用户名: 密码: 验证码:
三相高功率因数可逆整流器仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代电力电子技术的发展,蓄电池充电机在日常的经济生活中发挥着越来越重要的作用。传统的蓄电池充电装置大多采用晶闸管整流,但其网侧功率因数偏低,网侧电流畸变对电网产生严重的谐波污染;工作频率低下,充电装置体积大,能量不能实现双向流动,降低了能量传输效率。本文设计了一种三相电压型空间电压矢量脉宽调制(Space Voltage Vector Pulse Width Modulation,SVPWM)可逆整流器,该整流装置能实现网侧单位功率因数、输入电流波形品质好、直流输出电压稳定,具有整流和逆变双重功能。论文所做工作如下:
     1)本文研究了整流器高功率因数的实现方法,分析了单相及三相电压型PWM可逆整流器的拓扑结构和工作原理,分别在三相静止坐标系和两相旋转坐标系下建立了可逆整流器的数学模型。坐标变换模块实现了abc三相静止坐标系和dq两相旋转坐标系间的相互变换,一方面满足了控制算法需要,另一方面提供了一种通过dq坐标系下的直流量对abc坐标系下的三相交流量进行分析的方法。
     2)分析了三相电压型PWM可逆整流器的控制策略,针对三相电压型可逆整流器实际控制系统的需求,引入了基于前馈解耦的双闭环控制策略。在分析传统SVPWM算法的基础上,为了节约硬件空间,给出了SVPWM简化算法。
     3)分析基于前馈解耦策略的双闭环控制系统,设计了三相电压型SVPWM可逆整流器主电路参数和控制系统参数。由于电网电压、电流采集时存在噪声,在交流侧前端置FIR滤波器,以提高系统的稳定性;基于实际电网电压波形由于不同因素导致会有一定畸变,在传统硬件锁相以及单相数字锁相在电网电压频率漂移时,不能快速准确锁定输入电流相位问题,设计了一种新型的三相坐标变换锁相环,给予了原理分析并建立数学模型,为可逆整流器高功率因数的实现提供了一种新的解决办法。
     4)在Matlab/Simulink中构建基于前馈解耦的双闭环控制模型,构建基于坐标变换的数字锁相环模型和简化SVPWM调制方法模型构建。进行连续域模型仿真研究系统动态、稳态及抗扰性能。
     5)基于VHS-ADC高速数字信号处理平台上构建了可逆整流器控制系统离散域模型,构建的系统部分模型丰富了Matlab的工具箱。离散域系统仿真结果表明:该装置能实现网侧单位功率因数、网侧电流波形品质好、直流输出电压稳定,具有整流和逆变双重功能。
With the development of modern power electronics technology, the battery charger is playing an increasingly important role in the daily economic life. Most of the conventional battery charging devices using thyristor rectifier, but the network power factor is low, and the net distortion of the grid side current harmonic pollution have become serious, and operating frequency is low, charging device bulky, two-way flow of energy can not be achieved, Lower energy transfer efficiency. This paper designs a three-phase voltage space vector pulse width modulation (Space Voltage Vector Pulse Width Modulation, SVPWM) reversible rectifier.The network side of the rectifier can achieve unity power factor, input current waveform quality is good, the DC output voltage is stable, rectifier and inverter with a dual function. Paper follows the work:
     Firstly, in this paper, the way to realise high power factor rectifier analyzed by means of single-phase and three phase voltage PWM reversible rectifier topology and operating principle, respectively, in three-phase stationary coordinate system and two-phase rotating coordinate system established mathematical reversible rectifier Model. Abc coordinate transformation module implements the three-phase stationary coordinate system and the dq two-phase rotating coordinates the mutual transformation, on the one hand to meet the needs of the control algorithm, on the other hand to provide a dq coordinate system through the direct flow of the abc coordinate system Volume under the three-phase analysis method.
     Secondly, analysis of three-phase reversible PWM rectifier control strategy for three-phase voltage-type reversible rectifiers control system of the actual demand, the introduction of feed-forward decoupling based on double closed-loop control strategy. Analysis of the traditional SVPWM algorithm is based on the hardware in order to save space, given the simplified SVPWM algorithm.
     Thirdly, the analysis is based on feed-forward decoupling double-loop control system strategy designed SVPWM phase voltage main circuit parameters and reversible rectifier control system parameters. Because the AC network voltage and current noise exists acquisition, So setting FIR filters to improve system stability. Basing on the actual grid voltage waveform due to different factors there will be some distortions in the traditional hardware and single-phase digital lock-lock When the grid voltage and frequency drift, can not be locked quickly and accurately input current phase problem, designed a new type of three-phase coordinate transformation phase-locked loop, given the principles of analysis and mathematical model for reversible realization of high power factor rectifier provides a Kinds of new solutions.
     Fouthly, to build based on double closed-loop feed-forward decoupling control modeI in Matlab/Simulink, constructed based on coordinate transformation of the digital PLL model and the simplified SVPWM modulation model building. Continuous domain system simulation to study the dynamics, steady-state and anti-interference performance, verify the theoretical correctness of the algorithm.
