用户名: 密码: 验证码:
金刚石—硬质合金复合齿及其钻头的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内冲击凿岩用的潜孔锤钻头、钎头以及牙轮钻头等,其切削具一般都采用YG类硬质合金柱齿,由于硬质合金的耐磨性相对较低,在钻进坚硬岩层时,钻头的寿命和钻进时效都很低; 金刚石超硬复合材料钻头具有较高的耐磨性,已被广泛地应用于钻井工程,但由于其抗冲击性能较差,不适于冲击凿岩钻进,只能用于回转钻进。砂卵砾石地层的钻进,一直是钻探工作者想要解决的难题,地层复杂,钻进过程中钻头即要承受岩石的磨损,又要承受岩石的冲击; 其他钻头及钻进方法应用效果也不十分理想,使用普通硬质合金球齿,对一般卵石地层有一定的适应性,但遇到大的漂石时,钻头切削齿损坏严重而不进尺。
    为了解决潜孔锤钻进硬岩以及砂卵砾石地层钻进的难题,研制一种具有较高耐磨性,同时又具有较高抗冲击性能的复合材料,来替代传统的硬质合金齿,是十分必要和迫切的。国内、外科技工作者对金刚石(CBN)—硬质合金复合齿进行了大量研究,并取得了一定的成果。但仍存在一定的问题:(1)如何解决金刚石(CBN)在高温热压烧结过程中的热损伤问题; (2)以廉价铁代替昂贵的钴作为粘结剂的胎体配方; (3)解决复合齿烧结模具的材质与结构优化设计问题,以降低复合齿加工成本,提高复合齿机械性能; (4)微量元素及稀土元素的添加方式、数量对复合齿性能的影响及作用机理。
    本文总结并综合分析了国内外金刚石、立方氮化硼烧结体的制造方法,在这些理论和导师的正确指导下,解决复合齿的结构、配方和制造工艺流程中的难题,利用低温活化热压的方法,成功研制了金刚石(CBN)—硬质合金复合齿,利用金刚石与立方氮化硼表面金属化,解决了高温热压烧结时对金刚石的热损伤问题以及金刚石、立方氮化硼与基体结合包镶问题,同时通过合理添加稀土方式和添加量,基本解决以铁代钴复合齿技术难题。
    由于金刚石(CBN)是非金属,与一般金属或合金间有很高的界面能,即使在较高的温度和压力下,金刚石表面也不能被低熔点金属或合金所浸润,小颗粒的金刚石只是仅仅机械被包镶于金属胎体中,而不是被冶金焊接,其粘接性差。由于金刚石(CBN)—硬质合金复合齿的烧结温度在1050℃左右,对普通金刚石的热损伤严重,大大影响了复合齿的性能。本文通过金刚石(CBN)表面采用镀覆技术(真空蒸镀W、化学镀Ni-W-B、Ni-W-P)解决了上述难题,使复合齿的性能得到了保证和提高。
    通过对超硬复合齿烧结模具的结构和材料优化设计,大大降低了复合齿的加工成本,提高了其机械性能,有利于优化烧结参数(烧结压力、烧结温度、保温保压时间)和复合齿结构的优化。陶瓷烧结压头的使用相对于石墨压头,模具寿命提高了20多倍,复合齿加工模具成本降低超过了100%,同时使复合齿的抗弯强度、磨耗比、抗冲击韧性大大提高,
At the present, the cutters used in button bits, rock bits and roller bits are mainly cobalt tungsten carbide in our country. Because of their low abrasive resistance, the bit service life and drilling efficiency were very low when the hard and extremely hard formations were being drilled. Owing to its high abrasive resistance, the diamond composite material is widely used in drilling operations. However, its toughness against impact is too low to be used in percussion drilling, only can it be used in rotary drilling. Drilling in the gravel formation is the problem that drilling engineers want to overcome, complex formations make bit endure not only wearing and tearing of rocks but also impacting of rocks. Other drilling methods are not good for this kind of formation, and common tungsten carbide button bit is fit for ordinary gravel formation, but when encountering big rock whose diameter is bigger than diameter of drill hole, cutting button can’t penetrate.
     In order to solve the problems encountered by DTH hammer in hard rock drilling and gravel formations, make bit life longer, increase rate of penetration and decrease drilling cost, it is necessary and urgent to develop a new type composite material with high abrasive resistance and high toughness against impact.
