用户名: 密码: 验证码:
仿生非光滑耦合模具表面粘附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于工程仿生学理论,以植物叶面及土壤动物体表的非光滑形态、结构及功能为生物原型,利用激光及机械加工技术在45#钢及高速钢模具表面设计并制备出仿生非光滑单元体,单元体和材料表面经生物耦合规律组合,形成类似天然生物体表的仿生非光滑耦合表面,从而实现改善模具表面粘附阻抗性能的目的。考察了单元体特征尺度及非光滑表面润湿性能随制备参数的变化规律,并针对不同制件基体材料,研究了非光滑单元体及其大小、分布和功能对模具表面粘附性能的影响,提出仿生表面粘附阻抗模型。
     研究表明,仿生非光滑表面上分布的单元体及其所具有的双尺度阶层复合结构能够有效吸附空气,在其表面形成一层稳定的固/气复合界面,降低表面润湿性能,实现亲水材料的表面疏水性转变。同时也能够有效降低与制件粘附界面接触面积,显著提高仿生非光滑耦合模具表面粘附阻抗性能。本文研究范围内,激光制备仿生非光滑耦合模具表面粘附阻抗性能最优,随单元体面积比的提高,模具与制件接触界面间粘附强度显著降低。
     经磨损及热疲劳试验后,将最优仿生非光滑耦合模具表面形态参数应用于压铸模具型腔。结果表明,仿生非光滑耦合模具表面粘附现象明显降低。可见本研究具有重要的学术价值和应用价值。
Due to the physical adsorption, interface reaction, mould shrinkage etc., adhesion may occur between moulds and parts during the demoulding process. As a result, parts are difficult to be removed when they adhere to the mould cores or cavities, especially for the parts with thin walls, deep cavities or high-quality required surfaces. Moreover, adhesion will make the parts have white blemishes, cracks, deformations or even broken when large demoulding loads are applied. Although mould releasing agent can effectively decrease the adhesion, more assistant work should be done before production. Correspondingly, the continuous-running efficiency is decreased. Therefore, it is necessary and urgent to investigate the adhesion mechanism of mould/part contact surface and find a way to make a novel mould with remarkable anti-adhesion performance for increasing the production efficiency and prolonging the service life of mould.
     Through the process of evolution for hundreds of millions of years, the shapes and structures of organism surfaces present the maximum adaptability to the natural environment. In this paper, the anti-adhesion surfaces of some animals and plants, such as dung beetle, earthworm, lotus and rice were imitated as the organism archetypes and the coupling effect of multiple functions and scales of the surfaces of natural lives was studied in order to give a new idea for solving the adhesion problem effectively. 45# medium carbon steel and high speed steel were chosen as the base materials. Mimicking the non-smooth morphologies and structures of the surfaces of natural lives, biomimetic non-smooth units were designed and fabricated on the surfaces of steel moulds by laser processing, machining and laser associating with machining processing, respectively. The purpose was to create non-smooth mould surfaces with excellent anti-adhesion performance, which is similar as the characteristic of the surfaces of natural lives. The structures of non-smooth units and adhesion resistant property of non-smooth samples processed by laser using various parameters were studied. The influences of the unit shape, dimension, distribution and their coupling characteristics on the anti-adhesion properties of 45# steel and high speed steel moulds against metal, high polymer and clay were investigated. In addition, the changes in mould surface roughness using various laser current, defocusing amount, frequency and laser pulse width were examined. Moreover, the model of the anti-adhesion mechanism of biomimetic non-smooth surfaces was presented. Based on the above experimental tests, the biomimetic non-smooth coupling technique was applied to the practical moulds for casting oil pump bonnets. The results are as follows:
     (1) The coupling effect of multiple functions and scales of anti-adhesion body surfaces of natural lives, such as dung beetle, earthworm, lotus and rice was investigated. Based on the comparability theory and optimum design, for geometrical non-smooth units, with the same or different structures and dimensions, are regularly or randomly distributed on the mould surfaces to form continuously geometrical biomimetic non-smooth coupling surfaces. Mimicking the anti-adhesion surfaces of nature lives, the model of characteristic parameters of non-smooth units and biomimetic non-smooth coupling surfaces was established.
     (2) Based on the model of biomimetic surface and practical running conditions, biomimetic non-smooth coupling surface, which was composed of several biomimetic non-smooth units as regular distribution on the metal mould surface were designed and fabricated by laser processing and machining technique, in order to reduce the adhesion between moulds and parts.
     (3) The laser processing parameters have significant effect on the structure of biomimetic non-smooth unit. With the same defocusing amount, the influences of laser processing parameters on the depth and width of non-smooth unit are as follows: the current intensity> pulse width> frequency> scanning velocity. The surface roughness increases with the increase of current intensity and frequency but decreases with the increase of pulse width. A lot of micro- or nano-scale units with different morphologies distribute in the area around biomimetic non-smooth units due to the selectivity ablation by laser processing since there are surface imbalances (including the imbalance of chemical compositions and phase differences in different areas on the surface) and the segregation of impurity atomic on the substrate. The two-scale structure, consists of the large remelted concave unit and several micro- or nano-scale units around it, is called dual non-smooth structure.
     (4) The adhesion forces of the designed samples with non-smooth surfaces are lower than those of the samples with smooth surfaces. Compared with the smooth moulds, the biomimetic moulds have a beneficial effect on decreasing the adhesion to metal and polymer parts, whose adhesion forces reduce 15.4% and 52.7%, respectively. The factors affecting the adhesion resistance of moulds with the biomimetic non-smooth surfaces include the non-smooth unit width, unit distance, unit distribution, the area ratio of the non-smooth unit to the testing sample (SN/S) and physical and chemical structures of parts. The apertures formed between the non-smooth units and the melting parts, resulting from the biomimetic non-smooth unit effect, make the contact area of the sample/part couples decrease and the negative atmospheric pressure reduce during the demoulding process. That is the main reason of enhancing the adhesion resistance of moulds with biomimetic surfaces.