     Finaly discrete reversible rectifier control system domain mode is built based on VHS-ADC high-speed digital signal processing platform, Parts of the system model are constructed enriched Matlab toolbox. Discrete domain system simulation results show that: the rectifier can be to achieve network high power factor, good quality of network current waveforms, stable DC output voltage, and the power can flow from DC to AC or AC to DC.
引文
[1]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社, 2000.
    [2]张崇巍,张兴. PWM整流器及其控制[M].北京:机械工业出版社, 2003.
    [3]唐蕾.基于可逆PWM整流器的蓄电池充放电装置的研究[D].安徽理工大学大学.2006,4.
    [4]吴昇.三相高功率因数可逆整流器的研究[D].武汉大学. 2004, 4.
    [5]王兆安,杨军,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社, 1999.
    [6]刘当.三相电压型高功率因数PWM整流器研究[D].武汉理工大学. 2010, 5.
    [7]徐伟.高功率因数整流器的研究[D].天津大学. 2005, 1.
    [8]日本电气学会.电工技术手册[M].北京:机械工业出版社, 1984.
    [9]姜雪松.三相高功率因数可逆整流器研究[D].南京航空航天大学论文. 2002, 3.
    [10]孙湖.交流传动互馈试验系统中高供电品质整流电源研究[D].华北电力大学. 2004, 5.
    [11]赵振波,许伯强,李和明.高功率因数PWM整流器综述[J].华北电力大学学报. 2002, 12.
    [12]张开如.功率因数可调的PWM整流器的研究[D].山东科技大学. 2003, 4.
    [13] Busse Alfred, Holtz Joachim. Multiloop control of a unity power factor fast switching AC to DC converter. Proc.Power Electr Specialist Conf. 1982: 171-179.
    [14] Akagi Hirofumi etc. Instantaneous reactive power compensators comprising switching devices withour energy storage components[J]. IEEE Trans Ind Appl, 1984, IA-20: 625-630.
    [15] Green A W, Boys J T, Gates G F. 3-phase voltage sourced reversible rectifier[J]. IEE proceedings, 1988, 135(6): 362-370.
    [16]李宏.电力电子设备用器件与集成电路应用指南[M].北京:机械工业出版社, 2001:18-31.
    [17]王鑫.超级电容器对微电网电能质量影响的研究[D].华北电力大学. 2009, 12.
    [18]付志红,董玉玺,朱学贵.数字锁相环与滤波技术在PWM整流器中的应用[D].重庆大学大学学报. 2010(7): 35-41.
    [19]姚道如.变频器中PWM整流的研究[D].合肥工业大学. 2007, 4.
    [20]徐嘉鹏.三相电压型PWM整流器控制策略的研究[D].北京交通大学. 2007, 1.
    [21]邵宝福.基于DSP的PWM整流器在励磁控制系统中的应用研究[D].天津理工大学. 2007, 12.
    [22]伍旭鹏.三相电压型PWM整流器的研究[D].湖南大学. 2009. 4.
    [23] R S Wu , S B Dewan , G R Slemon. Analysis of an AC to DC voltage source converter using PWM with phase and amplitude control [J]. IEEE Trans. Ind. Application, 1991, 27(2): 355-363.
    [24]丁艳华.三相电流型PWM整流器及其控制策略研究[D].江苏大学. 2010. 5.
    [25]张文军.三相功率因数校正及其控制技术研究[D].江苏大学. 2008. 3.
    [26]冯婧.基于PWM整流器的可逆充电技术的研究[D].安徽理工大学. 2009. 6.
    [27] Hengchun Mao, Bon-Teck Ooi. Multi-modulator current source PWM converter for superconducting a magnetic energy storage system[J]. IEEE Trans Power Delivery .1993.8(3):250-255.
    [28]王子峥.高功率因数可逆整流器控制算法的研究[D].天津理工大学. 2007, 12.
    [29]张刚.基于滞环空间矢量三相PWM整流器研究[D].天津理工大学. 2008, 12.
    [30]还芳.能量回馈式蓄电池放电装置的研究[D].华中科技大学. 2004, 4.
    [31]张玉明. 4H-SiC肖特基二极管在功率因数校正电路中的应用研究[D].西安电子科技大学. 2010, 8.
    [32]郑艳安.三相高功率因数可逆整流器研究[D].西安交通大学. 2001, 12.
    [33]李淑坤.现代电功率变换技术在气化炉冷却水供水控制系统中的应用与实现[D].西安理工大学. 2008, 3.
    [34]杨桂兰.高功率因数电压型整流器数学模型及控制策略的研究[D].华北电力大学. 2009, 9.
    [35]李素芳.三相PWM整流器[D].华中科技大学. 2003, 4.
    [36] JUAN W, DIXON. Indirect Current Control of a Unity Power Factor Sinusoidal Current Boost Type Three Phase Rectifer. IEEE Trans Industry electronics 1988, 35(41):508~515.
    [37]董晓鹏,裴云庆.一种电压型PWM整流器控制方法的研究[J].电工技术学报. 1998(10):33-36.
