用户名: 密码: 验证码:
茎环结构探针的设计及其检测致病菌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
继Tyagi和Kramer于1996年提出分子信标学说之后,Bockisch等基于分子信标检测的原理提出了一种新颖、廉价的酶联构象转换分析系统并在细菌核酸检测中得到了应用,即利用亲和标记了的茎环结构寡聚核苷酸探针来检测靶核酸。但是这种方法与分子信标一样在对于存在一个核苷酸误配的时候能检测出信号出现假阳性。因此我们利用序列比对的方法在目的病原菌16s rRNA高度保守的区域寻找一段序列并设计为茎环结构探针的环序列,这段序列与其它的高度同源菌种的16s rRNA基因序列片段差异两个核苷酸以上,从而避免探针环序列与其他非目的病原菌核酸杂交时出现误配一个核苷酸的情况,克服出现假阳性的问题。设计的探针一端固定在96孔酶标板上,另一端标记上亲合大分子。当没有靶核酸的时候,亲合分子紧密地靠近在固相支持物的表面,由于探针的闭合构象使得酶连接的报告分子不能与亲合分子结合产生信号;当存在靶核酸的时候,探针的环序列与靶核酸完全互补配对使得环被打开,构象发生变化呈现线性结构,暴露在外的亲合分子与报告分子结合产生信号。这种结合了序列比对的新探针技术其灵敏度比其他常规核酸检测技术至少高出一个数量级。本论文的研究内容包括以下两个方面:
     一、基于金黄色葡萄球菌16S rRNA基因序列,采用序列比对设计了一种茎环结构的寡聚核苷酸探针,根据分子信标技术和酶联免疫分析的原理,评估一个实验方法,即利用能构象转换的、固定化的茎环结构探针酶联检测靶核酸。因为探针的环序列即为金葡球菌16S rRNA基因序列的其中一个片段,同其他菌种的16S rRNA基因序列误配2个以上的核苷酸,有效的排除假阳性即不会出现误配一个核苷酸的情况
     二、为了验证新实验方法能应用在所有的靶细菌核酸检测中,选取革兰氏阳性金黄色葡萄球菌和革兰氏阴性大肠杆菌为研究对象,应用此方法成功的分别检测出金黄色葡萄球菌和大肠杆菌。
     本论文实验表明,在知道靶细菌基因序列前提下,通过生物信息学方法设计的专一性探针和酶联构象转换分析系统能代替传统检测技术,甚至能检测含有变异的靶细菌和应用到单核苷多态性的研究中。
After Tyagi and Kramer proposes the molecular beacon theoryin 1996, Bockisch provided a novel enzymatic conformationalswitch system based on the principle of molecular beacon forthe detection of bacterial nucleic acid. They utilized stem-loop structured oligodeoxynucleotide probes for the detectionof nucleic acid targets. This system, however, can display afalse-positive signal when the sequence of nucleic acidmismatches the loop segments of probe in a single position aswell as molecular beacon. Therefore, Using sequencecomparisons, we found out a segment of 16S rRNA gene sequencesof the bacteria, which is different from 16S rRNA gene sequencesof other highly homologous bacteria in more than two positions.As the loop of the stem-loop structured oligonucleotide probeis designed by this segment, its specificity has beenstrengthened and the system is able to successfully eliminatefalse-positive result that is mismatch in an oligonucleotide.The probes are immobilized on 96-well microtiter plates throughone terminus and carrying an affinity label at the other as theconformational switch. In the absence of a target, the labelis forced into close proximity to the surface of the solid support by the closed conformation of the probe so as toinaccessible to detector molecules. Upon target hybridization,exposure of the affinity label is able to be close to reportmolecules. This is might be due to the fact that the probe opensthe loop and turns to a linear conformation. Thus, this newprobe technology combining sequence comparisons is moresensitive than other conventional method at least one order ofmagnitude. The main researches included in this thesis arepresented as following:
     1) Based on Staphylococcus aureus 16S rRNA gene sequences,sequence comparisons have been applied to design a kind ofstem-loop structured oligonucleotide probes whose loopsequence mismatched other bacterial strains 16S rRNA genesequences in more than two positions with high specificity andsensitivity. According to the principle of molecular beacontechnology and enzyme linked immunosorbent assay, a method hasbeen evaluated using immobilized stem- loop structuredoligonucleotides probe as the conformation switch which isapplied to enzymatic detection of nucleic acid targets. As itsspecificity has been strengthened, the system is able tosuccessfully eliminate false-positive result that is mismatchin an oligonucleotide.