     (5) The influences of non-smooth unit width, unit distribution, the area ratio of the non-smooth unit to the testing sample (SN/S), and the factor of external environment with moisture content and the load, on the adhesion between biomimetic non-smooth coupling surfaces and clay parts were investigated. The results indicate that the non-smooth surfaces processed by biomimetic coupling processing have an advantageous effect on improving the anti-adhesion behavior against clay. Compared with the smooth ones, the adhesion forces of moulds with non-smooth units against clay decrease 47.3%. The effect of biomimetic non-smooth unit can breach the formation of the continuous water film and counteracts a portion of negative air pressure, which reduces the influence of capillary negative adsorption and negative air pressure. Consequently, the non-smooth surfaces of biomimetic samples have an excellent effect on reducing adhesion against clay.
     (6) The anti-adhesion mechanism of biomimetic non-smooth coupling surfaces is as follows: On the one hand, owing to the individual adhesion resistance of biomimetic non-smooth units, the soakage of liquid parts on the areas of non-smooth unit is effectively blocked. Thereby, the air is entrapped into the non-smooth units so that the solid/gas composite surfaces are formed between moulds and parts and the surface energies decrease. As a result, the influences of contact area of the sample/part couples and the negative atmospheric pressure are reduced during de-moulding process, whereas the stress source of the interface of sample/part couples is enlarged. On the other hand, the coupling effect of multiple functions, scales and layers of biomimetic non-smooth units increases the effect of individual adhesion resistance of biomimetic non-smooth unit by the geometric series, and makes the biomimetic non-smooth surfaces have an excellent anti-adhesion property.
     (7) The samples with biomimetic non-smooth units have better wear and thermal fatigue resistance than those of the smooth ones. Afterwards, the biomimetic non-smooth coupling technique was applied to practical moulds for casting oil pump bonnets. The results indicate that moulds with biomimetic coupling non-smooth surfaces have better anti-adhesion property than the smooth moulds. Furthermore, the wear and thermal fatigue resistance of moulds is improved, thus, the service lives of moulds are prolonged.
     To sum up, the application of biomimetic non-smooth coupling process keeps the intrinsic compositions and capabilities of base materials. Meanwhile, it provides the mould surfaces with special functional properties, such as wear, thermal fatigue and adhesion resistance, which prolongs the service lives of moulds, economizes resources and reduces production costs. Therefore, the new type moulds with biomimetic non-smooth coupling surfaces have widely application foreground, remarkable economic and societal benefits.
引文
[1]陈志明,张海鸥,王桂兰.我国模具工业的现状与发展[J].锻压技术, 2004, 5:1-4.
    [2]张海鸥.快速模具制造技术的现状及其发展趋势[J].模具技术, 2000, 6: 84-89.
    [3]靖永慧.浅析现代模具制造行业发展[J].模具技术, 2001, 5:68-71.
    [4]阮雪榆,李志刚,武兵书,等.中国模具工业和技术的发展[J].模具技术, 2001, 2:72-74.
    [5]中国模协技术委员会模具评定评述专家组.第八届国际模展模具水平评述[J].模具工业, 2000, 9:3-8.
    [6]李玉萍.模具在我国各行业的应用及发展趋势[J].机械工程师, 2002, 12:17-18.
    [7]洪慎章.现代模具技术的现状及发展趋势[J].航空制造技, 2006, 6:30-32.
    [8]阮雪榆,李志刚,武兵书.中国模具工业和技术的发展[J].模具技术, 2001, 2:72-74.
    [9] T. Altan, B.W. Lilly, Y.C. Yen. Manufacturing of dies and molds [J]. CIRP Annals-Manufacturing Technology, 2001, 50:404-422.
    [10] T. Altan, B.W. Lilly, J.P. Kruth, et al. Advanced Techniques for Die and Mold Manufacturing [J]. CIRP Annals-Manufacturing Technology, 1993, 42: 707-716.
    [11] P. Krajnik, J. Kopa?. Modern machining of die and mold tools [J]. Journal of Materials Processing Technology, 2004, 157: 543-552.
    [12] K. Kuzman, B. Nardin. Determination of manufacturing technologies in mould manufacturing [J]. Journal of Materials Processing Technology, 2004, 158: 573-577.
    [13]贺永,傅建中,陈子辰.微热压成型脱模缺陷分析及其脱模装置[J].机械工程学报, 2008, 44:53-58.
    [14]于同敏,刘铁山.注塑模脱模机构智能化设计系统及关键技术研究[J].机械设计与制造, 2004, 2:72-75
    [15]吴崇峰,徐竹青.注塑模具顶出系统的CAD [J].中国塑料, 1999, 13:96-103.
    [16]温诗铸.摩擦学原理[M].北京:清华大学出版社, 2002.
    [17]刘斌,乐燕.影响注塑制件脱模的因素分析及对策[J].塑料工业,2007, 12:17-20.
    [18] P. Revel, D. Kircher, et al. Experimental and numerical simulation of a stainlesssteel coating subjected to thermal fatigue [J]. Mater.Sci.Eng.A, 2000, 290:25-32.
    [19] A. Persson, S. Hogmark, et al. Failure modes in field tested brass die casting dies [J]. J.Mater. Process. Technol., 2004, 148:108-118.
