(3): 369-375.
    [2]McKibbinB. The biology of fracture healing in long bones[J]. J Bone Joint Surg Br.1978,60-B(2):150-162.
    [3]De Bastlani G, Aldegheri R, Renzi Brivio L. The treatment of fractures with a dynamic axial fixator[J]. J Bone Joint Surg Br.1984,66(4):538-545.
    [4]Goodship AE, Kelly DJ, Rigby HS, et al. The effect of different regimes of axial micromovement on the healing of experimental tibial fractures [J]. Orthop Trans. 1987,11:285.
    [5]Eggers GWN. Internal contact splint. J Bone Joint Surg Am.1948,30A(1):40-52.
    [6]关继超,钟红刚,董福慧等.肌肉动力与断端显微位移的动态观察[J].中国骨伤.1998,11(4):11-13.
    [7]Lippert FG, Hirach C. The three dimentional measurement of tibia fracture motion by photogrammetry[J]. Clin Orhtop.1974,105:130-143.
    [8]Sarmiento A, McKellop HA, Llinas A, et al. Effect of loading and fracture motions on diaphyseal tibial fracture[J]. J Orthop Res,1996,14(1):80-84.
    [9]Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures[J]. J Bone Joint Surg.1985,67(4):650-655.
    [10]刘焕义,狄勋元.细微运动对长骨干骨折愈合的影响.骨与关节损伤杂志[J].1995,10(1):38-41.
    [11]江建明,狄勋元,张跃旋.骨折段细微运动对长骨干骨折愈合的影响[J].中华骨科杂志[J].1996,16(4):249-252.
    [12]马克昌,冯坤,朱永泰等.骨生理学[M].河南医科大学出版社.郑州,2000.
    [13]Yamagishi M, Yoshimura Y. The biomechanics of fracture healing. J Bone Joint Surg Am.1955,37-A(5):1035-1068.
    [14]Park SH, O'Connor K, McKellop H, et al. The influence of active shear or compressive motion on fracture-healing[J]. J Bone Joint Surg Am.1998,80(6): 868-878.
    [15]Augat P, Burger J, Schorlemmer S, et al. Shear movement at the fracture site delays healing in a diaphyseal fracture model[J]. J Orthop Res.2003,21(6): 1011-1017.
    [16]Schell H, Epari DR, Kassi JP, et al. The course of bone healing is influenced by the initial shear fixation stability[J]. J Orthop Res.2005,23(5):1022-1028.
    [17]Epari DR, Taylor WR, Heller MO, et al. Mechanical conditions in the initial phase of bone healing[J]. Clin Biomech (Bristol, Avon).2006,21(6):646-655.
    [18]McKellop H, Hoffmann R, Sarmiento A, et al. Control of motion of tibial fractures with use of a functional brace or an external fixator[J]. J Bone Joint Surg Am. 1993,75:1019-1025.
    [19]Kenwright J, Gardner T. Mechanical influences on tibial fracture healing[J]. Clin Orthop Relat Res.1998, Oct(335 suppl):s179-190.
    [20]Gardner TN, Hardy JRW, Evans M, et al. The static and dynamic behaviour of tibial fractures due to unlocking external fixators[J]. Clin Biomech (Bristol, Avon). 1996,11(8):425-430.
    [21]Kenwright J, Goodship AE. Controlled mechanical stimulation in the treatment of tibial fractures[J]. Clin Orthop Relat Res.1989,241:36-47.
    [22]Cheal EJ, Mansmann KA, DiGioia AM 3rd, et al. Role of interfragmentary strain in fracture healing:ovine model of a healing osteotomy [J]. J Orthop Res.1991, 9(1):131-142.
    [23]Claes L, Augat P, Suger G, Wilke HJ. Influence of size and stability of the osteotomy gap on the success of fracture healing [J]. J Orthop Res.1997,15(4): 577-584.
    [24]Claes LE, Heigele CA, Neidlinger-Wilke C, et al. Effects of mechanical factors on the fracture heal ing process [J]. Clin Orthop Relat Res.1998, Oct (355 Suppl): S132-147.
    [25]Augat P, Margevicius K, Simon J, et al. Local tissue properties in bone healing: influence of size and stability of the osteotomy gap[J]. J Orthop Res 1998,16(4): 475-481.
