用户名: 密码: 验证码:
海冰影响冻融损伤的桥梁结构安全的机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对海上空间的开发和利用,跨海大桥以其无与伦比的经济、社会效益和独特的造型、创新的技术如雨后春笋层出不穷。与陆地桥梁不同,跨海大桥下部支撑结构处于环境复杂的海洋内,特别是位于冰冻海域的桥梁结构,盐害、冻融、海冰、海浪、海流等多重腐蚀环境的综合作用严重影响其安全问题。大体积的流冰撞击结构引起的冰激振动,不仅能引起结构的疲劳破坏,而且还有可能引起上部结构或者设备的损坏和失效。此外,长期的冻融循环对混凝土结构的侵蚀破坏也会影响桥梁结构的耐久性和安全性。目前,海冰已成为跨海大桥及近海工程结构物设计的不可忽视的主要环境因子和控制荷载之一
     为保证冰冻海域跨海大桥的安全稳定,深入开展冰和结构的相互作用机理的相关研究,将会为跨海大桥的设计、施工、运营及改造提供重要的设计参数和理论根据。目前,此研究也越来越受到工程界的关注,并对海上工程提出了越来越多的更严格的限制和更可行的要求,这就对冰-结构相互作用机理的研究、结构安全性能评价等提出了更加迫切的需求和严格的要求。
     鉴于以上因素,本文综合考虑冻融破坏混凝土的性能衰退及冰激振动等因素,全面系统的研究冰厚、冰速、结构形状、柱顶集中荷载对结构的冰激振动的影响;采用多材料耦合的内聚力冰模型,在流固耦合作用下,分析了桩间距、尺寸比率及结构刚度等对结构的冰激振动的影响,并以青岛海湾大桥为工程背景研究了不同服役期内冻融损伤桥梁下部结构在冰激振动作用下的动力响应。
     本文的主要研究内容如下:
     1.建立了冻融损伤混凝土本构关系
     本文基于室内试验的基础上,研究分析了不同冻融循环次数的混凝土的力学性能衰退规律。在断裂力学理论的基础上,建立了不同冻融循环次数混凝土的本构关系。通过本构关系可以看出,随着冻融次数的增加,混凝土的应力-应变关系曲线逐渐趋于扁平,应力峰值明显降低,应力峰值所对应的应变值逐渐增加,曲线与坐标轴包围的面积减小,耗能能力逐渐降低。
     2.研究了结构的冰激振动及影响因素
     在理论分析的基础上,利用通用的ANSYS软件建立了冰与不同形状混凝土结构相互作用的有限元模型,选用显式非线性有限元软件LS-DYNA对其作用过程进行了数值计算。分析结果表明冰厚、冰速、结构形式以及有无柱顶集中质量等因素对冰破碎模式及结构的响应特征都有不同程度的影响,分别分析其物理过程及影响程度,探索了冰和结构动力作用的机理。
     3.建立了冰的内聚力模型及研究了结构的冰激响应
     根据冰的细观结构特征及冰与直立结构相互作用的楔形破坏理论,利用内聚力理论,建立冰的内聚力数学模型。借助于LS-DYNA庞大齐全的材料模型库,建立了多材料耦合的冰的内聚力有限元模型;利用该软件强大的动力计算功能,考虑海水的影响,采用流固耦合的算法分别对柱间距、结构刚度及尺寸比率对冰力及结构响应的影响进行分析,得出一些有益的结论,为工程施工和设计提供依据。
     4.将研究结果运用于工程实践,研究了冻融损伤混凝土桥梁下部结构在不同服役期内的冰激响应
     以青岛海湾大桥为工程背景,选取了两种最不利的结构类型,考虑了下部混凝土承台结构的冻融破坏的影响,采用多材料耦合的冰内聚力模型,分别建立了冰与结构相互作用的有限元模型。针对青岛海湾大桥的运营环境,选用了12种不利工况组合,考虑海水的作用,采用流固耦合算法,分别对不同服役期内不同工况下冰与结构相互作用进行数值模拟。
     结果表明:混凝土在冻融破坏作用下力学性能不断衰退,结构刚度下降,造成冰力峰值增加,位移最大偏移量增加,且在高设计水位工况下,最大位移偏移量增加的较快。结构位移加速度极值也随着服役期的延长逐渐变大。说明随着结构服役期的延长,在相同外力作用下会产生较大的偏移量,更容易产生冰激振动,冰激振动的位移加速度会变大。因此,为保证跨海大桥的安全性,随着服役期的延长,必须更加重视冰激振动可能带来的严重后果。
Along with the development and utilization of marine space, Cross-sea bridge are springing up like bamboo shoots after a spring rain everywhere, based on its incomparable economic and social benefits, with distinctive architectural concept and endless innovative techniques. Alien from the other bridge structure, the lower support structure of Cross-sea Bridge is in the complex environment of the ocea. Its design, construction and operation will be many more competitive and difficulty. Especially for the bridge structure in the frozen waters, the multiple corrosion environment such as salt, freezing and thawing, sea ice, wave, current and so on seriously impact the safety and reliability of the units.The ice-induced vibration of structure, which impact by mass of ice sheet, can not only cause fatigue damage of structure, but also may lead the upper structure or equipment to damage and failure rupture.In addition, the long-term damage of freeze-thaw cycle to concrete structure will also affect the durability and security of bridge structure.At present, the sea ice has been one of the main environment factors and control loads that can not be ignored in the design prograss of bridge and offshore engineering structures.
     To ensure the security and stability of the sea-crossing bridge in frozen water, extensive efforts were made to improve the mechanism of interaction between ice and structure,which will provides scientific designing parameters and offer the important theoretical basis to the design, construction and operation of similar bridge works. At present, this research is also growing concern by the engineering community, who put forward more and more detail standards and feasible requirements on maritime engineering. So.the more pressing needs and strict requirements are put forward to the research on the mechanism of ice-structure interaction, safety evaluation and so on.