    [20] K. Kulkarni, A. Srivastava et al. Thermal cracking behavior of multi-layer LAFAD coatings on nitrided die steels in liquid aluminum processing [J]. Surf. Coat. Technol., 2002, 149:171-178.
    [21] S. Phadke, P. Pauskar. Computational modeling of phase transformations and mechanical properties during the cooling of hot rolled rod [J]. J. Mater. Process. Technol., 2004, 150:107-115.
    [22] G. Cueva, A.Sinatora, W. L. Guesser, A. P. Tschiptschin, Wear resistance of cast irons used in brake disc rotors [J]. Wear, 2003, 255:1256-1260.
    [23]周平安.磨损失效分析及耐磨材料的现状和展望[J].铸造, 2000, 49:23-25.
    [24]张蓉,钱书琨.模具材料及表面工程技术[M].北京:化学工业出版社, 2007.
    [25] A. Molinari, F. Raimondi et al.热作模具钢的热处理与表面工程[J].国外金属热处理, 2004, 25:19-23.
    [26]王智祥,林立杰.表面强化新技术在模具制造领域中的应用与进展[J].模具工业, 2004, 281:52-56.
    [27]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社, 2007.
    [28] L. Q. Ren, J. Tong, J. Q. Li, B. C. Chen. SW-Soil and Water: Soil Adhesion and Biomimetics of Soil-engaging Components: a Review [J]. Journal of Agricultural Engineering Research, 2001, 73: 239-263.
    [29] L. Q. Ren, J. Tong, J. Q. Li.Biotic nonsmoothness and its applications [J]. Proceedings of the 6th Asia-Pacific Conference of ISTVS, Bankok, Tailand. 2001, 4:351-358.
    [30] W. Barthlott, C. Neinhuis. Purity of the sacred lotus, or escape from contamination in biological surfaces [J]. Planta, 1997, 202:1-8.
    [31]潘慧铭,黄素娟.表面、界面的作用与粘接机理(一)[J].粘接, 2003, 24(2):40-45.
    [32]潘慧铭,黄素娟.表面、界面的作用与粘接机理(二)[J].粘接, 2003, 24(3):41-46.
    [33]潘慧铭,黄素娟.表面、界面的作用与粘接机理(三)[J].粘接, 2003, 24(4):37-42.
    [34] D. E. Packham. Surface energy, surface topography and adhesion [J]. International Journal of Adhesion and Adhesives, 2003, 23: 437-448.
    [35] D. E. Packham. Work of adhesion: contact angles and contact mechanics [J]. International Journal of Adhesion and Adhesives, 1996, 16:121-128.
    [36] W. Allenk. 21世纪粘接理论的发展方向[J].日本接着学会志, 2004, 40:479-480.
    [37] G. Walker. Adhesion to smooth surfaces by insects-a review [J]. International Journal of Adhesion and Adhesives, 1993, 13: 3-7.
    [38]胡福增.材料表界面[M].上海:华东理工大学出版社, 2001.
    [39]闻立时.固体材料界面研究的物理基础[M].北京:科学出版社, 1991.
    [40] M. Wallwiener, S. Brucker, H. Hierlemann, et al. Innovative barriers for peritoneal adhesion prevention: liquid or solid? A rat uterine horn model [J]. Fertility and Sterility, 2006, 86: 1266-1276.
    [41] S. M. Mirabedini, H.Rahimi, S.H. Hamedifar, et al. Microwave irradiation of polypropylene surface: a study on wettability and adhesion [J]. International Journal of Adhesion and Adhesives, 2004, 24: 163-170.
    [42] W. Possart, H. Kamusewitz. The thermodynamics and wetting of real surfaces and their relationship to adhesion [J]. International Journal of Adhesion and Adhesives, 1993, 13: 77-84.
    [43] H. Tavana, A.W. Neumann. Recent progress in the determination of solid surface tensions from contact angles [J].Advances in Colloid and Interface Science, 2007, 132: 1-32.
    [44] P. Roura, J. Fort. Comment on effects of the surface roughness on sliding angles of water dropplets on superhydrophobic surfaces [J]. Langmuir, 2002, 18: 566-569.
    [45]胡高平.金属用胶黏剂及粘接技术[M],北京:化学工业出版社, 2003.
    [46] E. Ergul, B. Korukluoglu. Peritoneal adhesions: Facing the enemy [J]. International Journal of Surgery, 2008, 6: 253-260.
    [47]吴利英.影响注塑制件内应力的因素[J].工程塑料应用, 2004, 23:28-31.
    [48] C.M. Mate. Handbook of mico/nano tribology [M]. New York: CRC Press, 1995.
    [49]郭育华. LIGA技术制作高性能微电子机械模具及其脱模性能的研究[D].合肥:中国科学技术大学, 2007.
    [50]山本智(日).固体润滑剂[J].トライボロジスト, 1995, 140:4-6.
    [51] Q. Zhao, C. Wang, Y. Liu, et al. Bacterial adhesion on the metal-polymer composite coatings [J]. International Journal of Adhesion and Adhesives, 2007, 27: 85-91.
    [52] D.R. Zhang, S.W. Oh, Y.P. Hong, et al. Synthesis and characterization of a new adhesion-activator for polymer surface [J]. International Journal of Adhesion and Adhesives, 2005, 25: 371-378.
    [53]机械工程手册编写组.机械工程手册[M].北京:机械工业出版社, 1982.
    [54] G. Wolansky, A. Marmur. Apparent contact angles on rough surfaces: the Wenzel equation revisited [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 156: 381-388.