    Although there are a lot of studies on diamond and cubic boron nitride enhanced tungsten carbide composite button, and some productions are achieved, but there are some problems such as: Firstly, how to solve the heat corrosion of diamond during the process of sintering at high temperature and pressure; Secondly, studying on matrix of substituting cheap iron for costly cobalt; Thirdly, how to solve material and structure designing of sintering mould, in order to reduce machining cost of composite button and improve mechanical performance of composite button; Fourthly, adding modes & quantity of minim element and rare earth, and its effecting mechanism.
     This paper summarizes and analyzes the making methods of diamond, cubic boron nitride sintering body, and on basis of these theories and tutor’s right guidance, it solves the problems of structure, directions and making techniques, by the sintering method of low temperature activation hot-pressing, diamond and cubic boron nitride enhanced tungsten carbide composite button is successfully made. By coating on diamond and cubic boron nitride, it solves the problem of heat corrosion of diamond, combined problem of diamond, cubic boron nitride and matrix, in the same time, by reasonable adding mode and quantity of rare earth, it solves technical problems of substitute iron for cobalt composite button.
    As diamond and cubic boron nitride are non-metal and there are very high boundary energy between diamond and cubic boron nitride and matrix or ally, so diamond and cubic boron nitride surface can’t be sintered by low melting point metal or alloy, with bad bonding between diamond and cubic boron nitride and metal matrix. Because the sintering temperature of diamond and
    cubic boron nitride enhanced tungsten carbide composite button is about 1050℃, ordinary diamond will suffer serious heating corrosion, then affecting performance of composite button. This paper uses coating technology of diamond and cubic boron nitride such as vacuum metal deposition, chemical coating Ni-W-B, Ni-W-P to solve these problems, and makes performance composite button assure and improve. By optimized designing on structure and material of super-hard composite button, it reduces making cost of composite button, and improves the performance of composite button, then is in favor for optimize sintering parameters such as sintering pressure, sintering temperature and time of keeping pressure and temperature. Life-span of ceramic sintering pressing rod is more 100 times than Life-span of graphite sintering pressing rod, and the mould cost of composite button reduces 600%, bending strength, wear ratio, toughness against impact improve greatly, then it is in favor for realizing rare earth and substitute iron for cobalt of composite button. Because of lack of cobalt resource, it is very important to substitute iron for cobalt. Rare earth that is called industrial monosodium glutamate has been applied successfully in improving material performance. But rare earth is seldom applied in heat-pressing diamond tools or diamond composite materials. The main reason is that rare earth is very easily oxidized during the process of ball grinding, in the same time adding quantity of rare earth is very little, it is very difficult to assure rare earth evenly dispersed, technology repeating and stability. So, expect rare earth middle alloy powder, adding modes of rare earth oxide, carbide, chloride, hydride, nitride and etc. are washed out. But directly adding mode of rare earth middle alloy powder has good effect, such as the patent of RE-Cobalt middle alloy powder is applied successfully in producing tungsten carbide was reported. Rare earth middle alloy powder solves the problem that rare earth is evenly dispersed in metal felting materials. The cost of producing rare earth middle alloy powder is very high, and the price of common middle alloy powder is about 2000yuan/Kg, other middle alloy powders need be made specially, then it is the main factor that restricts rare earth middle alloy powder be applied directly in heat-pressing diamond composite material. This paper adopts direct adulterating method to do adding rare earth experimentation; in the same time do some experiments of matrix of substituting iron for cobalt composite button, and gains success. Bending strength, wear ratio and toughness against impact of some kind of substituting iron for cobalt composite button achieves and indeed exceeds the performance of common super hard composite button. Testing results on laboratory condition show that its hardness is more than HRA88, equals to conventional tungsten carbide, and that its abrasive resistance is 10~40 times than conventional tungsten carbide, and its most toughness against impact is more than 200 Joules, its least toughness against impact is more than 120 Joules. Therefore, theoretically, this super hard composite body has very high mechanical properties that can meet the need of percussion drilling, and can solve the problems encountered with conventional tungsten carbide button bit and drilling in complex gravel formation. The results during the process of drilling on micro-drilling experiment station, field practical drilling in gravel formation, drilling in drilling hall, drilling on percussion drilling station and field percussion drilling show that composite