    [38]郑颖楠,傅诚.电压型可逆变流器的控制策略现状与发展[J].低压电器. 2001(6):3-6.
    [39] TiwariA N, Agarwal P, Srivastava S P. Modified Hysteresis Controlled PWM Rectifier[J]. IEEE Trans on Electric Power Application, 2003, 150(4): 389-396.
    [40] WU R, Slemon G R. Analysis of a PWM AC-DCVoltage Source ConverterUnder the Predicted Current Controlwith a Fixed Switching Frequency[J]. IEEETrans on Industry Applications, 1991, 27 (4): 756-764.
    [41] Malesani L, Mattiavellu P, Tonadsi. High Performance Histeresis Modulation Technique for Active Filters. inProc.IEEE APEC’96, 1996:939-946.
    [42] Karel Jezernik. VSS Control of Unity Power Factor[J]. IEEE Trans on Industrial Electronics, 1999, 46(2): 325~331.
    [43]徐金榜.三相电压源PWM整流器控制技术研究[D].华中科技大学. 2004, 9.
    [44] Wu R,Dewan S B,Slemon G B.A PWM AC-to-DC converter with fixed switching frequency[J]. IEEE Trans Ind Appl,1987, IA-23:1022-1028.
    [44]林辉.电力电子技术[M].武汉:武汉理工大学, 2002,3.
    [45] Ohnuki T, Miyashita O. High Power Factor PWM Rectifier with an Analog Pulse Width Prediction Controllers[J ] . IEEE Trans on Power Electronics , 1996 , 11 (3) : 460 - 465.
    [46] Van Der Broeck H W, Skudelny H2C. Analysis and Realization of a Pulse-width Modulator Based on Voltage Space Vectors[J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS , 1988 , 24 (1) :142~150.
    [47]史伟伟,蒋全等.三相电压型PWM整流器的数学模型和主电路设计[J].东南大学学报, 2002, 32(1): 50-55.
    [48]张志刚.三相PWM整流技术在复合励磁多电压输出发电机系统中的应用研究[D],湖南大学. 2005,3.
    [49]董玉玺.三相电压型整流器的仿真研究[D].重庆大学. 2010, 5.
    [50]曹世华,张维娜,沈鸿等.新型软件锁相环三相电压型PWM整流器的控制[J].电力电子技术. 2008,42(5): 72-73.
    [51] Karimi Ghartemani M, Reza Iravani M. Measurement of Harmonics/Inter-harmonics of Time-Varying frequencies[J]. IEEE Trans.Power Delivery. 2005, 20(1): 23-31.
    [52]庞浩,俎云霄,李东霞等.基于Hilbert移相滤波的全数字锁相环[J].电网技术, 2003, 27(11): 55-59.
    [53]琚兴宝,徐至新,邹建龙等.基于DSP的三相软件锁相环设计[J].通信电源技术, 2004, 21(5): 1-4.
    [54] Arruda L N,Cardoso Filho B J,Silva S M,et al. Wide bandwidth single and three-phase PLL atructures for grid-tied PV systems[C]. Proceedings of 228th IEEE Photovoltaic SpecialistsConference, 2000: 1660-1663.
    [55]李彦栋,王凯斐,卓放等.新型软件锁相环在动态电压恢复器中的应用[J].电网技术, 2004, 28(8): 42-45.
    [56]杜强芳,杨明,王子才.建模与仿真资源库系统的初探[J].系统仿真学报, 2003, 2(15): 161-163.
    [57]郭丽娟,陈乃添,刘南平.实时数字仿真装置RTDS介绍[J].广西电力, 2004, (l): 62-64.
    [58]张超,庄劲武,戚连锁,叶志浩. Hypersim在密集节点独立电力系统实时仿真中的应用[J].计算机仿真, 2005, 22(l2): 14-16.
    [59]王万宝.三相电压型SVPWM整流器仿真研究[D].重庆大学. 2009, 5.
    [60]付志红,马静,谢品芳等.基于高速数字信号处理平台的实时仿真技术[J].系统仿真学报. 2007, 19(16): 3680-3683.
    [61]毛文喜,罗隆福.三相电压型SVPWM整流器的SIMULINK建模与仿真[J].船电技术. 2007, 1:23-26.
    [62] Byung-Duk Min, Jang-Hyoun Youm, Bong-Hwan Kwon. A space vector modulation basedhysteresis current controller for the PWM rectifier with voltage link[J]. INT.T.Electronics, 1999, 86(3): 363~377.
    [63]吕宝良.基于DSP的三相电压型PWM整流器的设计[D].哈尔滨理工大学. 2007, 6.
    [64]董晓鹏,王兆安.三相电压型单位功率因数PWM整流器的研究[J].电力电子技术. 1997,4: 66-69.
    [65]黄江波,付志红,王万宝.基于VHS-ADC的三相整流器高速实时仿真平台的设计[J].电子技术应用. 2007, 36(9): 161-162.
    [66]李少波.基于DSP的风电机组SVPWM变流器研究[D].内蒙古科技大学. 2008.
    [67]谢晨.可逆PWM整流器及其控制策略研究[D].北京交通大学.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700