    [55] R.W. Jaszewski, H. Schift, B. Schnyder, et al. The deposition of anti-adhesive ultra-thin teflon-like films and their interaction with polymers during hot embossing [J]. Applied Surface Science, 1999, 143:301-308.
    [56] S.M. Chiu, S.J. Hwang, C.W. Chu,et al. The influence of Cr-based coating on the adhesion force between epoxy molding compounds and IC encapsulation mold [J]. Thin Solid Films, 2006, 515:285 -292.
    [57] X.L. Wang, N. Ito, K. Kito, et al. Study on use of vibration to reduce soil adhesion [J]. J. Terramechaincs, 1998, 35:87-101.
    [58]胡心平,赵国群,吴炳尧.压力铸造中模具脱模剂和防粘蜡的选择分析实验[J].现代制造工程, 2006, 12:74-76.
    [59]李昂.脱模剂及其作用机理[J].特种橡胶制件, 2002, 23:26-29.
    [60]蒋崇文,雷志刚,吴周安,等.脱模剂的制备与应用研究进展[J].精细与专用化学品, 2007, 15:16-22.
    [61] R.H.莫菲特.脱模剂组合物及其使用方法. CN 1795082[P], 2004-05-14.
    [62] Z. Lu. Room temperature curable water2based mold release agent for composite materials. WO 2004033172[P], 2003-10-03.
    [63]小田匡彦,黑田泰嘉(日).聚硅氧烷粘合剂用脱模剂组合物及其该组合物的脱模片. CN 1590489[P], 2003-08-13.
    [64] M. Hitoshi. A. mold release agent. JP 4185310[P], 1992-11-06.
    [65] M. Kubo, M. Morita. Aqueous dispersion composition a preparation thereof water-and oil-repellent and mold release agent. US 5639820[p], 1997-06-17.
    [66]久本严,新庄正义,田麻正司(日).脱模剂组合物. CN 87107964 [P], 1987-03-28.
    [67]久保元伸,查田正道(日).水性分散组分及其制法,疏水疏油及脱模剂. CN 1088224 [P], 1992-12-02.
    [68] H. Wagner. Aqueous slip and mold release agent and process for the molding and vulcanization of tires and other rubber articles. US 5464586 [P], 1995-11-07.
    [69]徐滨士.表面工程[M].北京:机械工业出版社, 2000.
    [70]李恒德,肖纪美.材料表面与界面[M].北京:清华大学出版社, 1990.
    [71]赵文轸.材料表面工程导论[M].西安:西安交通大学出版社, 1998.
    [72]白滨,雷希孔.薄盘齿轮的循环低温化学热处理[J].金属热处理, 1997, 8:10-15.
    [73]宋旭波.等离子体及化学气相沉积法合成一维纳米材料及性能研究[D].北京:北京大学, 2008.
    [74]吴兆祥.模具材料及表面处理[M].北京:高等教育出版社, 2002.
    [75]左小刚,祁文军,王鹏.稀土元素在模具表面强化中的应用[J].机械工程师, 2007, 5:47-50.
    [76] B.L. Zhou. Bio-inspired study of structural materials [J]. Materials Science and Engineering C, 2000, 11:13-18.
    [77]胡巧玲,李晓东,沈家骢.仿生结构材料的研究进展[J].材料研究学报, 2003, 17:337-344.
    [78] Y.Q. Wang, B.L. Zhou. Biomometic material science [J]. Matrials Letters, 1995, 4:1-4.
    [79] F.V. Julian, L.M Darrell. Systematic technology transfer from biology to engineering [J]. Phil. Trans. R. Soc. Lond. A, 2002, 360:159-173.
    [80] L.Q. Ren. Progress in bionic study on anti-adhesionand resistance reduction of terrain machines [J]. Science in China Series E: Technological Sciences, 2009, 52:1-12.
    [81] Z. Guo, W.M. Liu. Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure [J]. Plant Science, 2007, 172:1103-1112.
    [82] M. Louloudi, Y. Deligiannakis, N. Hadjiliadis. Design and synthesis of new biomimetic materials [J]. Journal of Inorganic Biochemistry, 2000, 79: 93-96.
    [83] A.H. Heuer, D.J. Fink, V.J. Laraia. Innovative materials processing strategies: a biomimetic approach [J]. Science, 1992, 255: 1098-1105.
    [84] A.P. Nicholas, H.W. Jennifer. Biomimetic materials and micropat terned structures using iniferters [J]. Advanced Drug Delivery Reviews, 2004, 56: 1587-1597.
    [85]姚康德,沈锋.生物材料的仿生构思[J].中国工程科学, 2000, 2: 16-19.
    [86]崔大祥,高华建.生物纳米材料的进展与前景[J].中国科学院院刊, 2003, 18: 20-24.
    [87]葛明桥.材料学科研究的新领域—仿生材料[J].南通工学院学报, 2000, 16: -2.
    [88] A. Kesel, R. Liedert. Learning from nature: Non-toxic biofouling control by shark skin effect [J]. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology, 2007, S1:130-134.
    [89] J.D. Wang, H.S. Chen, T. Sui, A. Li, D. Chen. Investigation on hydrophobicity of lotus leaf: Experiment and theory [J]. Plant Science, 2009, 176: 687-695.
    [90] L. Zhang, L.Q. Ren, J. Tong. Study of soil-solid adhesion by grey system theory [J].Prog. Nat. Sci., 2004, 14:119-124.
    [91] F. Müller, W. Michel, V. Schlicht, et al.Self-cleaning surfaces using the lotus effect [J]. Handbook for Cleaning /Decontamination of Surfaces, 2007, 3:791-811.