    buttons and its bits meet drilling needs. During the development, I have optimized the formula and sintering parameters of the super hard composite body. Its optimum sintering temperature is from 1050℃ to 1060℃, the optimum pressure of graphite sintering mould is from 40MPa to 55MPa and the optimum pressure of ceramic sintering mould is from 60MPa to 80MPa, and the optimum sintering time from 3 minutes to 5 minutes. Upon the thorough analysis on diamond & cubic boron nitride enhanced super hard composite button, substituting iron for cobalt super hard composite button, and indoor & field drilling experiments of composite button bits, it shows that: Firstly, using technology of coating on diamond surface, there is crystal abnormity area between diamond and matrix, linking mode of diamond surface and crystal abnormity area is microcosmic inlaid mode, and it has strong resistance to diffusing of carbon element, and then protects diamond very well; in the same time makes diamond and matrix alloy have high combined strength, improves toughness against impact of composite button. Secondly, because of adding boron mode of chemical coating cobalt & boron, it make boron element disperse evenly in super hard composite button, and reacts with carbon in diamond surface to form B4C that enhanced diamond crystal interface. In the other hand, boron can react with cobalt to form chemical compound that reduces the presence of single-phase cobalt in super hard composite body system, and then improves the thermal resistance of the super hard composite body. Thirdly, because of adding phosphor mode of chemical coating cobalt & boron, it make phosphor element disperse evenly in super hard composite button, phosphor, nickel & phosphor alloy adsorbing on the surface of nickel and cobalt grains, the surface energy of these particles is decreased largely, this made it possible to sinter tungsten carbide cobalt hard metal at low temperature; Fourthly, according to powder metallurgy pressing theory, and combining with practical studies of diamond & cubic boron nitride tungsten carbide, this paper designs reasonable sintering mould of composite button, then improves life-span and low making cost of mould, and make composite button density & rigidity be improved. By optimizing sintering mould, it assures that sintering parameters optimization and improving performances of super hard composite button. The ceramic pressing rod can support more than 100 million Pa even if the sintering temperature is at 1100℃, but graphite pressing rod can support 20 to 50 million Pa, resisting intensity of pressure of ceramic pressing rod is very higher than graphite pressing rod; Substituting conventional mould for optimized mould, it assures the performance of composite button and low making cost. Fifthly, substituting iron for cobalt lows the cost of composite button, and solves the practical problems in the strategic altitude. Sixthly, diamond & cubic boron nitride enhanced tungsten carbide and rare earth substituting iron for cobalt composite button bits of reasonable formula can solve drilling problems in gravel formation and skidding formation, the bits have good performance of high penetration and long
    life-span. Seventhly, the toughness against impact, wear ratio of diamond & cubic boron nitride enhanced composite button of adding diamond & cubic boron nitride of vacuum coated tungsten is higher than using uncoated diamond & cubic boron nitride. Eighthly, diamond & cubic boron nitride enhanced composite button has good economical and social benefits. In general, this paper combines coating technology of single crystal diamond and cubic boron nitride, substituting iron for cobalt formula, rare earth & microelement adding mode, optimizing designing of sintering mould, optimizing parameters reasonably, then improves the performances of composite button and low the making cost; it studies from theory to practice and gains some practical results. Room and field drilling experiments and analyzing & testing technology show that super hard composite button have predominant performances.
引文
[1] 耿瑞伦等主编.多工艺空气钻探.北京:地质出版社,1995 年 10 月.
    [2] 杜祥麟等.潜孔锤钻进技术.北京:地质出版社,1988 年 10 月.
    [3] 陈献廷主编.硬质合金使用手册.北京:冶金工业出版社,1986 年 6 月.
    [4] 刘宗平.冲击凿岩工具及其理论基础.北京:地质出版社,1987 年 4 月.
    [5] I.E.Clark. Polycrystalline Diamond Drill Bits in Mining Applications. Advances in Ultrahard Materials Application Technology, Volume Four, Printed in England by Hornbeam Press LTD, 1988.5.
    [6] 刘广志主编.金刚石钻探手册.北京:地质出版社,1991 年 12 月.
    [7] Edited by Liu Guangzhi. Diamond Drilling Handbook. Geological Publishing House, 1992, Beijing, China.
    [8] 汤凤林.金刚石复合材料斯拉乌季契及其钻头.国外探矿工程情报,1986,(3-4).
    [9] 李世忠主编.钻探工艺学.北京:地质出版社,1992 年 6 月.
    [10] 于德礼译.金刚石钻头胎体的设计参数(下)—斯拉乌季契全面钻头.冶金地质探矿技术, 1995,(4).
    [11] 马保松. 钻井工程用超硬材料及钻头的发展. 地质与勘探, 1998, 34(2):50~55.
    [12] Z.Feng, J.E.Field. Dynamic Strength of Diamond Drits. Industrial Diamond Review, 1989,49(3):104~108.
    [13] 马保松,张祖培,郑治川,PDC抗动载测试技术研究,金刚石与磨料磨具工程,2000,(6).