     2) In order to confirm the possibility of this novelapproach in the detection of all bacterial nucleic acid targets,the Gram-positive bacterium (Staphylococcus aureus) and Gram-negative bacterium (Escherichia coli) are studied. As a result,they can be respectively detected.
     This thesis strongly implied that the novel approachcombining sequence comparisons and enzymatic conformationalswitch system could replace conventional techniques and detectmutations and single nucleotide polymorphism.
引文
[1] Southern E M. Detection of specific sequence among DNA fragments separated by gel electrophoresis. J Mol boil, 1975, 98 (3): 503-517.
    [2] Alwine J C, Kemp D J, Stark G R. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci, 1977, 74(12) :5350-5354.
    [3] Sanger F, Coulson A R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol, 1975, 94(3) :441-448.
    [4] Saiki R K, Gelfand D H, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988, 239(4839):487-491.
    [5] 安利峰,胜利.基因芯片及其应用进展.西北民族学院学报,2002,23(6):40-42.
    [6] 翟新验,刘钧.基因技术的应用前景.当代畜牧,2003,6:41-43
    [7] 白东亭,祁自柏.基因芯片应用前景.微生物学免疫学进展,2002,30(4):100-106.
    [8] 杨明星,高志贤,王升启.基因芯片及其应用.传感器技术,2002,2l(6):54-58.
    [9] Pease A C, Solas D, Sullivan E J, et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci USA, 1994, 91(11):5022-5026.
    [10] Hacia J G, Brody L C, Chee N S, et al. Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two-colour fluorescence analysis. Nat Grent, 1996, 14(4) :441-447.
    [11] Drmanac R, Labat I, Brukner I, et al. Sequencing of megabase plus DNA by hybridization: theory of the method. Genomics, 1989, 4:114-128.
    [12] hipshutz R J, Morris D, Chee M, et aT. Using oligonucleotide probe assays to access genetic diversity. Biothechniques, 1995, 19:442-447.
    [13] Cheng J, Forina P, Surrey S, et al. Microchip-based devices for molecular diagnosis of genetic diseases. Molecular Diagnosis, 1996, 1(3):183-200.
    [14] Margulies M, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437:3?6-380.
    [15] Ke L D, Chen Z, Yung W K. A reliability test of standardbased quantitatire PeR: exogenous vs endogenous standards. Mol Cell Probes, 2000, 14(2):127-135.
    [16] Becker K, Pan D, Whitely C B. Real-time quantitative polymerase chain reaction to assess gene transfer. Hum Gene Ther, 1999, 10:2559-2566.
    [17] Higgis J A, et al. 5' nuclease PCR assay to detect Yersinia pesits. J Clin Microbiol, 1998, 36:2284-2288.
    [18] Bieche I, et al. Real-time reverse transcription-PCR assay for future nagement of ERBB-based clinical apolications. Clin Chem, 1999, 45:1148-1156.
    [19] Wang X, Li X, et al. Application of real-time polymerase chain reaction to quantirate induced expression of interleukin-1α beta mRNA in ischemic brain tolerance. Neurosci Res, 2000, 59(2):238-246.
    [20] Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol, 1996, 14:303-308.
    [21] 陈忠斌,王升启,孙志贤.分子信标核酸检测技术研究进展.生物化学与生物物理进展,1998,25(6):488-492.
    [22] Fang X H, Mi Y M, et al. Molecular Beacons: 'Lights up' Probes For Living Cell Study. Cell Biochem Biophys, 2002, 37(2): 71-81.
    
    [23] Tyagi S, Marras S A E, Kramer F R. Wavelength-Shifting Molecular Beacons. Nat Biotechnol, 2000, 18:1191-1196.
    
    [24] Liu X, Tan W. A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Anal Chem, 1999, 71:5054-5059.
    
    [25] Steemers F J, Ferguson J A, Walt D R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nat Biotechnol, 2000, 18:91-94.
    
    [26] Wang H, Li J, Liu H, et al. Label-free hybridization detection of a single nucleotide mismatch by immobilization of molecular beacons on an agarose film. Nucleic Acids Res, 2002, 30(12) :e61.
    
    [27] Nazarenko I A, Bhatnagar S K, Hohman R J. A closed tube format for amplification and detection of DNA based on energy transfer Nucleic Acids Res, 1997, 25:2516-2521.
    
    [28] Liu J, Feldman P, Chung T D. Real-time monitoring in vitro transcription using molecular beacons. Anal Biochem, 2002, 300: 40-45.
    
    [29] Sokol D L, Zhang X, Lu P, et al. Real time detection of DNA. RNA hybridization in living cells. Proc Natl Acad Sci USA , 1998, 95:11538-11543.
    
    [30] J Perlette, Tan W. Real-time monitoring of intracellular mRNA hybridization inside single living cells. Anal Chem, 2001, 73:5544-5550.
    
    [31] X Fang, Li J J, Tan W. Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA. Anal Chem, 2000, 72:3280-3285.
    
    [32] Bockisch B, Grunwald T, Spillner E, et al. Immobilized stem-loop structured probes as conformational switches for enzymatic detection of microbial 16S rRNA. Nucleic Acids Res, 2005, Vol. 33, No. 11.
    [33] 李衍达,孙之荣等译.生物信息学:基因和蛋白质分析的实用指南.清华大学出版社,2000.
    [34] 郭政,李霞,李晶编著.计算分子生物学与基因组信息学.黑龙江科学技术出版社,1998.
    [35] Baldi P. Brunak S. Bioinformatics: the machine learning approach. Massachusetts Institute of Technology, Second printing, 1998.
    [36] Schena M. DNA Microarrays: a practical approach. Oxford University Press, 1999:139-164.
    [37] Marth G T, Korf I, Yandell M D, et al, A general approach to single-nucleotide polymorphism discovery. Nature Genet, 1999, 23:452-456.
    [38] Bassett Jr D E, Eisen M B, Boguski M S. Gene expression informatics-it' s all in your mine. Nature Genet. (supplement), 1999, 21:51-55.
    [39] Delcher A L, Kasif S, Fleischmann R D, et al. Alignment of whole genomes. Nucleic Acids Res, 1999, 27:2369-2376.
    [40] Brazma A, Robinson A, Cameron G, et al. One-stop shop for microarray data. Naure, 2000, 403:699-700.
    [41] Gaasterland T, Bekiranov S. Making the most of microarray data. Nature Genet, 2000, 24:204-206.
    [42] Dunham I, Shimizu N, Roe B A, et al. The DNA sequence of human chromosome 22. Nature, 1999, 402:489-495.
    [43] Bittner M, Meltzer P, Trent J. Data analysis and integration: of steps and arrows. Nature Genet, 1992, 2:173-179.
    [44] Ermolaeva O, Rastogi M, Pruitt K D, et al. Data management and analysis for gene expression arrays. Nature Genet, 1998, 20:19-23.
    
    [45] Zhang M Q. Large-scale gene expression data analysis:a new challenge to computational biologists. Genome Res, 1999, 9:681-688.
    
    [46] Schmitt A O, Specht T, Beckmann G, et al. Exhaustive mining of EST libraries for genes differentially expressed in normal and tumor tissues. Nucleic Acids Res, 1999, 27:4251-4260.
    [47] Krimmer V, Merkert H, Frosch M, et al. Detection of Staphylococcus aureus and Staphylococcus epidermidis in Clinical Samples by 16S rRNA-Directed In Situ Hybridization. J Clin Microbiol, 1999, 37:2667-2673.
    
    [48] Lee Y L, Cesario T, Pax A, et al. Nasal colonization by Staphylococcus aureus in active, independent, community seniors. Age Ageing, 1999, 28:229-232.
    
    [49] Mulligan M E, Murray-Leisure K A, Ribner B S, et al. Methicillin-resistant Staphylococcus aureus: a consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management. Am J Med, 1993, 94:313-328.
    
    [50] Proctor R A, Langevelde P, Kristjansson M, et al. Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. Clin Infect Dis, 1995, 20:95-102.
    
    [51] Emori T G, Gaynes R P. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol, 1993, 6:428-442.
    
    [52] Kloos W E, Bannermann T L. Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol, 1994, 7:117-140.
    [53] Rupp M E, Archer G D. Coagulase-negative staphylococci:pathogens associated with medical progress. Clin Infect Dis, 1994, 19:231-245.
    
    [54] Williams R E O. Healthy carriage of Staphylococcusaureus: its prevalence and importance. Bacteriol, 1963, 27:56.
    [55] Cookson B, Peters B, Webster M, et al. Staff carriage of epidemic methicillin-resistant Staphylococcus aureus. J Clin Microbiol, 1989, 27:1471-1476.
    
    [56] Rammelkamp C H, Mortimer E A, Wolinsky E. Transmission of streptococcal and staphylococcal infections. Ann Intern Med, 1964, 60:753-758.
    
    [57] Deighton M, Pearson S, Capstick J, et al. Phenotypic variation of Staphylococcus epidermidis isolated from a patient with native valve endocarditis. J Clin Microbiol, 1992, 30:2385-2390.
    
    [58] Goel G, Kumar A, Puniya A K, et al. Molecular beacon: a multitask probe. J Appl Microbiol, 2005, 99:435-442.
    [59] Deighton M, Capstick A J, Borland R. A study of phenotypic variation of Staphylococcus epidermidis using Congo red agar. Epidemiol Infect, 1992, 109:423-432.
    
    [60] Lewis L A, Li K, Bharosay M, Cannella M, et al. Characterization of gentamicin-resistant respiratory- deficient (Res2) variant strains of Staphylococcus aureus. Microbiol Immunol, 1990, 34:587-605.
    
    [61] Woese C R. Bacterial evolution. Microbiol, 1987, 51: 221-271.
    
    [62] Gotea V, Veeramachaneni V, Makalowski W. Mastering seeds for genomic size nucleotide BLAST searches. Nucleic Acids Res, 2003, 31(23): 6935-6941.
    [63] Higgins D. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22:4673-4680.
    [64] J.萨姆布鲁克.分子克隆试验指南[M].第3版.北京:北京科学出版社,2003,522.
    [65] Ausubel FM. Current Protocols in Molecular Biology. Greene Pub. Associates and Wiley-Interscience J. Wiley NY, 1987.
    [66] Fan C, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci USA, 2003, 100:9134-137.
    [67] Gaylord B S, Heeger A J, Bazan G C. Detection using water-soluble conjugated polymers and peptide nucleic acid probes. Proc Natl Acad Sci USA, 2002, 99:10954-10957.
    [68] Delong E F, Wickham G S, Pace N R. Phylogenetic stains:ribosomal RNA-based probes for the identification of single cells. Science, 1989, 243:1360-1363.
    [69] Kostrikis L G, Tyagi S, Mhlanga M M, et al. Spectral genotyping of human alleles. Science, 1998, 279:1228-1229.
    [70] Rupp M E, Archer G D. Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis, 1994, 19:231-245.
    [71] 朱建楚,胡银岗,奚亚军等.实时荧光定量PCR技术在检测外源基因拷贝数中的应用.西北农业学报,2005,14(6):78-82.
    [72] Sokol D L, Zhang X, Lu P, et al. Real time detection of DNA. RNA hybridization in living cells. Proc Natl Acad Sci USA, 1998, 95:11538-11543.
    [73] 郭大文,罗军,王晔等.实时定量PCR检测类风湿关节炎滑液单个核细胞MIP-1α mRNA的表达.中国实验诊断学,2006,10(11):1303-1306.
    [74] 张静敏,金宁一,连海等.实时荧光定量PCR方法检测人正常组织及癌组织中CD109蛋白的表达.免疫学杂志,2006,22(6):626-634.
    [75] Mhlanga M M, Tyagi S. Using tRNA-linked molecular beacons to image cytoplasmic mRNAs in live cells. Nat Protoc, 2006, 1(3):1392-1398.
    [76] Piatek A S, Tyagi S, Pol A C, et al. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat Biotechnol, 1998, 16:359-363.
    [77] Vet J A, Majithia A R, Marras S A, et al. Multiplex detection of four pathogenic retroviruses using molecular beacons. Proc Natl Acad Sci USA, 1999, 96:6394-6399.
    [78] 冯艳铭,吴逸明,吴拥军等.TaqMan PCR技术同步检测沙眼衣原体及肺炎衣原体的DNA.临床检验杂志,2006,24(03):216-217.
    [79] 张玲,翟俊辉,周冬生等.荧光定量PCR快速检测炭疽芽孢杆菌的实验研究.中国人兽共患病杂志,2005,21(11):976-980.
    [80] Shi X L, Hu Q H, Zhang J F, et al. Rapid simultaneous detection of Salmonella and Shigella using modified molecular beacons and real-time PCR. Zhonghua Liu Xing Bing Xue Za Zhi, 2006, 27(12):1053-1056.
    [81] Gubala A J, Proll D F. Molecular-beacon multiplex real-time PCR assay for detection of Vibrio cholerae. Appl Environ Microbiol, 2006, 72(9):6424-6428.
    [82] Kim H, Kane M D, Kim S, et al. A molecular beacon DNA microarray system for rapid detection of E. coli 0157:H7 that eliminates the risk of a false negative signal. Biosens Bioelectron, 2007, 22(6):1041-1047.
    [83] Xi C, Balberg M, Boppart S A, et al. Use of DNAand peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells. Appl Environ Microbiol, 2003, 69:5673-5678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700