    [92] W. Barthlott, C. Neinhuis. Purity of the sacred lotus, or escape from contamination inbiological surfaces [J]. Planta, 1997, 202:1-8.
    [93] J. Wood. Superhydrophobic polymers cast from lotus leaves: Fabrication & processing [J]. Materials Today, 2005, 8:15.
    [94] S.M. Lee, H.S. Lee, D.S. Kim, et al. Fabrication of hydrophobic films replicated from plant leaves in nature [J]. Surface and Coatings Technology, 2006, 201:553-559.
    [95]于曦.特殊润湿性在单一表面上的集成[D].吉林:吉林大学, 2003.
    [96] L. Jiang, Y. Zhao, J. Zhai. A lotus-leaf-likes superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics [J]. Angew.Chem.Int.Ed, 2004, 43: 4338-4341.
    [97] Q. Xie, J. Xu, L. Feng, et al. Facial creation of a super-amphiphobic coating surface bionic microstructure [J]. Adv. Mater., 2004, 16:302-305.
    [98] Z. Yoshimitsu, A. Nakajima, T. Watanabe, K. Hashimoto. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets [J]. Langmuir, 2002, 18:5818-5822.
    [99] J.P. Youngblood, T.J. McCarthy. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly (tetrafluoroethylene) using radio frequency plasma [J]. Macromolecules, 1999, 32:6800-6806.
    [100] X.F. Gao, L. Jiang. Biophysics: Water-repellent legs of water striders [J]. Nature, 2004, 432: 36.
    [101]陈新华,孟庆祥.超疏水固体表面的形态特征[J].许昌学院学报, 2005, 24:49-57.
    [102]高雪峰,江雷.天然超疏水生物表面研究的新进展[J].物理, 2006, 35:559-564.
    [103] H. Zhang, R. Lamb, J. Lewis. Engineering nanoscale roughness on hydrophobic surface-preliminary assessment of fouling behaviour [J]. Science and Technology of Advanced Materials, 2005, 6:236-239.
    [104] X.F. Wu, G.Q. Shi. Production and Characterization of Stable Superhydrophobic Surfaces Based on Copper Hydroxide Nanoneedles Mimicking the Legs of Water Striders [J]. J. Phys. Chem. B, 2006, 110:11247–11252.
    [105] M.H. Dickinson. Bionics: Biological insight into mechanical design [J]. Proceedings of the National Academy of Science, 1999, 25:14208-14209.
    [106] D.W. Bechert, M. Bruse etc. Fluid Mechanics of Biological Surfaces and their Technological Application [J]. Nature, 2000, 87:157-171.
    [107] P. Ball. Shark skin and other solutions [J]. Nature, 1999, 400:507-509.
    [108]王淑杰等.典型生物非光滑理论及其仿生应用[J].农机化研究, 2005, 1:209-213.
    [109] L.Q. Ren, L. Zhang, J .Tong, et al. GA-based analysis of the fractalness of soil-burrowing animal body suface [J]. Int Agr Eng J, 2001, 10:13-27.
    [110] L.Q. Ren, S.J. Wang, X.M. Tian, et al.Non-Smooth Morphologies of Typical Plant Leaf Surfaces and Their Anti-Adhesion Effects [J]. Journal of Bionic Engineering, 2007, 4: 33-40.
    [111] L. Zhang, L.Q. Ren, J. Tong, et al. Study of soil-solid adhesion by grey system theory [J]. Prog Nat Sci, 2004, 14: 119-124.
    [112] Z.W. Han, L.Q. Ren, Z.B. Liu, et al. Experimental investigation on anti-wear of a bionic non-smooth surface made by laser texturing [C]. In: Proc 2nd Int Conf Design & Nature. Rhodes: ISTVS, 2004.
    [113] L. Zhang, L.Q. Ren, J. Tong. Study of soil-solid adhesion by grey system theory [J]. Prog Nat Sci, 2004, 14: 119-124.
    [114] L.Q. Ren, Z.W. Han. The multi-element coupling analysis of typical plant leavesbased on analysis hierarchy process (AHP) [C]. Pro-ceedings of the 2nd International Conference of Bion-ic Engineering, 2008.
    [115] J.Q. Li, J. Tong, L.Q. Ren, et al. Applications of Bionics Non-smooth Surface to Reduce Draft Resistance against Soil [C]. Proceedings of the 14th International Conference of the Society for Terrain-Vehicle Systems, 2002.
    [116] L.Q. Ren. Progress in bionic study on anti-adhesionand resistance reduction of terrain machines [J]. Science in China Series E: Technological Sciences, 2009, 52:1-12.
    [117] Y. Zhang, C.H. Zhou, L.Q. Ren. Biology couplingcharacteristics on soil-engaging components of molecrickets [J]. Journal of Bionic Engineering, 2008, 5:164-171.
    [118]任露泉.地面机械脱附减阻仿生研究进展[J].中国科学E辑, 2008, 38:1353-1364.
    [119] L.Q. Ren, Z.W. Han, J.Q. Li, J. Tong.Experimental investigation of bionic rough curved soil cutting blade surface to reduce soil adhesion and friction [J]. Soil and Tillage Research, 2006, 85:1-12.
    [120] Y. Fang, G. Sun, Q. Cong, G.H. Chen, L.Q. Ren. Effects of Methanol on Wettability of the Non-Smooth Surface on Butterfly Wing [J]. Journal of Bionic Engineering, 2008, 5:127-133.
    [121] W. Baumgartner, F. Saxe, A. Weth, et al. The Sandfish’s Skin: Morphology, Chemistry and Reconstruction [J]. Journal of Bionic Engineering, 2007, 4:1-9.