    [14] 马保松,张祖培.提高金刚石工具性能的方法.西部探矿工程,1998,(4).
    [15] E.J.Brookes, T.K.Harris, A.Al-Watban. The Determination of the static flow stress of polycrystalline diamond-SYNDAX3. IDR 1997, (2):51~55.
    [16] 果世驹编著.粉末烧结理论.北京:冶金工业出版社, 1998 年 3 月.
    [17] 李荣久主编.陶瓷-金属复合材料.北京:冶金工业出版社,1995 年 12 月.
    [18] G.Spur and U.Lachmund. Thermo-mechanical stress cycle tests on PCD cutting tool materials. IDR, 1997, (1):27~34.
    [19] Tze-Pin Lin, Michael Hood, A.Cooper, et al. Residual stresses in polycrystalline diamond compacts. Journal of the American Ceramic Society, Vol.77, (6).
    [20] Alexey V. Andreyev. The wetting and bonding of diamond films by high melting point metals in the range of diamond thermodynamic stability, Diamond and Related materials, 1994, (3):1262~1264.
    [21] 黄培云主编.粉末冶金原理.北京:冶金工业出版社,1985 年 11 月.
    [22] 松山芳治等.粉末冶金学.北京:科学出版社,1978 年 4 月.
    [23] P.A.Bex, G.R.Shafto. The Influence of Temperature and Time on PCD Performance. Advances in Ultrahard Materials Application Technology, Volume Three, Printed in England by Hornbeam Press LTD, 1984.12.
    [24] C.Y.Wang, et al. The Role of Coolant in Granite Sawing. Industrial Diamond Review,1995,55(4):156~162.
    [25] F.C.Apple, et al. Measurement of Forces, Temperatures and Wear of PDC Cutters in Rock Cuttings.Wear,1993,169(1):9~24.
    [26] 张祖培.金刚石钻进技术.北京:地质出版社,1985 年 7 月.
    [27] 袁公昱主编.人造金刚石合成与金刚石工具制造.长沙:中南工业大学出版社,1992 年12 月.
    [28] 国家机械工业委员会统编.金属机械性能实验方法. 北京:机械工业出版社,1988 年12 月.
    [29] JB3235-83,人造金刚石烧结体磨耗比测定方法.
    [30] 徐光宪主编.稀土(上册).北京:冶金工业出版社,1995 年 8 月.
    [31] 胡国荣.稀土硬质合金的研究进展及稀土在岩石破碎工具中的应用前景.国外地质勘探技术,1997,(3).
    [32] 许崇海等.稀土对硬质合金刀具材料微观结构和力学性能的影响.稀土,1997, 18(3):55~60.
    [33] 邓秋元.稀土强化硬质合金的机理研究进展.稀有金属,1993,17(6):448~454.
    [34] 袁逸等.钇在钴基合金和硬质合金中的作用.粉末冶金技术,1995,13(2).
    [35] 李规华等.稀土元素在硬质合金中的分布和存在形态.粉末冶金技术,1993,11(2):83.
    [36] A.K. Wojtanowicz, E. Kuru. Mathematical modeling of PDC bit drilling process based on a single-cutter mechanics. Journal of Energy Resources Technology, 1993, Vol.115:247.
    [37] F.C.Appl, C.Carl Wilson. Measurement of force, temperatures and wear of PDC cutters in rock cutting. Wear, 169(1993):9~24.
    [38] 杨建高等.稀土添加剂对 WC-Co 硬质合金孔隙影响的研究.硬质合金,1994,11(1):10.
    [39] 徐西鹏等.稀土在金刚石圆锯片节块烧结中的作用.稀土,1997,18(1):25~28.
    [40] 徐西鹏等.稀土对微粉金刚石磨具使用性能的影响.稀土,1997,18(6):41~44.
    [41] 殷 声.SHS 在超硬材料中的应用. 超硬材料与工程,1994,(3).
    [42] 缪曙霞等.自蔓延高温合成 Ti-Ni 合金.稀有金属,1993,17(6):110~114.
    [43] 李岳.金刚石制品胎体金属的预合金粉末.西部探矿工程,1996,8(6):72.
    [44] 屠厚泽.含金刚石烧结体与 CBN 的研制与发展.超硬材料与工程,1994.(1).
    [45] 孙毓超等.金刚石—金属化学键合的金相学分析.超硬材料与工程,1994,(3).
    [46] 司 勇等.镀 Ti 及合金的金刚石在金刚石工具制造中的应用.金刚石与磨料磨具工程, 1997,4(100):26.