    [26]Yamaji T, Ando K, Wolf S, et al. The effect of micromovement on callus formation. J Orthop Sci.2001,6(6):571-575.
    [27]Perren SM. Physical and biological aspects of fracture healing with special reference to internal fixation[J]. Clin Orthop Relat Res.1979,138:175-196.
    [28]Claes L, Grass R, Schmickal T, et al. Monitoring and healing analysis of 100 tibial shaft fractures. Langenbecks Arch Surg.2002,387(3-4):146-152.
    [29]Jagodzinski M, Krettek C. Effect of mechanical stability on fracture healing- an update. Injury[J].2007,38 Suppl 1:S3-10.
    [30]Goodship A E, Norrodin N, Francis M. The stimulation of prostaglandin synthesis by micromovement in fracture healing. Micromovement in Orthopaedics[M]. London: Oxford,1992:31-34.
    [31]Goodship AE, Watkins PE, Rigby HS, et al. The role of fixator frame stiffness in the control of fracture healing:an experimental study[J]. J Biomech,1993, 26 (9):1027-1035.
    [32]Augat P, Merk J, Wolf S, et al. Mechanical stimulation by external application of cyclic tensile strains does not effectively enhance bone healing[J]. J Othop Trauma.2001,15(1):54-60.
    [33]王小平,高雪官,张先龙,等.骨折治疗用微动外固定架的研制[J].医疗卫生装备.2003,24(12):9212.
    [34]Rubin CT, Mcleod KJ. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain[J]. Clin Orthop Relat Res.1994,298:165-174.
    [35]Goodship AE, Lawes TJ, Rubin CT. Low magnitude high frequency mechanical stimulation of endochondral bone repair[J]. Trans Orthop Res Soc. 1997,43 (2); 234.
    [36]Wolf S, Augat P, Eckert-Hubner K, et al. Effects of high-frequency, low-magnitude mechanical stimulus on bone healing[J]. Clin Orthop Relat Res. 2001,385:192-198.
    [37]陈履平,韩祖斌,杨秀珍,等.不同振动频率对实验性骨折愈合的影响[J].中华外科杂志,1994,32(4):217-219.
    [38]王慧敏,许鸿照,余日跃,等.间隔纵压对骨愈合影响的实验研究[J].中医正 骨,1999,11(1):324.
    [39]吴执中.职业病[M].北京:人民卫生出版社,1984:276-278.
    [40]张先龙,曹炳芳.微动对骨折愈合影响的研究进展. 中华外科杂志.1998,36(5):281-283.
    [41]Goodship AE, Cunningham JL, Kenwright J. Strain rate and timing of stimulation in mechanical modulation of fracture healing[J]. Clin Orthop Relat Res.1998, Oct(355 Suppl):S105-115.
    [42]刘焕义,狄勋元.细微运动对长骨干骨折愈合的作用[J].骨与关节损伤杂志,1998,13(1):28-31.
    [43]Buckwalter JA. Effects of earlymo tion on healing of musculoskeletal tissues. Hand clin.1996,12(1):13-24.
    [44]Noordeen MH, Lavy CB, Shergill NS, et al. Cyclical micromovement and fracture healing[J]. J Bone Joint Surg Br.1995,77(4):645-648.
    [45]Augat P, Merk J, Ignatius A, et al. Early full weight bearing with flexible fixation delays fracture heal ing[J]. Clin Orthop,1996,328:194-202.
    [46]Augat P, Schorlemmer S. The role of cortical bone and its microstructure in bone strength[J]. Age Ageing.2006,35 (Suppl 2):ii27-ii31.
    [47]Hulth A. Current concepts of fracture healing [J]. Clin Orthop Relat Res.1989, 249:265-284.
    [48]乔林,侯树勋,李文峰等.微动对骨折端微循环及血管内皮生长因子(VEGF)表达的影响[J].中华创伤骨科杂志,2003,7(1):52-54.
    [49]Wallance AL, Draper ER, Strachan RK, et al. The vascular response to fracture micromovement [J]. Clin Orthop Relat Res.1994,301:281-290.
    [50]Yeap JS, Wallace AL. Syringomyelic neuropathic ulcer of the elbow:treatment with an external fixator [J]. J Shoulder Elbow Surg.2003,12(5):506-509.