    [122] L.Q. Ren, J. Tong, J.Q. Li, et al. Soil adhesion and biomimetics of soil-engagingcomponents: A review [J]. J. Agr. Eng. Res., 2001, 79: 239-263.
    [123] L.Q. Ren, Z.W. Han, J.Q. Li, et al. Effects of non-smooth characteristics on bionic bulldozer blades in resistance reduction against soil [J]. J. Terramechanics, 2003, 39: 221-230.
    [124] J. Tong, Z.J. Guo, L.Q. Ren, et al. Curvature features of three soil-burrowing animal claws and their potential applications in soil-engaging components [J]. J. Int. Agr. Eng., 2003, 12: 119-130.
    [125] L.Q. Ren, Q. Cong, J. Tong, et al. Reducing adhesion of soil against loading shovel using bionic electro-osmosis method [J]. J. Terramechanics, 2001, 38:211-219.
    [126] L. Chen, H. Zhou, Y. Zhao, L.Q. Ren, X.Z. Li. Abrasive particle wear behaviors of several die steels with non-smooth surfaces [J]. Journal of Materials Processing Technology, 2007, 190: 211-216.
    [127] H. Zhou, Z.H. Zhang, L.Q. Ren, Q.F. Song, L. Chen. Thermal fatigue behavior of medium carbon steel with striated non-smooth surface [J]. Surface and Coatings Technology, 2006, 200: 6758-6764.
    [128] L. Feng, Y. Song, J. Zhai, et al. Creation of a superhydrophobic surfacefrom an amphiphilic polymer [J]. Angew Chem Int Ed, 2003, 42: 800-802.
    [129] L. Feng, S. Li, Y. Li, et al. Super-hydrophobic surfaces: From Natural to artificial [J]. Adv Mater, 2002, 14:1857-1860.
    [130] D. McCarthy. Ultrahydrophobic surfaces: effects of topography length scales on wettability [J], Langmuir, 2000, 16:7777-7782.
    [131] X. Zhang, F. Shi, X. Yu, et al. Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: Toward super-hydrophobic surface [J]. J Am Chem Soc, 2004, 126: 3064-3065.
    [132] R. Buzio, C. Boragno, F. Biscarini, et al. The contact mechanics of fractal surfaces [J]. Nature Materials, 2003, 2: 233-236.
    [133] K. Efimenko, J. Genzer.How to prepare tunable planar molecular chemical gradients [J], Adv. Mater., 2001, 13:1560-1565.
    [134] X. Zhang, F. Shi, X. Yu, et al.Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface [J]. J. Am. Chem. Soc., 2004, 126, 3064-3069.
    [135] H.Li, X. Wang, Y. Song, Y. Liu, et al. Super-“Amphiphobic”aligned carbon nanotube films [J]. Angew. Chem. Int. Ed,. 2001, 40:1743-1748.
    [136] T. Tadanaga, J. Morinaga, A. Matsuda, et al. Superhydrophobic superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel Method [J]. Chem. Mater., 2000, 12:590-596.
    [137] I. Woodward, W.C.E. Schofield, V. Roucoules, et al. Super- hydrophobic surfaces produced by plasma fluorination of polybutadiene films [J]. Langmuir, 2003, 19:3432-3437.
    [138] A. Nakajima, K. Abe, K. Hashimoto,et al. Preparation of hard super-hydrophobic films with visible light transmission [J]. Thin Solid Films, 2000, 376:140-145.
    [139] R. Colaco, C. Pina. Influence of the processing conditions on the abrasive wear behaviour of a laser surface melted tool steel [J]. Scripta Mater., 1999, 41:715-721.
    [140] Y. Suna, S. Hanak etc. Fatigue behavior and fractography of laser-processed hot work tool steel [J]. Vacuum, 2004, 73:655-660.
    [141] J. Lee, J. Jang, B. Joo, et al. Laser surface hardening of AISI H13 tool steel [J]. Transactions of Nonferrous Metals Society of China, 2009, 19:917-920.
    [142] P.D.L. Cruz, M. Oden etc. Effect of laser hardening on the fatigue strength and fracture of a B-Mn steel [J]. Int. J. Fatigue, 1998, 20:389-398.
    [143] L.A. Dobrzański, M. Bonek, E. Hajduczek, et al. Comparison of the structures of the hot-work tool steels laser modified surface layers [J]. Journal of Materials Processing Technology, 2005, 164:1014-1024.
    [144] E. Gemelli, A. Gallerie etc. Improvement of resistance to oxidation by laser alloying on a tool steel [J]. Scripta Mater., 1998, 39:1345-1352.
    [145] E. Altus, E. Konstantino. Optimum laser surface treatment of fatigue damaged Ti-6Al-4V alloy [J]. Mate. Sci. Eng. A, 2001, 302:100-105.
    [146]赵文珍.金属材料表面新技术[M].西安:西安交通大学出版社, 1995.
    [147]蔓允.现代表面工程技术[M].北京:机械工业出版社, 1990.
    [148]谭吕遥.实用表面工程技术[M].北京:新时代出版社, 1998.
    [149]张天鹏,云乃彰,陈建宁.电火花成形机床微细加工相关探索[J].工艺与检测, 2006,11:65-67.
    [150] Q. Cong, L.Q. Ren. Taxonomic research on geometric non-smooth surface shapes [J]. Trans. Chinese Soc. Agr. Eng., 1992, 8(2):7-12.
    [151] L.Q. Ren, S.Q. Deng. Design principles of the non-smooth surface bionic plow moldboard [J]. J. Bionics Eng., 2004, 1(1):9-19.