     In this paper, considering the decay of concrete freeze-thaw damage, the ice-induced vibration and other factors.A series of comprehensive and systematic studys were carried out on the characteristics of the structural dynamic responses influced by ice thickness, ice velocity, structural shapes, concentrated mass on the structur tops respectively by using nonlinear dynamic analysis software ANSYS/LS-DYNA.Based on the cohesive material coupling ice model was set up,the structural dynamical responses subjected to the pile spacing, aspect ratio and the stiffness of the structure respectively were numerically simulated. Based the engineering background of Qingdao Bay Bridge, the ice-induced respects of the bridge structure during different service period were analysed. This work are following:
     1. Development of the constitutive relationship for concrete suffered freeze-thaw damage.
     According to analyzing the results of indoor test, the mechanical properties of concrete suffered freeze-thaw damage with different cycles were studied. The constitutive relationship for concrete suffered freeze-thaw damage was suggested in the basis of the theory of fracture mechanics.It can be seen through the constitutive relations, with the increase of concrete freeze-thaw cycles, the stress-strain relationship curves tend to be flat, and peak stress was significantly reduced, the stress peak value corresponding to the strain value would increase gradually. The area under the curve was reduced; it was shown that energy dissipation capacity of material decreased gradually.
     2. Research on the structural dynamic responses induced by ice sheet and influencing factors.
     On the base of the theoty analysis, a series of finite element model of interaction between ice and structure was established on the basis of ANSYS. By calculating the models and showing the courses of the rock blasting process with nonlinear explicit dynamic finite-element program LS-DYNA, the characteristics of the structural dynamic responses influced by ice thickness, ice velocity, structural shapes and concentrated mass on the structur tops respectively were presented. The results showed that the above factors have different effect on the mode of ice sheet failure and the the characteristics of the structural dynamic responses.From the analysis of physical process and the influence degree of the different variables, the dynamic mechanism of interaction between ice and structure was explored.
     3. Establishment of the cohesive material coupling ice model and its application in numerical simulation.
     According to the mode of ice failure with a wedge-shaped edge during ice-vertical structure interaction and the material mesoscopic structure of ice, based on the cohesion theory of crack nucleation and extended, the cohesive material coupling ice model was established.By use of integrated and huge range of material modelbase systems of LS-DYNA, the finite element model of ice forming of several sorts of materials was achieved. By using nonlinear explicit dynamic finite-element program LS-DYNA, which can deal with fluid-solid coupling algorithm, the structural dynamical responses subjected to the pile spacing, aspect ratio and the structure stiffness respectively were numerically simulated. Some useful conclusions are obtained from the computational results. The results are useful to the construction and design of the similar bridge to a certain extent.
     4. Research on the ice-induced dynamic responses of substructure of bridge suffered freeze-thaw damage in different term of military service.
     Based the engineering background of Qingdao Bay Bridge, two kinds of the most unfavorable structure were selected. To take the adverse effect of freezing-thawing of concrete on bearing capacity into account, the finite element models of interaction between ice and structure were established by using of the cohesive material coupling ice model. With fluid-solid coupling algorithm of LS-DYNA, the physical process of interaction between ice and structure were simulated with the most unfavorable twelve combined operating conditions.It can be concluded from simulation results that with the dying out of the mechanics properties of concrete and the decline of structure rigidity, the relative ice force peak, max structure displacement and acceleration were increased. In addition.under the high-designed water level work condition, the max structure displacement increased more.That is to say the larger max structure displacement and acceleration would be occurred under the same external forces as service time prolonging, and the ice-induced vibration was more likely to suffer.so,to ensure the security of sea-crossing bridge in the whole process of design, construction and operation, more attentions should be paid to the serious effect caused by ice-induced vibrationthe with the years.
引文
[1]Zhang Fangjian, Fei Lishu. Sea Ice Disasters and Defence Measures Taken in China.Marine Science Bulletin,1994,13(5):75-83.
    [2]Fang Huaean, Duan Menglan, Xu Fayan. Reliability Analysis of Ice-Induced Fatigue and Damage in offshore Engineering Struetures[J]. China ocean Engineering,2000, 14(1):15-24.
    [3]Canunaert, A.B., Muggeridge, C.B.. Ice Interaction with offshore structures [M].Van Nostrand Reinhold, New York,1988.
    [4]Blenkarn, K.A.,1970. Measurement and analysis of ice forces on Cook Inlet structures. Proceedings,2nd Offshore Technology Conference, Houston, TX, OTC 1261, vol.Ⅱ, pp. 365-378.
    [5]Engelbrektson, A.,1977. Dynamic ice loads on lighthouse structures. Proc.4th Int. Conf. on Port and Ocean Eng. under Arctic Conditions, St. John's, Canada, vol.2, pp.654-864.
    [6]Sodhi, D.S.,1988. Ice induced vibrations of structures. IAHR'88, Ice Symposium, pp.625-657.
    [7]Yue, Q., Zhang,X., Bi,X., Shi, Z.,2001.Measurements and analysis of ice induced steady state vibration. Prod 16th Int. Conf. Port Ocean Eng. under Arctic. Cond. Ottawa, Canada.
    [8]Neil C R. Dynamic ice forces on Piers and Piles:an assessment of design guideline in the light of recent research[J]. Canadian Journal of Civil Engineering,1976, (3):305-341
    [9]Peyton H R. Sea ice force. In:Proceedings of Conference on Ice Pressures against Structures. National Research Council of Canada, Ottawa, Canada, technical Memorandum 92,1968,117-123
    [10]Sodhi D S. Ice-structure Interaction during Indentation tests. In:Proc. IUTAM/IAHR Symposium on Ice-Structure Interaction, S J Jones, R F Mckenna, J Tillotson, I J Jordaan, editors, Computational Mechanics Publications,Springer-Verlag,1989,619-640.
    [11]刘玉柱,申仲翰.冰与结构的耦合振动模型[J].海洋工程.2000(11),Vol.18NO.4:1-6.
    [12]Sundararajan C, Reddy D V. Stochastic analysis of ice-structure interaction. POAC,1973
    [13]曲月霞 王永学.海冰对近海结构物作用的随机模型[J].中国海洋平台.2000.04:16-19
    [14]Montgomery G J, Lipsett A W. Estimation of ice forces from dynamic response.IAHR, 1981,2:771-782
    [15]Engelbrekston A. Observations of a resonance vibrating lighthouse structure in moving ice. POAC, Helsinki, Finland,1983
    [16]史庆增,徐继祖,石志刚.冰力现场量测的间接法及其数据处理程序.海洋工程,1990,8(2):35-43.
    [17]初良成,曲乃泅,邬瑞锋.近海平台冰荷载的一个新的频域识别方法.海洋工程,1993,11(2):23-32.
    [18]初良成,曲乃泅,邬瑞锋.动态载荷识别的时域正演方法.应用力学学报,1994.11(2):9-19
    [19]段梦兰,柳春图.海上固定平台的冰激振动响应计算与分析.海洋工程,1995,13(2):22-30
    [20]段梦兰,吴水宁,固定石油平台冰激振动的时域与频域响应.机械强度,1999,21(1):14-17
    [21]欧进萍,段忠东等.渤海导管架平台桩柱冰压力随机过程模型及其参数确定.海洋学报,1998,20(3):110-118
    [22]Hudson Matlock, William P. Dawkins, and John J. Panak. A Modal for the Prediction of Ice-Structure Internation[C]. Offshore Technology Conference,18-21 May.1969,Houston, Texas
    [23]Hudson Matlock, William P. Dawkins, John J. Panak.Analytical Model for Ice-Structure Interaction[J].Journal of the Engineering Mechanics Division, Vol.97, No.4, July/August 1971, pp.1083-1092.
    [24]Blenkarn, K. A. Measurement and Analysis of Ice Forces on Cook Inlet structures[C]. Offshore Technology Conference,22-24 April,1970. Houston, Texas
    [25]Maattanen M.. Numerical model for ice-induced vibration load lock-in and synchronization[C]. Proe.14th Int. Symposium on Ice. Potsdam, NY.USA,27-31 July 1998.Vol.2, pp923-930.
    [26]Engelbrektson A. An Ice-structure Interaction Model Based on Observations in the Gulf Of Bothnia[C].POAC 89, Vol.1.1989:pp504-517.
    [27]Tsuchiya M,S Kanie and K Ikejiri, A Yoshida and H Saeki. An experimental study on ice-structure interaction. In:Proc. of the 17th Offshore Technology Conference, Astrodomain, Houston, Texas. Vol.4,1985,321-327
    [28]段梦兰,柳春图.冰与结构的动力相互作用:随机自激振动.工程力学(增刊),1995:1070-1074
    [29]王翎羽.冰力振子模型的研究[D].天津:天津大学,1988.
    [30]王翎羽,徐继祖.冰与结构动力相互作用的理论分析模型[J].海洋学报,1993,15(3)140-146
    [31]史庆增,宋安.海冰荷载和冰激振动研究报告.天津大学海洋工程系,2000.
    [32]Sodhi D S, Nakazawa N. Frequency of intermittent ice crushing during indentation tests Proc. Of the 10th IAHR Symposium on Ice, Espoo, Finland,1990,3:277-289
    [33]Selvadurai A P S, Sepeh R K. Two-Dimensional Discrete Element Simulations of Ice-structure Interaction. International Journal of Solids and Structures,1999,36:4919-4940
    [34]Sand B., Horrigeoe G.. Finite element analysis of breaking ice forces on conical structures[A].Proceedings of the 14th internationals Symposium on ice. Ed. Shen H T, 1998,1:475-482
    [35]Sand B., Horrigeoe G. Simulations of ice forces on sloping structures. Proc.of the 8th ISOPE, Montreal, Canada,1998,11:476-482
    [36]Sand B., Horrigeoe G.. Simulations of ice ridge forces on conical structures. Proc. Of the 11th ISOPE, Stavanger, Norway,2001,1:754-759
    [37]Karna T. Kamesaki K., Tsukuda H. A numerical model for dynamic ice-structure interaction. Computers and Structures,1999,72:645-658
    [38]Brown T G, et al. Modeling of continuous crushing of ice in front of offshore structures. Canada Journal Civil Engineering.1995,22:544-550
    [39]Choi K Hwang O J. Continuum damage modeling for the estimation of Ice loads under indentation. Proc. Of the 8th ISOPE, Montreal, Canada,1998,11:468-475
    [40]Derradji-Aouat A., Lau M.. Ice loads on electric power generating stations in the belle isle strait[A].Proceedings of 18th International Conference on Port and Ocean Engineering under Arctic Conditions[C]. Potsdam, New York, USA:2005.387-398.
    [41]杨亮,马骏.冰介质下的船舶与海洋平台碰撞的数值仿真分析[J].中国海洋平台,2008,(02).
    [42]王春静.桩间距对冰荷载的影响与数值模拟研究[D].天津:天津大学,2008.
    [43]谭湘.斜面冰载荷研究及其数值模拟方法探索[D].天津:天津大学,2008.
    [44]武文华,于佰杰,许宁,岳前进.海冰与锥体抗冰解耦动力作用的数值模拟[J].工程力学.2008.11:192-196
    [45]Moslet, P. O, Medium scale ice-structure interaction[J].Cold Regions Science and Technology.2008. doi:10.1016/j.coldregions.2010.03.001
    [46]宋祖厂,陈建民.海冰与独腿简易平台碰撞动力分析[J].中国海洋平台.2009.04:19-22.
    [47]Gurtner, A., Konuk, I., Gudmestad, O.T. and Liferov, P. Innovative Ice Protection for Shallow Water Drilling-Part Ⅲ:Finite Element Modeling of Ice Accumulation. Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering, Escorial, Portugal. OMAE 2008-57915.
    [48]Gurtner, A.. Experimental and numerical investigation of ice-structure interaction[D]. Norewgian University.2009
    [49]on Arrangements of Ice Protection Piles[J]. Paper submitted to Computers and Structures.
    [50]Konuk, I., Gurtner, A. and Yu, S. A Cohesive Element Framework for Dynamic Ice-Structure Interaction Problems-PART I:Review and Formulation. Submitted to Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii. OMAE 2009.
    [51]Konuk, I., Gurtner, A. and Yu, S. A Cohesive Element Framework for Dynamic Ice-Structure Interaction Problems-PART Ⅱ:Implementation. Submitted to Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii. OMAE 2009.
    [52]Tuhkuri J. Experimental investigations and computational fracture mechanics modeling of brittle ice fragmentation. Aetna Polytechnic Scandinavia Mechanical Engineering Series No.120, The Finnish Academy of Technology, Helsinki,1996
    [53]Onate E, Idelsohn S, Pin F D and Aubry R.2004 International Journal of Computational Methods 1 267-307
    [54]Belytschko, T. and Black, T. (1999):Elastic Crack Growth in Finite Elements with Minimal Re-meshing. International Journal for Numerical Methods in Engineering, Vol.45, No.5, pp.601-620.
    [55]Moes, N., Dolbow, J. and Belytschko, T. A Finite Element Method for Crack Growth without Remeshing. International Journal for Numerical Methods in Engineering, Vol.46, No.1,1999:pp.131-150.
    [56]Sayed M, Timeo G W. A lattice model of ice failure. ISOPE,1999,2:528-534.
    [57]Sayed M, Frederking R., Barker A. Numerical simulation of broken ice cover forces on structures:a Parametric study. ISOPE,2000,1:656-662
    [58]Hoeking G, Mustoe G G W, Williams J R. Validation of the CICE Code for the ice ride-up and ice ridge cone interaction. Civil Engineering in the Arctic offshore, ASCE Specialty Conference. San Francisco,1985a:962-970
    [59]Hoeking G, Williams J R. Mustoe G G W,.Dynamic global forces on offshore structure from Large ice flow impacts, Civil Engineering in the Arctic Offshore, ASCE Specialty Conference. San Francisco,1985b:202-219
    [60]Hoeking G, Mustoe G G W, Williams J R. Dynamic analysis for generalized three-dimensional Contact and fracturing of multiple bodies. MUMETA, Swansea, U.K.A.A. Balkema, The Netherlands,1987
    [61]Williams, J.R. Mustoe, G.G.W., Worgan, K. Force transfer and behaviour of rubble piles. Proc. IAHR IceSymposium, vol.1 Iowa City, IO, pp:615-626
    [62]Mustoe G G W., Williams, J R. Hocking G.,Worgan, K., Penetration and fracturing of brittle plates under dynamic impact. NUMETA 87, Swansea,U.K. A.A. Balkema,The Netherlands.
    [63]Hopkins M A. Numerical simulation of systems of multitudinous polygonal blocks. Report of cold regions research and engineering Laboratory, Hanover, NH,1992
    [64]Hopkins M A.On the ridging of intact lead ice. Journal of geophysical research,1994, 99(8):16351-16360
    [65]Hopkins M A. Onshore ice pile-up a comparison between experiment sand simulations. Cold Regions Science and Technology,1997,26:205-214
    [66]Dorival O., Metrikine A.V., Simon A.. A lattice model to simulation ice-stucture interaction[A]. International Conference on Offshore Mechanics and Arctic Engineering OMAE 2008[C].2007.07.15
    [67]李春花,王永学,李志军,孙鹤泉.半圆型防波堤前海冰堆积模拟[J].海洋学报.2006:172-177
    [68]石根华著,裴觉民译.数值流形方法与非连续变形分析.清华大学出版社,1997
    [69]张运良.冰荷载的识别及病及振动的试验与数值模拟[D].大连理工大学,2002.12
    [70]张运良,李志军,林皋,王永学,刘君.冰-结构动力相互作用过程的DDA模拟[J].冰川冻土.2003.9,Vol.25:313-316
    [71]Michel B.. ICE MECHANICS [M]. Laval University Press.1978.
    [72]日本寒地港湾技术研究中心,冰海域海岸、海洋建筑物设计手册.
    [73]Sodhi D. S., and Hamza H.E..Buckling analysis of a semi-infinite ice sheet. Proc. POAC77,1977, Vol.1:593-604.
    [74]Korzhavin, K. N.:Action of ice on engineering structures, USSR Academic Science Siberian Branch, CRREL, Draft Translation No.260 Hannover,1971.
    [75]中国海洋石油总公司.渤海海域钢质固定平台结构设计规定.天津:中国海洋石油总公司企业标准.2002.
    [76]Croasdale, K.R., Morgenstern, N.R.,Nuttall, J.B.Indentation Tests to Investigate Ice Pressures on Vertical Piers[C].Symposium on Applied Glaciology. Proceedings of the Fourth Symposium on Glaciology, Cambridge (England) September 13-17,1976. Journal of Glaciology, Vol.19, No.81, p 301-312,1977.
    [77]中华人民共和国交通部.JTG D60-2004公路桥涵设计通用规范[S].北京:人民交通出版社.2004.
    [78]中华人民共和国交通部.JTJ 215—98港口工程荷载规范[S].北京:人民交通出版社,1998.
    [79]Mehta P K. Concrete durability-fifty year's progress[C].Proceeding 2nd International Conference on Concrete Durability, American Concrete Institution, ACI SPI126-1,1991: 1-31.
    [80]卫军,张晓玲,赵霄龙.混凝土结构耐久性的研究现状和发展方向[J].低温建筑技术,2003,92(2):1-3.
    [81]Powers T C.A working hypothesis for further studies of frost resistance of concrete [J] Journal of ACI,1945,16(4):245-272.
    [82]Powers T. C, Helmuth R A. Theory of volume changein hardened porland cement paste during freezing [J].Proceedings, Highway Research Board,1953,32:285-297.
    [83]Sun W., Zhang Y.M., Yan H.D., Mu R.. Damage and damage resistance ofhigh strength concrete under the action of load and freeze-thaw cycles[J]. Cement and Concrete Research,1999,29:1519-1523.
    [84]Stefan Jacobsen, Eirk J. Sellevold, Seppo Matala. Frost durability of high strength concrete: the effect of internal cracking on ice formation[J]. Cement and Concrete Research,1996,66 (6):919-931.
    [85]Marzouk, Daiju Jiang. Effects of freezing and thawing on thetension properties of high-strength concrete[J]. ACIM arterial Journa,11994:577-586.
    [86]宋玉普,于长江,覃丽坤,等.冻融环境下混凝土双向受压强度与变形特性试验研究[J].大连理工大学学报,2004,44(4):545-549.
    [87]于长江,宋玉普,张众,等.冻融环境下普通混凝土三轴受压强度与变形特性的试验研究[J].混凝土,2005,27(2):3-7.
    [88]商怀帅,宋玉普,覃丽坤.普通混凝土冻融循环后性能的试验研究[J].混凝土与水泥制品,2005,22(2):9-11
    [89]徐玉琢,李学芳,张澎丽.冻融循环作用对混凝土桥梁寿命的影响[J].河北工业大学学报.2009(08):107-110
    [90]祝金鹏.冻融循环后混凝土力学性能的试验研究[D].济南:山东大学,2009.
    [91]祝金鹏,李术才,刘宪波,等.冻融环境下混凝土力学性能退化模型[J].建筑科学与工程学报,2009,26(1):62-67.
    [92]覃丽坤,宋玉普,陈浩然,等.冻融循环对混凝土力学性能的影响[J].岩石力学与工程学,2005,24(1):5048-5053.
    [93]邹超英,赵娟,梁锋,等.冻融作用后混凝土力学性能的衰减规律[J].建筑结构学报,2008,29(1):117-138.
    [94]CHO T. Prediction of Cyclic Freeze-thaw Damage inConcrete Structures Based on Response SurfaceMethod[J]. Construction and Building Materials,2007,21 (12):2031-2040.
    [95]张彦,李国平.海洋环境对桥梁下部结构的影响[J].海洋工程,2006年第1期:35-40
    [96]贾超,纪圣振,张峰.冻融作用对混凝土跨海大桥桥墩稳定性影响研究[J].四川大学学报:工程科学版,2010,42(3):7-13.
    [97]Sanderson, T. J..Ice mechanics-Risks to offshore Structures, Graham & Trotman, London, 1988.
    [98]Michet, B.. Ice Mechanics[J].Quebec Les Presses deL 'University Laval,1978:65-76.
    [99]Schwarz, J. and Weeks, W. F. Engineering properties of ice[J]. Journal of Glaciology, Vol. 19, No.81,1977.pp.49-530,
    [100]李志军,隋吉学,严德成,孟广琳,张明元.辽东湾平整固定冰冰温及其他物理特征的测定与分析[J].海洋学报.1989,07.Vol.11,No.4:525-533
    [101]蔡琳等.中国江河冰凌[M].黄河水利出版社.2008.01
    [102]Gold L.W.. Engineering Properties of Fresh—water Ice[J]. Journal of Glaciology,1977, 19(81):197-212.
    [103]Hawkes I. Mellor M. Deformation and Fracture of Ice under Uniaxial Stress[J] Journal of Glaciology.1972,11(61):103-131.
    [104]Haynes F D. Mellor M. Measuring the Uniaxial Compressive Strength of Ice[J]. Journal of Glaciology.1977,19(81):213-233.
    [105]Sinha N K. Rate Sensitivity of Compressive Strength of Columnar grained Ice[J]. Experimental Mechanics,1981,6:210-218
    [106]Rice J. R., Thomson R.. Ductile versus brittle behavior of crystals[J].Phil. Mag.,1974, 29:PP23-97.
    [107]李洪升,岳前进,郑靖明,朱元林.海冰韧脆转变特征的宏微观分析[J].冰川冻土.2000.03:48-52
    [108]岳前进,任晓辉,陈巨斌.海冰韧脆转变实验与机理研究[J].应用基础与工程科学学报.2005.03:35-41
    [109]Glen J.W.,1955,The creep of polycrystalline ice. Proc. R. Soc. London Ser. A, 228:519-538
    [110]Michel, B. Paradis, M. Analyse statistique des lois du fluage secondaire de la glace de riviere et de lac. University Laval. Faculty des Sciences et de Genie. Department de Genie Civil. Section Mecallique des Glaces. Rapport GCS-76-02.1976.
    [111]Sanderson, T. J.. Ice mechanics-Risks to offshore Structures, Graham & Trotman, London, 1988..
    [112]Stephen J. Jones. High Strain-Rate Compression Tests on Ice[J].J. Phys. Chem. B, Vol.101,No.32,1997:6099-6101
    [113]柳春图,段梦兰.海冰工程中的结构力学问题[J].机械强度.1995.09:7.pp:20-35
    [114]张效忠,白若阳,江爱民.海冰的本构关系及其抗压强度研究[J].力学与实际.2009,12:50-52/45
    [115]Schulson, E. M, Lim, P.N. and Lee, R.W.. A brittle to ductile transition in ice under tension, Philosophical Magazine, Vol.49, No.3, pp.353-363,1985.
    [116]Dykins, J. E.. Ice engineering tensile properties of sea ice grown in confined systems, Naval Civil engineering Laboratory, Technical Report R689, Port Hueneme, California,1970.
    [117]Nadrau, J. P., Michel, B.. Ice properties in relation to ice forces, Proceedings of the Second State-of-the-Art Report IAHR Working Group on Ice, Vol.4, pp.1-53.1984.
    [118]Dykins, J.E.. Ice engineering-material properties of saline ice for a limited range of conditions, Naval Civil engineering Laboratory, Technical Report R720, Port Hueneme, California,1971.
    [119]Butkovitch, T.R.:Strength studies of sea ice. Snow, ice permafrost Research Establishment, Research Report R-R20, Willamette, Illinois,1956.
    [120]Paige, R.A. and Lee, C.W.:Preliminary studies on sea ice in McMurdo Sound, Antarctica, during "Deep Freeze 65". Journal of Glaciology, Vol.6,No.46, pp.515-528,1967.
    [121]Frederking, R. M. W. and Timco, G. W.:Field measurements of shear strength of columnar-grained sea ice, Proceedings of the 8th IAHR Symposium on Ice, Iowa City, USA, Vol. Ⅰ, pp.279-292,1986.
    [122]Mellor,M.. Mechanical Behaviour of sea Ice.U.S.Army Cold Region Reasearch and Engineering Lab, Hanover, CRREL Report 83-1
    [123]Selvadurai, A.P.S., Sepehr, K.. Two-dimensional discrete element simulations of ice-structure interaction[J].Solids and Structure.1999:4919-4940
    [124]Beltaos, S A strain energy criterion for failure of floating ice sheets[J].Can J Civil Eng, 1978,5, pp:352-361.
    [125]Hamza, H. Muggeridge D.B. An analysis of the viscoelastic fracture toughness and crack growth in ice[J]. Cold Regions Science and Technology.Vol.9, Issue 3, August 1984, pp 249-258
    [126]Cole D.M. The microstructure of ice and its influence on mechanical properties [J]. Engineering Fracture Mechanics.Vol.68, Issues 17-18,2001(12), pp:1797-1822
    [127]Moslet P. O. Medium scale ice-structure interaction[J].Cold Regions Science and Technology.2008,doi:10.1016/j.coldregions.
    [128]Feng Xiong, Gang Xu. Numerical Investigation of River Ice-Bridge Pier Interaction[J].ASCE,pp.48-57,2009
    [129]Hill, R.. The mathematical theory of plasticity, The Oxford Engineering Science series, Oxford University Press,1950.
    [130]Reinicke, K.M., Remer, R. A procedure for the determination of ice forces-illustrated for polycrystalline ice, Proceedings of the 5th IAHR Symposium on ice, Lulea, Sweden, pp. 217-238,1978.
    [131]Nadreau J P.,Michel B.. Yield and failure envelope for ice under multiaxial compressive stresses. Cold Region Sci. Tech.,1986, Vol.13(1):75-82.
    [132]Bhat S U. Xirouchakis P C. Rigid plastic analysis of floating Plates. J.Eng.Mech., 1985,111(6):815-831
    [133]Karr D G. Three-dimensional analysis of ice sheet indentation:lower bound Solution. OMAE86 Ⅳ(1986):472-478
    [134]Nordgren R P.Plastic analysis of ice contact problems ASME J. Appl.Mech.1988,Vol.55:73-80
    [135]Ralston T D. An analysis of ice sheet indentation. Fourth International IAHR Symposium on Ice Problems, Lulea, Sweden,1978:7-9
    [136]Ralston T D..Plastic limit analysis of sheet ice load on conical Structure. In:Physics and Mechanics of Ice, Springer-Verlag, New York,1980:289-308
    [137]Smith T R., Schulson M E.,Schulson E M..The fracture toughness of porous ice with and without particles,OMAE'90,1990,Vol.Ⅳ:241-246.
    [138]Derradji-Aouat, A.,2000. A unified failure envelope for isotropic freshwater ice and iceberg ice. ASME/OMAE-2000, Int. Conference on Offshore Mechanics and Arctic Engineering, Polarand Arctic section, New Orleans, US,
    [139]Derradji-Aouat, A., Evgin, E.,2001. Progressive damage mechanism for ductile failure for polycrystalline ice and its complementary brittle failure criterion. ASME/OMAE-2001, Polar and Arctic section, Rio de Janeiro, Brazil
    [140]Jones, S.J.,1982. The confined compressive strength of polycrystalline ice. Journal of Glaciology 28,171-177.
    [141]Durham, W. B., Heard, H. C.,& Kirby, S. H. Experimental deformation of polycrystalline H2O ice at high pressure and low temperature-Preliminary results[J]. American Geophysical Union and NASA, Lunar and Planetary Science Conference,14th, Houston, TX, Mar.14-18,1983) Journal of Geophysical Research, vol.88, Nov.15,1983, p. B377-B392.
    [142]RIST, M.A. MURRELL S.A.F. Ice triaxial deformation and fracture[J]. Journal of Glaciology, Vol.40, No.135,1994,pp:305-318
    [143]Gagnon, R.E., Gammon, P.H.,1995. Triaxial experiments on iceberg and glaciers ice. Journal of Glaciology 41 (139),528-540.
    [144]Sammonds, P.R., Murrell. S.A.F.,1989. A laboratory investigation of the fracture of multi-year ice under triaxial stresses at_20 jC and_40 jC. Journal of Offshore Mechanics and Arctic Engineering, JOMAE 111,280-288.
    [145]Melanson P.M. Meglis I.L. Jordaan.I.J. Stone B.M. Microstructural change in ice:Ⅰ. Constant-deformation-rate tests under triaxial stress conditions[J]. Journal of Glaciology. 1999, vol.45, no.151, pp.417-437
    [146]Zhenhui Liu, J(?)rgen Amdahl, Sveinung L(?)set. Plasticity based material modeling of ice and its application to ship-iceberg impacts[J]. Cold Regions Science and Technology, (2010), doi:10.1016/j.coldregions.2010.10.005
    [147]Vivatrat V., Chen V., Bruen F J. Ice Load prediction for action nearshore. Cold Regions Sci. and Tech.,1984,10:75-87
    [148]李洪升,岳前进,沈梧.海冰的粘性效应及模型理论[J].大连理工大学学报.1993.03:145-149
    [149]Sinha N K.. Theology of columnar grained ice.Exp. Mech.1978,Vol.18(12):464-470
    [150]Sinha N K..Grain-boundary sliding in polycrystalline materials. Philosophical Magazine A,1979,Vol.40(6):825-842
    [151]Duszek M. Perzyna P.. Plasticity of damaged solids and shear band localization[J]. Archive of Applied Mechanics. Vol.58, Number 5 (1988),380-392
    [152]陈星,徐继祖.海冰的粘塑性蠕变模型[J].工程力学.1993,12:52-57
    [153]Sammonds, P.R., Murrell, S.A.F., Rist, M.A.,1998. Fracture of multi-year sea ice. Journal of Geophysical Research 103 (C10),795-815.
    [154]Sammonds, P.R., Murrell, S.A.F.,1989. A laboratory investigation of the fracture of multi-year ice under triaxial stresses at_20 jC and_40 jC. Journal of Offshore Mechanics and Arctic Engineering, JOMAE 111,280-288.
    [155]Jordaan, I.J. and McKenna, R.F.,1989. Processes of deformation and fracture of ice in compression. In:Proceedings IUTAM/IAHR Symposium on Ice-Structure Interaction, St.John's, Nfld., pp.283-310.
    [156]Karr, D.G. and Choi, K.,1989. A three-dimensional constitutive damage model for polycrystalline ice. Mech. Mater.,8:55-66.
    [157]张子明,王嘉航,宋智通.寒冷气候下混凝土的破坏机理[J].红水河,2004,23(1):67-70.
    [158]Fagerlund G..Prediction of the service life of concrete exposed to frost action. Study on concrete technology[C]. Swedish, Cement and Concrete Research Institute,1979.
    [159]GB/T 50081—2002,普通混凝土力学性能试验方法标准[S]
    [160]Lemaitre J. How to use damage mechanics [J].Nuclear Engineering and Design,1984, 80(1):233-245.
    [161]张全胜,杨更社,任建喜.岩石损伤变量及本构方程的新探讨[J].岩石力学与工程学报.2003(07):30-34
    [162]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [163]陈诚.桥梁设计船撞力及损伤状态仿真研究[D].同济大学,2006.03
    [164]MALVAR L J. A plasticity concrete material model for DYNA3D[J]. International Journal of Impact Engineering,1997,19(910):847-873.
    [165]Sodhi, D. Haehnel,R. Crushing ice forces on structures. Journal of Cold Region Engineering,2003 Vol.17, No.4vp153-170.
    [166]陈伟斌.海冰与孤立桩柱碰撞破碎模型[J].海洋环境科学.1995.05.Vo1.14No.2:74-80
    [167]沈照伟,王永学.渤海海冰的物理模拟及其对直桩的作用[J].中国海上油气.2003.06:36-38
    [168]Timco, G.W.. Indentation and Penetration of Edge-Loaded Fresh water Ice Sheets in the Brittle Range, Proc. Fifth conference on offshore mechanics and arctic engineering.Tokyo,1986
    [169]屈衍,基于现场实验的海洋结构随机冰荷载分析[D].大连理工大学,2006
    [170]Sodhi,D.S..Crushing failure during ice-structure interaction Engineering Fracture Mechanices. Cold Regions Science and Technology,2001,pp:1889-1921
    [171]Sodhi,D. (1991). Effective pressures measured during indentation tests in freshwater ice. Proc.6th Int. Cold Regions Eng. Specialty Conf. Hanover NH, pp.619-627.
    [172]Bjerkas,M. Moslet,P.O.Jochmann,P. Loset,S.. Global ice loads on the lighthouse Norstomsgrund in the winter 2001. Proc.17th Cof. Port and Ocean Engineering under Arctic Conditions. Trondheim, Norway, June 16-19,2003.Vol.2,pp:829-838
    [173]Takeuchi, T. Akagawa,S., Saeki,H., Nakazawa,N., Hirayama,K.. Ice load equation for level ice sheet. Int, J. Offshore Polar Eng.2009.09
    [174]Shkhinek, K.Karna,T.Kapustiansky,S.Jilenkov,A.. Influence of ice speed and thickness on ice pressure and load.16th International Conference on Port and Ocean Engineering under Arctic Conditions(POAC-01).Ottawa,Canada,August 12-17.Vol.2,pp:657-668
    [175]Swamidas, A., Jordaan I., Jones, S. and McKenna,R. (1991). Modeling of the ice failure processes in ship/ice interaction Proc.11th Int. Conf. Port Ocean Eng., St. John's, Canada, Sept.24-28,1991.pp.685-703.
    [176]Karna,T., Muhonen, A.and Sippola, M. (1993b). Rate effects in brittle ice crushing. Proc.12th POAC Conf. Hamburg, Vol.1, pp.59-79.
    [177]Karna j,Kamesaki K,Tsukuda H.A numerical model for dynamic ice-structure interaction[J].Computers and Structure.1999:645-658
    [178]Kamesaki, K., Yamauchi, Y and Karna, T. Ice force as a function of structural compliance. Proc.13th IAHR Ice Symposium. Beijing,1996. Vol. I, pp.395-402.
    [179]Morten Bjerkas.Global Design Ice Loads Dependence of Failure Mode[J].International Journal of Offshore and Polar Engineering.Vol.14,No. 3,2004:189-195
    [180]岳前进等.冰与柔性结构作用挤压破坏形成的动荷载[J].工程力学,2001,21(1):202-208
    [181]Peyton H R. Sea ice forces pressures against structures[J]. National Research Council of Canada Technical Memorandum,1968,92:117-123
    [182]李晨光.作用在板桩墙上冰力的模型试验与分析[D].天津大学,2008,05
    [183]齐念.冰激桥墩振动模型试验研究与冰荷载的识别[D].大连理工大学,2009,06
    [184]Croasdale, K.R., Morgenstern, N. R., Nuttall, J. B.. Indentation tests to investigate ice pressures on vertical piers[J].Jnl. of Glaciology,Vol.19,No.81,1977
    [185]Claude Daley, Jukka Tuhkuri, Kaj Riska. The role of discrete failure in local ice load[J]. Cold Regions Science and Technology,Vol.27,1998:197-211
    [186]Karna T.etc.A flaking model of dynamic ice-structure interaction VTT Building Technology,1997
    [187]Dugdale D S. Yielding of steel sheets containing slits [J]. J Mech Phys Sol,1960,8: 100-104
    [188]Barenblatt G. The mathematical theory of equilibrium cracks in brittle fracture [J]. Adv Appl Mech,1962,7:55-129.
    [189]MI Y, CRISFIELD M A, DAVIES G A O. Progressive delamination composite using Interface elements[J]. Journal of composite materials.1998.32:1246-1272.
    [190]Geubelle, P.H., Baylor, J., Impact-induced delamination of laminated composites:a 2D Simulation[J].Composites Part B Engineering,1998,29(5):589-602
    [191]Tvergaard, V, Hutehinson, J.W. The relation between crack growth resistance and fracture process Parameters in elastic-plastic solids[J].Journal of the Mechanics and Physics of Solids,1992,40(6):1377-1397
    [192]Needleman A. Micromechanical modeling of interfacial decohesion. Ultramicroseopy[J].1992.40(3):203-214
    [193]Rene de Borst. Numerical aspects of cohesive-zone models [J].Engineering Fracture Mechanics.2003.70(2003):1743-1757
    [194]Turon A, Camanho P P, Costa J,et al. A damage model for the simulation of delamination in advanced composites under variable-mode loading [J]. Mechanics of Materials,2006,38: 1072-1089.
    [195]Da'vila C G, Camanho P P, Turon A. Cohesive elements for shells [R]. NASA/TP-2007-214869,2007.
    [196]Aymerich F, Dore F, Priolo P. Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements [J]. Composites Science and Technology,2007.
    [197]Aoki Y, Suemasu H, Ishikawa T. Damage propagation in CFRP laminates subjected to low velocity impact and static indentation [J]. Adv Composite Mater,2007,16(1):45-61.
    [198]Johnson H E, Louca L A, Mouring S E,et al. Damage modeling of large and small scale composite panels subjected to a low velocity impact [R]. Health and Safety Executive,2006.
    [199]Turon A. Simulation of delamination in composites under quasi-static and fatigue loading using cohesive zone models [D]. Girona, Spain:University of Girona,2006.
    [200]Camanho P P, Davila C G, de Moura M F. Numerical simulation of mixed-mode progressive delamination in composite materials [J]. Journal of Composite Materials,2003, 37(16):1415-1438.
    [201]Camanho P P. Advances in the simulation of damage and fracture of composite structures [C]//X Reunionde Usuarios de ABAQUS,2005.
    [202]Hirayama K, Schwarz J, Wu HC. Ice forces on vertical piles:Indentation and penetration. In:Proceedings of 3rdIAHR Ice Symposium (IAHR'75), Hanover, NH. pp:429-45.
    [203]Taylor T. An experimental investigation of the crushing strength of ice. In:Proceedings of 6th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC-81), Quebec, vol.1. pp:332-44.
    [204]Fransson L.Ice load on structures.Ice testing in Lulea Harbour 1993.Cold Tech Report 1995:06.
    [205]Marna T,Nyman T,Vuorio J, Jarvinen E.Results from indentation tests in sea ice.In: Proceedings of]2th International Conference on offshore Mechanical andArctic Engineering, (OMAE-93),Glasgow.vol.Ⅳ.p.177-85.
    [206]Kawamura M,Takeuchi T,Akagawa S,Terashima T,Nakazawa N,Matsushita H Aoshima M,Katsui H,Sakai M. Ice-structure interactions in medium scale field indentation tests.In:Proceedings of 13th IAHR Ice Symposium (IAHR-96),Beijing. voI.Ⅰ.p.228-36.
    [207]Marna T,Muhonen A.Preliminary results from ice indentation using fexible and rigid indentors.In:Proceedings of 10th IAHR Ice Symposium(IAHR一90),Espoo.vol.3.p. 261.75.
    [208]Muhonen A, Marna T,Eranti E,Riska K, Jarvinen E, Lehmus E.Laboratory indentation tests with thick fresh-water ice,vol.Ⅰ.VTT Research Note 1370,Espoo,p.92.
    [209]Kamesaki K,Yamauchi Y,Horikawa T,Kawasaki T,Ishikawa S,Tozawa S.Experimental study on independent failure zone of ice crushing.In:Proceedings of 10th International Symposium Okhotsk Sea Ice & Peoples.p.146-51.
    [210]Kamesaki K, Tsukuda H,Yamauchi Y.Indentation tests with vertically placed ice sheet. In:Proceedings of 13th International Conference on Port and Ocean Engineering under Arctic Conditions(POAC-97),Yokohama,Japan.
    [211]Tuhkuri J.Computational fracture mechanics analysis of flake formation in brittle ice.In: Proceedings of 13th IAHR Ice Symposium(IAHR-96),Bejing.vol.1.p.54-61.
    [212]Karna T,Kamesaki K,Tsukuda H.A numerical model for dynamic ice-structure interaction[J].Computers and Structure.1999:645-658
    [213]Karna T,Kamesaki K,Tsukuda H.A flaking model of dynamic ice-structure interaction. VTT Building TechnolOgy.Internal report RTE38-IR-7/1997,p.51.
    [214]Barrenblatt,G.I.(1959):The Formulation of Equilibrium Cracks during Brittle Fracture-General Ideas and Hypotheses.Axially Symmetric Cracks.Journal of Applied Mathematics and Mechanics(PMM),vol.23,No.3,pp.622-636.
    [215]Dugdale,D.S.(1960):Yielding of Steel Sheets Containing Slits.Journal of Mechanics and Physics of Solids,Vol.8,pp.100-104.
    [216]Hillerborg,A.(1983):Analysis of one Single Crack.Fracture Mechanics of Concrete,F.H. Wittmann(ed.),Elsevier Science Publishers,Amsterdam,pp.223-248.
    [217]Hillerborg,A.,Modeer,M.and Petersson,P.E.(1976):Analysis of Crack Formation and Crack Growth in Concrete by means of Fracture Mechanics and Finite Elements.Cement and Concrete Research,Vol.6,pp.773-782.
    [218]A.Gurtner,I.Konuk,O.T.Gudmestad,P.Liferov,Innovative Ice Protection for Shallow Water Drilling:Part Ⅲ—Finite Element Modeling of Ice Rubble Accumulation,in: ASME Offshore Mechanics and Arctic Engineering Confefence,Estoril,Portugal,2008.
    [2]9]LSTC(2006):LS-DYNA Users Manua].Livemore Software Technology Corporation, Livemote,USA,May 2007,ed.Hallquist,J.O.,2206 p.
    [220]郭术义,陈举华.流固耦合应用研究进展[J].济南大学学报,2004,18(2):123-126.
    [221]Zienkiewiez O C, Bettess P.Fluid—structure dynamic interaction and wave force, an introduction to numerical treatment.Int.J.Num.Meth.Engrg:1978,13(1):1-16.
    [222]李明.冰激柔性直立结构振动的试验研究[D].天津大学,2004.12
    [223]Sanderson T.J.O..Ice mechanics:Risks to offshore structure.Graham and Troutman, London,1988.
    [224]Masterson D M.Frederking R M W,Jordaan I J,Spencer PA.Description of multi-year ice indentation tests at Hoobson's Choice Ice Island-1990.Proceedings of the 12th International Conference on Offshore Mechanics and Arctic Engineering(oMAE),Vol. Ⅳ.Glasgow.Scotland,UK,1993,P.145-55
    [225]Daley, C.,1994.Compilation of Medium Scale Ice Indentation Test Results and Comparison of ASPPR.Report by Daley R&E submitted to National Research Council Canada,March 1994,70 pp.
    [226]Kamesaki, K., Yamauchi, Y and Karna, T. Ice force as a function of structural compliance. Proc.13th IAHR Ice Symposium. Beijing,1996. Vol.Ⅰ, pp.395-402.
    [227]Christensen,F. T., Timco, G.W. and Nwogu, O.G. (1994). Compliant model tests with the Great Belt West Bridge piers in Ice. Part Ⅱ:Analysis of results. Cold Regions Science and Technology2 3 (1995)149-164
    [228]青岛海湾大桥一期工程初步设计阶段专题研究-工程海冰分析研究专题报告
    [229]青岛海湾大桥一期工程初步设计阶段专题研究--桥梁基础局部冲刷试验研究专题报告
    [230]李金玉,彭小平,邓正刚,等.混凝土抗冻性的定量化设计[J].混凝土,2000(12):61-62.
    [231]林宝玉,蔡跃波,单国良.保证和提高我国港工混凝土耐久性措施的研究与实践[C]阎培渝,姚燕.水泥基复合材料科学与技术.北京:中国建材工业出版社,1999:16-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700