    [51]许伟洲,杜靖远,吴永超,等.自控微动髓内钉内固定对骨折愈合影响的X线平片及微血管造影观察[J].中国矫形外科杂志,2003,11(4):120-122.
    [52]Claes L, Eckert-Hubner K, Augat P. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing [J]. J Orthop Res, 2002,20(5):1099-1105.
    [53]董福慧,关继超,赵勇,等.骨折愈合的应力适应性研究[J].中国骨伤,2001,14(1):14-16.
    [54]Jepsen KJ, Davy DT, Krzypow DJ. The role of the lamellar interface during torsional yielding of human cortical bone[J]. J Biomech,1999,32(3):303-310.
    [55]Richards M, Goulet JA, Weiss JA, et al. Bone regeneration and fracture healing. Experience with distraction osteogenesis model [J]. Clin Orthop Relat Res.1998, Oct(355 Suppl):S191-S204.
    [56]Moorcroft CI, Ogrodnik PJ, Thomas PB, et al. Mechanical properties of callus in human tibial fractures:a preliminary investigation[J]. Clin Biomech (Bristol, Avon),2001,16(9):776-782.
    [57]张纲,李焰.细胞生长因子在骨折愈合中的作用研究进展[J].重庆医学,2008,37(2):196-197.
    [58]Lean JM, Jagger CJ, Chmbers TJ, et al. Increasen insulin-like growtn factor-I mRNA expression in osteocytes precedes to mechanical stimulation[J]. Am J Physiol.1995,268(2 Pt 1):E318-27.
    [59]Sato M, Ochi T, Nakase T, et al. Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis[J]. J Bone Miner Res,1999,14(7): 1084-1095.
    [60]Liu Z, Luyten FP, Lammens J, et al. Molecular signaling in bone fracture healing and distraction osteogenesis[J]. Histol Histopathol,1999,14(2):587-595.
    [61]Yeung HY, Lee KM, Fung KP, et al. Sustained expression of transforming growth factor-betal by distraction during distraction osteogenesis [J]. Life Sci,2002, 71(1):67-79.
    [62]Weiss S, Baumgart R, Jochum M, et al. Systemic regulation of distraction osteogenesis:a cascade of biochemical factors. J Bone Miner Res,2002,17(7): 1280-1289.
    [63]Park SH, O'Connor KM, McKellop H. Intraction between active motion and exogenous transforming growth factor Beta during tibial fracture repair[J]. J Orthop Trauma 2003,17 (1):2-10.
    [1]丁继华.中医骨伤科理论体系的探讨[J].中国骨伤.2004,17(2):116-117.
    [2]林亿等.黄帝内经素问[M].上海:上海古籍出版社.1994:1-316.
    [3]林亿等.灵枢经[M].上海:上海古籍出版社.1994:317-428.
    [4]赵佶.圣济总录(下册)[M].北京:人民卫生出版社,1982:3123.
    [5]杨上善.黄帝内经太素[M].北京:人民卫生出版社,1981:219-220.
    [6]许慎.说文解字[M].北京:中华书局.1963.
    [7]李德新.中医基础理论[M].北京:人民卫生出版社.2001:139-140.
    [8]Lippert FG, Hirach C. The three dimentional measurement of tibia fracture motion by photogrammetry. Clin Orhtop[J],1974,105:130-143
    [9]Sarmiento A, McKellop HA, Llinas A, et al. Effect of loading and fracture motions on diaphyseal tibial fracture[J]. J Orthop Res,1996,14(1):80-84.
    [10]McKellop H, Hoffmann R, Sarmiento A, et al. Control of motion of tibial fractures with use of a functional brace or an external fixator[J]. J Bone Joint Surg Am. 1993;75 (7):1019-1025.
    [11]Kenwright J, Gardner T. Mechanical influences on tibial fracture healing[J]. Clin Orthop Relat Res.1998,335 suppl:s179-190.
    [12]Gardner TN, Hardy JR, Evans M, et al. The static and dynamic behaviour of tibial fractures due to unlocking external fixators[J]. Clin Biomech (Bristol, Avon). 1996,11(8):425-430.
    [13]王亦璁.骨与关节损伤[M],第4版.北京:人民卫生出版社.2007.