    [152]李安琪,任露泉,陈秉聪,崔相旭.蚯蚓体表液的组成及其减粘脱土机理分析[J].农业工程学报, 1990, 6:8-14.
    [153] Z.H. Zhang, H. Zhou, L.Q. Ren, et al. Tensile property of H13 die steel with convex-shaped biomimetic surface [J]. Applied Surface Science, 2007, 253:8939-894.
    [154]任露泉等.仿生学与仿生技术[M].内蒙古:内蒙古出版社,1996.
    [155]任露泉,尚广瑞,杨晓东.禽羽结构及羽表脂质对其润湿性能的影响[J].吉林大学学报(工学版), 2006, 36:213-218.
    [156] W. Barthlott, C. Neinhuis, D. Cutler. Classification and terminology of plant epicuticular waxes [J]. Botanical Journal of the Linnean Society, 1998, 126: 237–260.
    [157]王云鹏等.柔性仿生技术的研究与应用[J].公路交通科技, 2006, 13:45-49.
    [158]赵志俊.蚯蚓减粘脱附机制的仿生学研究[D].北京:北京大学, 2004.
    [159] L.Q. Ren, B.Z. Yan, Q. Cong. Experimental study on bionic non-smooth surface soil electro-osmosis [J]. J. Int. Agr. Eng., 1999, 8: 185-196.
    [160] L.Q. Ren, J.Q. Li, J. Tong, et al. Applications of the bionics flexibility technology for anti-adhesion between soil and working conponents [C]. In: Proc 14th Int Conf ISTVS, Vicksburg: ISTVS, 2002.
    [161] J.M. Jouvard, K. Girard, O. Perret. Keyhole Formation and Power Depostion in Nd:YAG Laser Spot Welding [J]. Journal of physics D: Applied Physics, 2001, 34: 2894-2901.
    [162]中国机械工程学会焊接学会.焊接手册[M].北京:机械工业出版社, 1995.
    [163] Y.S. Yang, S.H. Lee. A Study on the Joining Strength of Laser Spot Welding for Automotive Applications [J]. Journal of Materials Processing Technology, 1999, 94:151-156.
    [164] W.S. Chang, S.J. Na. A Study on the Prediction of the Laser Weld Shape with Varying Heat Source Equation and the Thermal Distortion of a Small Structure in Micro-joining [J]. Journal of Materials Processing Technology, 2002, 120:208-214.
    [165] Y. Fu, A. Loredo, B. Martin, A.B. Vannes. A theoretical model for laser powder particles interaction during laser cladding [J]. Materials Processing Technology 2002, 128:106–112.
    [166]关振中.激光加工工艺手册[M].北京:中国计量出版社, 1997.
    [167] C. Limmaneevichitr, S. Kou. Experiments to simulate effect of marangoni convection on weld pool shape [J]. Welding Research Supplement, 2000, 12:231–237.
    [168]张文钺.焊接冶金学[M].北京:机械工业出版社, 2005.
    [169]何云峰,都东,刘莹,等.轧辊表面脉冲激光三维微改形过程参数分析[J].激光技术, 2003, 27:8-13.
    [170] G. Thawari, G. Sundarararjan, S.V. Joshi. Laser surface alloying of medium carbon steel with SiC [J]. Thin Solid Films, 2003, 423:41-53.
    [171] Y.P. Kathuria. Some aspects of laser surface cladding in the turbine industry [J]. Surface and Coatings Technology, 2000, 132:262–269.
    [172]何云峰,都东,岁波,等.轧辊表面球冠状微凸形貌的激光加工[J].应用激光, 2002, 22:327-330.
    [173]杨立新,彭晓峰.固体表面激光加工熔池特性的数值分析[J].应用基础与工程科学学报, 2001, 9:215-221.
    [174]姚伟.钛合金激光焊接研究[J].激光加工技术, 2004,增刊:58-61.
    [175] L. Haoa, J. Lawrence. Effects of Nd:YAG laser treatment on the wettability characteristics of a zirconia-based bioceramic [J]. Optics and Lasers in Engineering, 2006, 44:803-814.
    [176]徐洲,姚寿山.材料加工基础[M].北京:科学出版社, 2002.
    [177] Y. Wu, H. Sugimura, Y. Inoue, et al. Thin films with nanotextures for transparent and ultra water-repellent coatings produced from trimethylmethoxysilane by microwave plasma CVD [J]. Chem. Vapor Depos, 2002, 8:47-50.
    [178] R. Rosario, D. Gust, A .Garcia, et al. Lotus effect amplifies light induced contact angle switching [J]. J.Phys.Chem.B, 2004, 108:12640-12642.
    [179] N.A. Patankar. On the Modeling of Hydrophobic Contact Angles on Rough Surfaces [J]. Langmuir, 2003, 19:1249-1253.
    [180] Y.Y. Wu, X.F. Liu, B.G. Jiang, et al.Four-branched compounds coupled Si and iron-rich intermetallics in near eutectic Al–Si alloys [J]. Journal of Alloys and Compounds, 2007, 437:80-83.
    [181] D. Shi, D. Li, G. Gao.Relation between surface tension and microstructural modification in Al-Si alloys [J]. Materials Characterization, 2008, 59:1541-1545.
    [182] H. Shan, H. Zhou, et al.Study on adhesion resistance behavior of sample with striated non-smooth surface by laser processing technique [J]. Journal of Materials Processing Technology, 2008, 199:221-229.
    [183]李春胜.钢铁材料手册[J].南昌:江西科学技术出版社, 2004.
    [184] X. Jia. Unsmooth cuticles of soil animals and theoretical analysis of their hydrophobicity and anti-soil-adhesion mechanism [J]. Journal of Colloid and Interface Science, 2006, 295:490–494.