    [47] 余家国等.金刚石颗粒表面化学镀 Ni 及其在树脂磨具中的应用.机械工程材料,1997, 21(1):27.
    [48] Alan Carlus. Super Coatings for Superabrasives. Cutting Tool Engineering, 1997, (6).
    [49] 马保松.长春科技大学博士学位论文,1998 年 4 月.
    [50] 国外硬质合金编写组.国外硬质合金.冶金工业出版社,1976 年 12 月.
    [51] 刘广志. 乘材料科学发展劲风,再促探工科技进步. 探矿工程,1997,(5):20~22.
    [52] 虞星波.WC 基硬质合金新型粘结剂的研制动向.国外硬质合金,1987,(2):1.
    [53] G. S. Upadhyaya,D. Basu.Nickel and iron substituted WC-10 Co hard metals.11th International Plansee Seminar 85,Proceedings,Vol 2,559.
    [54] 杜 挺,韩其勇,王常珍著.稀土碱土等元素的物理化学及在材料中的应用.北京:科学出版社,1995.3.
    [55] 马保松,张祖培,孙友宏.金刚石-CBN-硬质合金复合柱齿的理论分析.地球科学,2000,(3).
    [56] 马保松,张祖培,刘宝昌.热压法制造金刚石-硬质合金复合柱齿的研究,粉末冶金技术,2000,(1).
    [57] 孙毓超,刘一波,王秦生著.金刚石工具与金属学基础.北京:中国建材出版社,1999,10.
    [58] 刘光华编著.稀土固体材料学.北京:机械工业出版社,1907,11.
    [59] 张绍和,杨凯华.金刚石工具预合金胎体粉末制备技术.金刚石与磨料磨具工程,2001(1).
    [60] 杨凯华,段隆臣,胡国荣等.提高人造金刚石钻头的有效途径.探矿工程,1999(1).
    [61] 杨凯华,段隆臣,汤凤林.金刚石表面镀镍试验研究.地球科学,1997(1).
    [62] 臧建兵,赵玉成等.超硬材料表面镀覆技术及应用.金刚石与磨料磨具工程,2000(3).
    [63] 胡国荣,刘业翔,杨凯华,汤凤林等.化学镀膜金刚石的高温耐腐蚀性研究.金刚石与磨料磨具工程,2001,(2):3~5.
    [64] 蔡家品. 薄壁金刚石钻头的唇面设计.探矿工程,2000,2.
    [65] 马保松,张祖培.金刚石—立方氮化硼—硬质合金复合柱齿的研究.地质与勘探,2000,2.
    [66] 华中杰.金刚石表面金属化.磨料磨具与磨削,1991,No.5.
    [67] 张立,等.稀土硬质合金中稀土添加方式与形态的探讨.硬质合金,1996,No.2.
    [68] 熊纪,等.添加稀土的硬质合金丝拉膜的研究.粉末冶金技术,1994,12.
    [69] 柳春林,等.添加稀土的新型矿用硬质合金的研究.稀有金属和硬质合金,1995.
    [70] 邹庆华.稀土铁基金刚石工具胎体材料.武汉:中国地质大学,1999.
    [71] 藏建兵.Ti、Mo、W、Cr 及其合金镀层与超硬材料之间结合性能的研究.金刚石与磨料磨具工程,1997,(2).
    [72] 何肇其,范雄,吴惠枝.金刚石表面真空蒸镀的微观现象和实用研究.金刚石与磨料磨具工程,1996,(6).
    [73] 林增栋.金属—金刚石的粘结面与金刚石表面的金属化.粉末冶金技术,1989,(7).
    [74] 宋月清,等.稀土元素镧在金刚石工具胎体材料中的作用于机理研究.稀有金属,1998,(1).
    [75] 段隆臣.胎体配方中富铁存在的问题分析.探矿工程,1998,(4).
    [76] 段隆臣.镀膜金刚石工具中富铁的胎体配方的试验研究.地质与勘探,1998,(5).
    [77] 杨凯华,段隆臣,汤凤林等.新型金刚石工具研究.武汉:中国地质大学出版社,2001,6.
    [78] Loens: “Gruidlagenuntensuchungen zum Gattersagen nit Diamantwerkzeugen”.
    [79] B. R. Lawn: “Review indentation fracture : Principles and applications” Vo110 1975
    [80] Kaeuhisa Miyoshi,“Ceramic Wear in indentation sliding Contact Vol.28 No.3.
    [81] Lundberg, B.“Penetration of sock by conical indenters” < Inter J. