用户名: 密码: 验证码:
北京城市绿地复合系统植物耗水规律及灌溉模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市绿地系统作为城市生态系统的主要组成部分,在改善城市环境、调节城市气候、美化城市面貌、增加城市空间以及城市防震减灾等方面都发挥了十分重要的作用。但我国城市绿地节水理论与关键技术的基础研究严重不足,灌溉水的利用率低,用水浪费现象还比较严重和普遍,加剧了城市绿地用水与城市水资源综合利用的矛盾,在水源紧缺的我国干旱和半干旱地区这一问题显得尤为突出。
     本文针对城市绿地节水问题,着眼于城市绿地乔灌草混合栽植所具备的复合特征,在普遍调查的基础上,选定了乔木+灌木+草坪、乔木+草坪、灌木+草坪和草坪共4种绿地植物的主要配置模式为研究对象,应用农林复合系统水分生态特征研究方法、Li-1600稳态气孔计、TDR(时域反射)土壤水分测定仪、自动气象站和彭曼(Penman)公式等研究方法和测定手段,通过生长季内连续的动态监测,对北京地区气候条件下城市绿地乔灌草复合系统的蒸腾耗水和土壤水分进行了综合研究。初步摸清了各配置模式下的蒸腾耗水特性和土壤水分动态,并通过模拟研究建立了城市绿地优化灌溉模型。旨在为城市绿地复合系统的配置模式、树种选择和科学灌溉提供理论依据。主要结论如下:
     (1)城市绿地调查表明,北京常用的城市绿地植物种类有乔木117种,灌木77种,草本315种,藤本17种。乔灌草结构类型、乔草结构类型和乔木结构类型是北京城市绿地的主要配置类型。
     (2)在生长季阴天或晴天条件下,单种配置下的灌木黄丁香蒸腾速率的日变化呈较明显的单峰型,红瑞木呈不太明显的单峰型,二者的蒸腾速率与扩散阻力和光量子密度显著相关。复合配置下,两树种的蒸腾速率日变化曲线仅略有变化,蒸腾速率与相对湿度和扩散阻力显著相关。同种条件下,参试灌木复合配置与单种配置相比,蒸腾速率降低30%-40%。
     (3)在生长季阴天或晴天条件下,杜仲和紫叶李蒸腾速率日变化均呈单峰曲线。杜仲的蒸腾速率与扩散阻力、光量子密度和叶温关系显著,紫叶李的蒸腾速率与光量子密度和扩散阻力显著相关。
     (4)各参试树种蒸腾速率的季节变化为:杜仲呈典型的单峰型曲线,紫叶李呈双峰型曲线。单种配置下,黄丁香与红瑞木呈单峰型曲线;复合配置下,黄丁香与红瑞木呈阶梯状下降曲线,且生长季各月的蒸腾速率均有大幅降低,复合种植条件下黄丁香的蒸腾速率比单种条件下平均降低了31.7%,红瑞木则平均降低了29.3%,显示出复合系统良好的节水效益。
     (5)4种参试树种生长季不同天气条件下单位叶面积耗水量晴天最大,杜仲、紫叶李、黄丁香和红瑞木分别达到了3.00 kg.m2.d-1、5.27 kg.m-2.d-1、1.86kg.m-2.d-1和1.56 kg.m-2.d-1,而阴天差异不大。复合配置下的灌木黄丁香和红瑞木比单种配置下的日蒸腾耗水约减少50%。
     (6)单一种植的草坪一个生长季内累积蒸散量为499.6mm,平均每月蒸散量为71.4mm,蒸散量主要集中在5月、7月和8月3个月份。乔灌草、乔草和灌草三种复合配置模式下的草坪蒸散量主要集中在6月、7月和10月3个月份,空气相对湿度和太阳辐射强度是主要影响因子。单一草坪在全生长季的蒸散耗水量远大于各种复合配置模式下的的草坪,耗水量相差10倍以上。从节水效益上衡量,各种配置模式下草坪蒸散量的排序为:乔灌草配置模式>乔草配置模式>灌草配置模式>草坪模式。
     (7)生长季内各种配置模式下土壤水分动态变化表明:草坪土壤水分的耗水活跃层主要保持在0~20cm以上的土层范围内,随季节降水量和生长旺盛期可加深至40cm范围内。灌草配置模式下土壤水分在0~100cm土层范围内整体处于消耗状态,显示灌木+草坪以100cm以内土层水分为主要消耗层次。乔草配置模式下在0~1OOcm范围内土壤水分消耗均比较活跃,其中0~40cm土层水分变幅最大,为整个生长季节的主要持续耗水层。乔灌草配置模式下土壤水分随生长季节的推移耗水活跃层从0-40cm逐渐加深至1000~120cm,0~120cm内土层整体为植被耗水活跃层。
     (8)各种配置模式下不同深度平均土壤含水量变化表明,乔灌草配置模式在lm土层内消耗的水分较多,尤其在40~100cm是土壤水分的主要消耗区;乔草配置模式主要利用0~100cm土层的土壤水分,对深层的土壤水分利用极少;灌草配置模式水分利用层在0~100cm范围内,但对深层水分有利用较好的趋势。四种配置模式0-100cm土壤含水量垂直动态变化表明:各配置模式对土壤水分的利用规律基本相似,主要利用的是120cm以上深度的土壤水分。草坪和灌草配置的0~100cm内的土壤含水量优于乔灌草和乔草配置模式。乔灌草配置模式具有最好的土壤水分含量稳定性。
     (9)不同配置模式下土壤水分的季节变化表明:草坪生长季内土壤水分变幅最大,乔草配置模式次之,而灌草模式和乔灌草模式相对比较稳定。乔草配置模式的土壤含水量始终优于灌草和乔灌草模式。不同植被覆盖下土壤水分含量表现出相似的季节性动态变化规律,但由于植被覆被不同,草坪的土壤含水量最高,乔灌草配置模式的土壤水分含量在4个植被类型中最低,灌草配置模式的土壤含水量比乔灌草模式略高,乔草配置模式的土壤含水量仅次于草坪。对100cm以下深层土壤水分的利用乔灌草模式>灌草模式>乔草模式。在平水年,植被蒸散量的大小顺序为灌草配置模式>乔草配置>草坪>乔灌草配置。
     (10)本模拟研究采用气压修正的彭曼(Penman)综合法计算了实验区2004年逐月参考作物蒸散量,结果表明一年内5-8月内参考作物蒸散量的变化较为剧烈,呈现出先上升后下降的趋势,最大值出现在7月。在此基础上计算不同配置的作物系数,结合降雨和灌溉效率等因子,建立了不同配置模式下的月灌溉管理模型。经验证和初步应用证明,模型推导的理论灌溉量较能反映实际的灌溉用水量,具有较好的可操作性和科学性。
Urban green space system, as a main urban ecosystem component, plays a very important role in improving the urban environment, regulating urban climate, beautifying the urban landscape, increasing the urban space, taking precautions against earthquakes and reducing disaster. Conflicts between the consumption of water in green space and the comprehensive utilization of urban water resources are exacerbated due to the lack of the basic research in theory and key technology of water saving of urban green space, the low utilization rate of irrigation water, the serious and widespread waste of water, and the case is especially true in the arid and semi-arid regions of China where the water resources are generally scarce.
     Aimed at solving the water saving problem of urban green space, a comprehensive study on the evapotranspiration water consumption and soil moisture in the complex system of tree, shrub and grass in urban area was conducted, with four main plant configuration modes of trees+shrubs+grass, trees+grass, shrubs+grass and grass as the research objects according to their compound characteristics, using research methods (Continuous Dynamic Monitoring in Growing Season, Penman Formula, etc.) and instruments (Li-1600 Steady State Porometer, TDR (Time Domain Reflectometry), Soil Moisture Meter, Automatic Weather Stations) for water ecological characteristics of agroforestry systems. The water consumption characteristics and soil moisture dynamics for the four plant configuration modes were determined and urban green space irrigation model by simulation based on water consumption characteristics of the urban green space were established and optimized. It will provide a theoretical basis for the configuration mode, species selection and scientific irrigation for the urban green space complex system. The main conclusions are as follows:
     1, Investigation on types of urban green space showed that, the most common used plants were trees (117 species), bushes (77 species), herbaceous plants (315 species), vines (17 species). The major community-structures of plants were trees-bushes-herbs, trees-bushes, and trees only.
     2, Under single shrub configurations, diurnal changes for the transpiration rate of Yellow Clove showed an obvious single peak, while transpiration rate of Swida alba showed a less clear pattern of single peak and obvious pattern of double peaks, respectively in cloudy and sunny days in the growing season. The transpiration rate was significantly correlated with diffusion resistance and photon density. Under complex configurations, there is a slight variation in the curves for the transpiration rates of two species and the transpiration rates were significantly correlated with relative humidity and the diffusion resistance. Under the same conditions, the transpiration rates of the complex shrub configuration were lower 30% to 40% than those for the single configuration of shrub species.
     3, Diurnal changes for the transpiration rates of Eucommia ulmoides and Prunus ceraifera cv. Pissardii showed a single peak, respectively in cloudy and sunny days in the growing season. The transpiration rates of Eucommia ulmoides were significantly correlated with the diffusion resistance, photon density and leaf temperature, and that of Prunus ceraifera cv. Pissardii with photon density and diffusion resistance.
     4, Sseasonal changes of the transpiration rate for the species tested showed that for Eucommia ulmoides a single-peak curve and Prunus ceraifera cv. Pissardii a bimodal curve. Under the single shrub configurations, Yellow Clove and Swida alba were basically consistent, showing a single-peak curve. Under the combined configurations, Yellow Clove and Swida alba showed a ladder-like decline, the transpiration rates for each month of the growing season decreased significantly, the transpiration rates for Yellow Clove under the complex shrub configurations dropped by an average of 31.7% compared with those under the single configurations, and 29.3% for Swida alba, showing there was a good water-saving potential for complex systems.
     5, The transpiration water consumptions per unit area of leaf for four species tested in sunny days were largest under different weather conditions of the growing season. Those were 3.00 kg.m-2.d-1、5.27 kg.m-2.d-1、1.86 kg.m-2.d-1 and 1.56 kg.m-2.d-1 for Eucommia ulmoides, Prunus ceraifera cv. Pissardii, Yellow Clove and Swida alba, respectively. Daily transpiration water consumptions for Yellow Clove and Swida alba under the complex configurations less about 50% compared with those under the single configurations.
     6, Under single grass configurations, cumulative evapotranspiration of a growing season being 499.6 mm, the average monthly evapotranspiration 71.4 mm, with evapotranspiration concentrated in May, July and August. Under complex configurations, the grass evapotranspiration for trees+shrubs+grass, trees+grass and shrubs+grass concentrated in June, July and October, and air relative humidity and solar radiation were the major factors influencing the grass evapotranspiration. The grass evapotranspirations under the single grass configurations in the whole growing season were much larger than those under the complex configurations by over 10 times. From the point of water-saving effectiveness, the descending order is as follows:trees+shrubs+grass, trees+grass, shrubs+grass and grass.
     7, Dynamic changes of soil moisture during the growing season under the different configurations indicated that:the active soil layers of water consumption were mainly the soil layers of 0-20cm below the soil surface, and might extend to the soil layers of 0-40cm below the soil surface varied with seasonal rainfall and growing season for grass. The active soil layers of water consumption were the soil layers 0-100cm below the soil surface for the shrubs+grass configuration, and 0-100cm below the soil surface for the trees+grass configurations but maximum amplitude of water consumption was in the soil layers of 0-40cm below the soil surface. Under the trees+shrubs+grass configurations, the active soil layers of water consumption tended to deepen gradually from 0-40cm to 100-120cm below the soil surface varied with the growing season. Overall, the active soil layers of water consumption were the soil layers of 0-120cm below the soil surface.
     8, Average soil moisture at different depths for a variety of configuration mode showed that for the configuration modes of trees+shrubs+grass more water was consumed in the soil of 1 m below the soil surface and the major consumption areas were restricted to the soil of 40-100cm below the soil surface; The soil moisture of 0-100cm below the soil surface was mainly used for the trees+grass configurations and few deep soil moisture was used; The main soil layers of water consumption ranged in 0-100cm below the soil surface for the shrubs+grass configurations and deep layer water tended to be utilized better. The vertical dynamics of soil moisture 0-100cm below the soil surface for four configuration modes showed that the use of soil moisture for each configuration was similar and the soil moisture 0-120cm below the soil surface was mainly utilized. The soil moisture for the grass and shrubs+grass configurations was higher than that for the trees+shrubs+grass and trees+grass configurations and the trees+shrubs+grass configuration mode has the best stability of the soil moisture content.
     9, The seasonal changes of soil moisture for different configuration modes showed that:the amplitude of grass soil moisture during the growing season was the largest, followed by that for the trees+grass configuration mode, and the soil moisture for shrubs+grass and trees+shrubs+grass configuration modes were relatively stable. The soil moisture for the trees+grass was always better than that for shrubs+grass and trees+shrubs+grass configuration modes. The soil moisture under different type vegetation showed a similar seasonal dynamic change. Of the four vegetation types, the soil moisture content ofgrass was the highest and that for trees+shrubs+grass configuration the lowest. The soil moisture content for the shrubs+grass configuration was higher than that for the trees+shrubs+grass configuration and that for the trees+grass was only lower than that for the grass. The utilization of deep soil water 100 cm below the soil surface was in the order of trees+shrubs+grass> shrubs+grass> trees+grass. In the year with average precipitation, vegetation evapotranspiration was in sequence order:shrubs+grass> trees+grass> grass> trees+shrubs+grass.
     10, The monthly evapotranspirations of reference crops in the experimental area in 2004 were calculated, using the Penman integrated method with modified atmospheric pressure. The results showed that the evapotranspiration of reference crops changed dramatically from May to August within one year, increased first and then decreased, and reached to the maximum in July. The monthly irrigation management models for the different plant configurations were established based on the crop coefficient of different configurations calculated in combination with factors such as precipitation and irrigation efficiency. After validation and preliminary application, theoretical irrigation amount derived from the models could reflect the actual irrigation water and the monthly irrigation management models were operational and scientific.
引文
1. Allen, R.G.. Ref-ET reference evapotranspiration software. Kimberly Research and Extension Center, university of Idaho.2000
    2. Beard J B, Green R L, Sifers S I.. Evapotranspiration and leaf extension rates of well-watered, turftype Cynodon genotypes. HortScience.1992,27(9):986-988.
    3. Bowman D C, Macaulay L. Comparative evapotranspiration rates of tall fescue cultivars. HortScience.1991,26(2):122-123.
    4. Carrow,R.N.. Drought resistence aspects of turfgrasses in the southeast:evapotranspiration and crop coefficients Crop Science.1995,36:1685-1690.
    5. Cochard, H., N. Brda,A. Granier.. Whole tree hydraulic conductance and water loss regulation in Quercus during drought:evidence for stomatal control of embolism? Ann. Science. Forest.1996,53: 197-206.
    6. D. A. Devitt, D. S. Neuman D. C. Bowman and R. L. Morris. Comparative water use of turfgrasses and ornamental trees in an arid environment. Journal of Turfgrass Management.1995,1(2):47-63
    7. Dale J Bremer. Evaluation of Microlysimeters Used in Turfgrass Evapotranspiration Studies Using the Dual-Probe Heat-Pulse Technique Agronomy Journal.2003,95(6):16-25
    8. Feldhake C M, Boyer D G. Effect of soil temperature on evapotranspiration by C3 and C4 grasses. Agricultural and Forest Meteorology,1986,37:309-318.
    9. Feldhake C M, Danielson R E, Butler J D.Turfgrass evapotranspiration I.Factors influencing rate in
    urban environments. Agronomy Journal,1983,75:824-830.
    10. Georgi J. N, Dimitriou D. The contribution of urban green spaces to the improvement of environment in cities:Case study of Chania, Greece.Building and environment,2009,45(6): 1401-1414
    11. Gholam-Abbas Barani, Mohammad Javad Khanjani. A large electronic weighing lysimeter system: Design and installation Journal of the American Water Resources Association.2002,38:10-53.
    12. Hatton T J, Moore S J, Reece P H.. Estimating stand transpiration in Eucalyptus populnea woodland with the head pulse method:measurement errors and sampling strategies. Tree physiology.1995,3: 219-227
    13. Hinckley, T.M., J.R. Brooks, et al.,. Water flux in a hybrid poplar stand. Tree Physiol.1994, 14:1005-1018.
    14. Johns D, Beard J B, van Bavel C H M. Resistance to evapotranspiration from a St. Augustine grass turf canopy. Agronomy Journal,1983,75:419-422.
    15. Johns D, J B Beard, C H M van Bavel, Resistance to evapotranspiration from a St.Augustinegrass turf canopy. Agronomy Journal,1983,75:419-422.
    16. Kaufmann, M.R.. Automatic determination of conductance, transpiration and environ mental conditons in forest trees. Forest Science.1981,27:817-827
    17. Kim K.S,Beard J B. Comparative evapotranspiration rates and associated plant morphological characteristics. Crop Science.1988,28:328-331
    18. Kopec D M, Shearman R C,Riordan T P. Evapotranspiration of tall fescue turf. HortScience, 1988,23(2):300-301.
    19. Kopec D M, Shearman R C, Riordan T P. Evapotranspiration of tall fescue turf. HortScience,.1988, 23(2):300-301
    20. Landsberg, J.J., T.W. Blanchard,B. Warrit.1976. Studies on the movement of water through apple trees. J. Exp. Bot.27:579-596.
    21. Meinzer, F.C., G. Goldstein, P. Jackson, N.M. Holbrook, M.V. Gutier-rez and J. Cavelier.1995. Environmental and physiological regulation of transpiration in tropical forest gap species:the influence of boundary layer and hydraulic properties. Oecologia.1995,101:514-522.
    22. Meinzer, F.C., M.R. Sharifi, E.T. Nilsen,P.W. Rundel. Effects of manipulation of water and nitrogen regime on the water relations of the desert shrub Larrea tridentata. Oecologia. 1988,77:480-486.
    23. Molyneux D E. Rooting pattern and water relations of three pasture grasses growing in drying soil oecologia.1983,58:220-224
    24. Niemela, J, Saarela, SR, Soderman, T. Using the ecosystem services approach for better planning and conservation of urban green spaces:a Finland case study. Biodiversity and conservation,2010, 19(11):3225-3243.
    25.O'Neil K J,Carrow R N.Kentucky bluegrass growth and water use under different soil comopaction and irrigation regimes. Agronomy,1982,74:933-936
    26. R C Shearman, R E Gaussoin, K Frank, M R Vaitkus. Irrigation and Potassium Management on a Kentucky Bluegrass Fairway. Turfgrass Research Report.1997.
    27. Reich, P.B.,T.M. Hinckley. Influence of pre-dawn water potential and soil-to-leaf hydraulic conductance on maximum daily leaf diffusive conductance in two oak species. Funct. Ecol. 1989,3:719-726.
    28. Richard Renquist. Evapotranspiration calculation for young peach trees and growth responses to irrigation amount and frequency. HortScience.1987,22(2):221-223
    29. Roger K.,Larry R. and Doug K. Water conservation in urban landscapes. HortScience.2000, 35(6):1037-1041
    30. Schneider, A. D., T. A. Howell, A. T. A. Moustafa, S. R. Evett, and W. Abou-Zeid. A Weighting Lysimeter for Developing Countries.1996. Proceeding of the International Conference on Evapotranspiration and irrigation Scheduling, San. Antonio, Texas.
    31. Schulze, E.-D., J. ermk, R. Matyssek, M. Penka, R. Zimmermann, F. Vascek, W. Gries and J. Kuera. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees--a comparison of xylem flow, porometer and cuvette measurements. Oecologia,1985,66:475-483.
    32. Shearman R C.Kentucky Bluegrass cultivar evapotranspiration rates.HorScience,1986,21(3):455-457
    33. Sperry, J.S.,W.T. Pockman. Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis. Plant Cell Environ.1993,16:279-287.
    34. Throssell C S,Carrow R N, Milliken G A. Canopy temperature based irrigation Scheduling indices for Kentucky Bluegrass turf. Crop Science,1987,27:126-131
    35. Vertessy R A, Hatton T J, Reece P et al. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique. Tree physiology,1997,17:747-756
    36. W. C. Morgan. The Use of Physical Soil Amendments, Irrigation and Wetting Agents in Turfgrass Management. California turfgrass culture,1996,16(3):17
    37. White R H, Engelke M C, Anderson S J,et al. Zoysiagrass water relations. Crop Science, 2001,41:133-138
    38. Wullschleger S, Meinzer F C, Vertessy R A. A review of whole-plant water use studies in trees. Tree physiology,1998,18:499-512
    39.鲍健寅,杨特武,冯蕊华等.高温和干旱对白三叶生长发育及生理特性的影响.草业学报,1995,12(4):9-16
    40.程维新,康跃虎.北京地区草坪耗水量测定方法及需水量浅析.节水灌溉,2002(5):12-15
    41.崔灵周,李占斌,丁文峰.四川中部丘陵地区不同种植模式下旱地土壤水分变化规律.干旱地区农业研究.2001,19(1):87-92
    42.高凯,刘自学,胡自治等.不同草种单播草坪蒸散量的研究.草原与草坪,2004(2):43-46.
    43.高艳红,陈玉春,吕世华.西北干旱区绿洲不同灌溉制度的数值模拟.地理科学进展,2004,23(1):33-48.
    44.郭孟霞.晋西黄土区四倍体刺槐蒸散耗水规律研究.2007.北京林业大学硕士学位论文.
    45.韩建国.不同草种草坪蒸散量及各草种抗旱性的研究.草业科学,2001,10(4):56-63
    46.韩建国,潘全山,王培.不同草种草坪蒸散量及各草种抗旱性的研究.草业科学,2001,10(4):56-63
    47.何军,刘自学,胡自治等.北京地区草蒸散量与需水特性初探.草原与草坪,2005(2):50-54
    48.胡九林,韩烈保,苏德荣等.天津滨海地区2种草坪草耗水量试验研究.草业科学,2005(12):82-86.
    49.江华,朱胤椿等.高寒山区早作农田土壤水分动态的研究.青海农林科技,1994(4):1-5
    50.雷廷武,詹卫华,黄兴法.新型压/吸气排水式蒸渗仪的设计与应用.农业机械学报,2003.9(5):96-98.
    51.李广德.三倍体毛白杨速生纸浆林蒸腾耗水特性及灌溉制度研究.2010.北京林业大学博士学位论文.
    52.李怀有,王斌.苹果滴灌试验及节灌制度研究.干旱地区农业研究.2001,19(3):114-121.
    53.李文华.中国农林复合经营.北京:科学出版社,1994.
    54.李秧秧,王全九.几种基于植物生理活动的节水灌溉指标研究进展.节水灌溉,2009(2):32-35.
    55.刘奉觉.杨树人工幼林的蒸腾变异与蒸腾耗水量估算方法的研究..林业科学,1987,23(营林专集):35-44
    56.刘奉觉.树木蒸腾耗水测算技术的比较研究.林业科学,1997(2):117-126
    57.刘海东.天津滨海地区草坪蒸散量及理化性质研究.2007.北京林业大学硕士学位论文.
    58.刘洪禄.城市绿地综合节水技术体系探讨.北京水利,2003(6):9-11.
    59.刘及东,陈秋全,焦念智.草坪质量评定方法的研究.内蒙古农牧学院学报.1999,20(2):44-48
    60.刘思华.当代中国的绿色道路.武汉:湖北人民出版社,1994,45-80.
    61.刘玉杰,韩建国,杨艳等.施肥对草地早熟禾草坪质量、剪草量及蒸散量的影响.中国草地,2003,25(4):50-55
    62.刘钰,L.SPereira气象数据缺测条件下参照腾发量的计算方法.水利学报,2001.3(3):11-17.
    63.卢少云,郭振飞.草坪草逆境生理进展.草业学报,2003,12(4):7-13.
    64.马锦义.论城市绿地系统的组成和分类[J].中国园林,2002,18(1):23-26.
    65.马秀玲.农林复合系统中林带和作物的根系分布特征.中国农业大学学报,1997,2(1):109-116.
    66.马燕玲.草坪水分需求及研究趋势.草原与牧草,1998(2):13-16
    67.满荣洲.华北油松人工林蒸腾的研究.北京林业大学学报,1986(2):1-7
    68.孟平.农林复合系统水分效应研究.林业科学研究,2003,9(5):443-448.
    69.孟平.农林复合系统与单作作物系统作物根系差异特征的研究.林业科学研究,2002,15(4):369-373.
    70.孟雪松,欧阳志云,崔国发.北京城市生态系统植物种类构成及其分布特征.生态学报,2004;24(10):2200-2206
    71.潘全山,韩建国,王培.播量及修剪留茬高度对草地早熟禾草坪蒸散量的影响.草原与草坪,2000(4):10-14
    72.潘全山,韩建国,王培.五个草地早熟禾品种蒸散量及节水性.草业科学,2001,9(3):207-212
    73.裴步祥.蒸发和蒸散的测定与计算.1989.气象出版社
    74.阮宏华.次生栎林蒸腾强度与蒸腾量的研究.南京林业大学学报,1999(4):32-35
    75.申双和.国外森林蒸散的测定、计算与模拟.中国农业气象.1991,12(1):51-55
    76.沈淑红.节水型园林——城市可持续发展的必然要求.中国园林,2003,19(12):54-57.
    77.宋兆民.农用林的结构与模式.农业经济,1994,(1):193-197.
    78.苏德荣.干旱地区间作种植高效节水灌溉基础问题研究.兰州:中国科学院寒区旱区环境与工程研究所,2001.
    79.苏俏云.·以“人”为本规划城市园林绿地系统——论中国城市园林绿地建设.华南师范大学学报,2000,24(11):90-94.
    80.孙鹏森.北京北水源保护林格局及不同尺度树种蒸腾耗水特性研究.2000.北京林业大学博士学位论文
    81.孙强,韩建国,姜丽等.草坪蒸散量及水分管理的研究.草地学报,2004.1(12):51-56
    82.孙强,韩建国,毛培胜.草地早熟禾与高羊茅蒸散量的研究.草业科学,2003,20(1):16-19
    83.孙长忠,黄宝龙.单株平衡法的建立.林业科学.1996.32(4):378-381
    84.谈峰.杜仲叶片蒸腾速率的因子分析.西南师范大学学报,1996,21(2):162-167
    85.王安志.森林蒸散测算方法研究进展与展望.应用生态学报.2001,12(6):933-937
    86.王保忠.城市绿地系统研究展望.湖南林业科技,2004,31(3):33-35.
    87.王保忠.城市绿地研究综述.城市规划汇刊,2004,150(2):62-68.
    88.王保忠等.城市绿地系统研究展望.湖南林业科技,2004,31(3):33-36.
    89.王孟本,李洪建.柠条林蒸腾状况与土壤水分动态研究.水土保持通报,1990,11(4):313-317
    90.王珉,王泽华,郑艳新.近年来国内外蒸渗器发展特点.黑龙江水利科技,2002,2:142
    91.王瑞辉.北京主要园林树种耗水性及节水灌溉制度研究.2006.北京林业大学博士学位论文
    92.王霞.关于发展节水型园林绿地的思考.中国园林,2004,20(2):38-39.
    93.王颖.北京地区常见城市绿化树种蒸腾耗水特性的研究,2004,北京林业大学博士学位论文
    94.王正菲.林冠蒸发散的计算.1985.中国科学院林业土壤研究所集刊.第一集.40-45
    95.王智阳.城市绿化与节水问题研究.黄河水利职业技术学院学报,2003,15(3):9-12.
    96.魏天兴.晋西南黄土区刺槐油松林地耗水规律的研究.1998.北京林业大学学报,20(4):36-40
    97.魏天兴.林分蒸散耗水量测定方法述评.北京林业大学学报.1999,21(3):85-91
    98.吴丽娟.北京城市绿地景观格局与生物多样性保护研究,2006,北京林业大学博士学位论文
    99.吴人韦.支持城市生态建设——城市绿地系统规划专题研究[J].城市规划,2000,24(2):81-83.
    100.熊伟,王彦辉,程积民等.三种草本植物蒸散量的对比试验研究.水土保持学报,2003,3(1):170-172
    101.熊伟.北京北水源保护林格局及不同尺度树种蒸腾耗水特性研究.2003,北京林业大学博士学位论文
    102.徐波.关于城市绿地及其分类若干思考.中国园林,2000,16(5):35-39.
    103.徐德应,曾庆波.用能量平衡-波文比法测定海南岛热带季雨蒸散初试.热带亚热带森林态系统研究.1985(3):183-196
    104.徐德应.森林的蒸散:方法和实践.全国森林水文学术讨论会文集.北京:测绘出版社,1989,177-182.
    105.许迪,刘钰.测定和估算田间作物腾发量方法研究综述.1997,4:54-59
    106.杨建.不同灌溉量对草坪的影响.2005.北京林业大学硕士学位论文
    107.杨建国,黄冠华,黄权中.污水灌溉条件下草坪草耗水规律与灌溉制度初步研究.草地学报,2003,11(4):329-333
    108.杨建国,张新民.北京市草坪灌溉制度拟定.节水灌溉,2005(2):11-13
    109.叶兵.北京延庆小叶杨与刺槐林的蒸腾耗水特性与水量平衡研究.2007.中国林业科学研究院博士学位论文.
    110.张劲松.杜仲蒸腾强度和气孔行为的初步研究.林业科学,2002,38(3):34-37.
    111.张劲松.复合农林业与中国农业的可持续发展.世界林业研究,2000,13(3):33-37.
    112.张劲松.农林复合系统的水分生态特征研究述评.世界林业研究,2003,16(1):10-14.
    113.张劲松.苹果-小麦复合系统中作物根系时空分布特征.林业科学研究,2002,15(5):537-541.
    114.张劲松.植物蒸散耗水量计算方法综述.世界林业研究,2001,14(2):23-28.
    115.张劲松.农林复合系统水分运移模型与水分生态特征的研究.2000.中国农业大学博士学位论文.
    116.张胜,申曙光.城市绿化节水灌溉技术探讨.河北林业科技,2002,6(3):52-54.
    117.张新民,胡林,边秀举.北方常用草坪草的蒸散量差异及耗水性评价.草业学报,2004,2(1):79-83.
    118.张新民,胡林,边秀举等.灌水条件对冷季型草坪草蒸散量和草屑积累量的影响.草地学报2002,3(1):51-52
    119.张学,王宝英.农田灌水定额的确定.西北水资源与水工程,1994.4(5):18-24
    120.张自坤,刘作新,张颖,舒乔生.日光温室黄瓜地下滴灌灌溉制度的试验研究.干旱地区农业研究,2008,26(6):76-81.
    121.赵炳祥,陈佐忠,胡林等.草坪蒸散研究进展.生态学报,2003,1(23):148-157.
    122.赵炳祥,胡林,陈佐忠.常用六种草坪草蒸散量及作物系数的研究.北京林业大学学报2003,11(6):39-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700