    [185]周永泰.我国塑料模具现状与发展趋势[J].塑料,2000,6:23-27.
    [186] Y.H. GUO, G. LIU, X.L. ZHU. Analysis of the demolding forces during hot embossing [J]. Microsystem Technologies, 2006, 13:411-415.
    [187] Y.H. GUO, G. LIU, Y. XIONG, et al. Study of the demolding process-implications for thermal stress, adhesion and friction control [J]. J. Micromech.Microeng., 2007, 17:9-19.
    [188] H. Yoshihiko, S. Yoshida, T. Nobuyuki. Defect analysis in thermal nanoimprint lithography [J]. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2003, 21: 2765-2770.
    [189]任露泉,陈德兴,陈秉聪.土壤粘附仿生研究[J].农业工程学报, 1990, 6:1-7.
    [190]卢韶芳,石要武,任露泉.土壤—金属界面水膜粘附规律的试验研究[J].农业机械学报, 1999, 30:1-6.
    [191] I. Littleton. An experimental study of the adhesion between clay and steel [J]. Journal of Terramechanics, 1976, 13:141-152.
    [192]卢韶芳.土壤-金属界面水膜粘附规律多功能试验台的研制[D].长春:吉林工业大学, 1996.
    [193] D. Quere. Non-sticking drops [J]. Rep. Prog. Phys., 2005, 68:2495-2533.
    [194] E. Martines, K. Seunarine, H. Morgan.Superhydrophobicity and Superhydrophilicity of Regular Nanopatterns [J]. Nano Letters, 2005, 5:2097-2103.
    [195] Z. Z. Gu, H. Uetsuka, K. Takahashi, et al. Structural color and the lotus effect [J]. Angew. Chem. Int. Ed. 2003, 42:894-899.
    [196] N. L. Abbott, J. P. Folkers, G. M. Whitesides. Manipulation of the wattability of surfaces on the micrometer to micrometer scale through micromachining and molecular self-assembly [J]. Science, 1992, 257:1380-1382.
    [197] K.S. Lau, J. Bico, B.K. Teo. Superhydrophobic Carbon Nanotube Forests [J]. Nano Letters, 2003, 3:1701-1705.
    [198] L. Feng, S. Li, H. Li, et al. Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers [J]. Angew. Chem. Int. Ed. 2002, 41:1221-1223.
    [199] Q. Xie, J. Xu, L. Feng, et al. Facial Creation of a Super-Amphiphobic Coating Surface Bionic Microstructure [J]. Adv. Mater., 2004, 16:302-305.
    [200] R.N. Wenzel. Resistance of solid surfaces to wetting by water [J]. Ind Eng Chem, 1936, 28: 988-994.
    [201] A. Cassie, S. Baxter. Wettability of porous surfaces [J]. Trans Faraday Soc, 1944,40:546-551.
    [202] W. Extrand. Model for contact angles and hysteresis on rough and ultraphobic surface [J]. Langmuir, 2002, 18:7911-7914.
    [203] S. Herminghaus. Roughness-induced non-wetting [J]. Europhys. Lett., 2000, 52:165-170.
    [204] M.E. Abdelsalam, P.N. Bartlett, T. Kelf, et al. Wetting of regularly structured gold surfaces [J]. Langmuir, 2005, 21: 1753-1757.
    [205] P.G. Gennes. Wetting: static and dynamic [J]. Rev. Mod. Phys., 1985, 57:827-830.
    [206] A. Checco, H. Schollmeyer, J. Daillant, et al. Nanoscale wettability of self-assembled monolayers investigated by noncontact atomic force microscopy [J]. Langmuir, 2006, 22: 116-120.
    [207] W. Extrand. A Thermodynamic Model for Contact Angle Hysteresis [J]. Journal of Colloid and Interface Science, 1998, 207:11-19.
    [208] X.D. Wang, X.F.Pen,J.C.Min, et al. Hysteresis of Contact Angle at Liquid-solid Interface [J]. Journal of Basic Science and Engineering G, 2001, 9:343-353.
    [209] R.E. Johnson, R.H. Dettre. Contact angle hysteresis, Prat II: Contact angle measurement on rough surfaces [C]. Advances in Chemistry Series 43, F W Fowkes ed., American Chemical Society, Washington DC, 1964.
    [210]张亮,李云波.流体力学[M].哈尔滨:哈尔滨工程大学出版社, 2001.
    [211] X. Jia. Theoretical Analysis of the Adhesion Force of Soil to Solid Materials [J]. Biosystems Engineering, 2004, 87:489-493.
    [212] P. Soni, V. Salokhe. Theoretical Analysis of Microscopic Forces at Soil-tool Interfaces: A Review [J]. Agricultural Engineering International, 2006, 8:1-25.
    [213]刘大鹏.土力学[M].北京:清华大学出版社, 2005.
    [214]赵成刚,白冰.土力学基础[M].北京:清华大学出版社, 2004.
    [215] A. Persson, S. Hogmark etc. Failure modes in field-tested brass die casting dies [J]. J. Mater. Process. Technol., 2004, 148:108-118.
    [216] L. Chen, H. Zhou, Y. Zhao,et al. Abrasive particle wear behaviors of several die steels with non-smooth surfaces [J]. Journal of Materials Processing Technology, 2007, 190:211-216.
    [217]孙家枢.金属的磨损[M].北京:冶金工业出版社, 1992.
    [218] A. Iwabuchi, K. Hori, H. Kubosawa. The effect of oxide particles supplied at the interface before sliding on the sever-mild wear transition [J]. Wear, 1988,128:123-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700