    [14]Chao EY, Inoue N. Biophysical stimulation of bone fracture repair, regeneration and remodeling[J]. Eur Cell Mater.2003,31(6):72-85.
    [15]唐树杰,房经武,王志彬.论中国接骨学“动静结合”理念的先进性[J].天津中医药大学学报.2008,27(1):43-45.
    [16]顾华.骨折的绝对固定与相对固定——兔胫骨骨折愈合生物适应性的实验研究[D].北京:中国中医研究院博士学位论文.1986.
    [17]邹炳曾.骨折端力——位移对骨折愈合影响的实验研究和临床分析[D].北京:中国 中医研究院博士学位论文.1994.
    [18]关继超.骨折端力——位移对骨折愈合影响的实验研究和临床分析[D].北京:中国中医研究院博士学位论文.1994.
    [19]徐豫生,郁诚炜.实用古汉语大词典(下)[M].郑州:河南人民出版社.2001:988.
    [20]徐豫生,郁诚炜.实用古汉语大词典(上)[M].郑州:河南人民出版社.2001:308.
    [21]马克昌,冯坤,朱永泰等.骨生理学[M].郑州:河南医科大学出版社.2000:463.
    [22]冯元桢.生物力学[M].北京:科学出版社.1983:246.
    [23]涂丰.骨折愈合过程的血液循环研究[D].北京:中国中医研究院博士学位论文.1991.
    [24]张松.骨折愈合过程的血管形态和血流量研究[D].北京:中国中医研究院博士学位论文.1992.
    [25]丁继华,王金柱,朱云龙,等.尚天裕医学文集[M].北京:中国科学技术出版社.1991:151-154.
    [26]奚达,王育学.刘寿山正骨经验[M].北京人民卫生出版社.1966:131.
    [27]沈敦道,陆海善.陆银华治伤经验[M].北京人民卫生出版社.1984:117-118.
    [28]丁继华.伤科古文献的整理研究[J].中国骨伤,2004,17(1):59-60.
    [29]钟红刚,赵宏普,宋跃,等.穿针滑动固定家兔胫骨实验性骨折愈合过程断端位移测试[J].中国骨伤.2001,14(10):604-605.
    [30]Duda GN, Sporrer S, Sollmann M, et al. Interfragmentary movements in the early phase of healing in distraction and correction osteotomies stabilized with ring fixators[J]. Langenbecks Arch Surg,2003,387:433-440.
    [31]邱宏,金国琴,金如锋,等.水晶宫重复测量数据的方差分析及其在SPSS中的实现[J].中西医结合学报.2007,5(1):101-105.
    [32]王立芹,杨俊英,唐龙妹,等.单因素重复测量设计的方差分析及SAS与SPSS的实现[J].华北煤炭医学院学报.2005,7(1):7-9.
    [33]方积乾,陆盈.现代医学统计学[M].北京:人民卫生出版社,2002:41-42.
    [34]关继超,钟红刚,董福慧,等.肌肉动力与断端显微位移的动态观察[J].中国骨伤.1998,11(4):11-13.
    [35]Harris JD, Kenwright J, Evans M, et al. Control of movement and fracture stiffness monitoring with external fixation[J]. Orthopaedics,1984,7(3),
    485-490.
    [36]Ogrodnik PJ, Moorcroft CI, Thomas PB. A fracture movement monitoring system to aid in the assessment of fracture healing in humans[J]. Proc Inst Mech Eng H.2001,215(4):405-14.
    [37]Hente R, Cordey J, Perren SM. In vivo measurement of bending stiffness in fracture heal ing[J]. Biomed Eng Online.2003 28(3):2-8.
    [38]M. Jagodzinski, C. Krettek. Effect of mechanical stability on fracture healing-an update [J]. Injury.2007,38(1):s1-s10.
    [39]赵经文,王铎.理论力学下册[M],第5版.北京,高等教育出版社.1997:7.
    [40]尚天裕.中国接骨学[M].天津:天津科学技术出版社.1995:12-15.
    [41]董福慧,赵勇,关继超,等.骨折愈合的应力适应性研究[J].中国骨伤,2001,14(1):14-16.
    [42]董福慧.骨折治疗的信息化数字化研究[J].中国骨伤.2005,18(1):1-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700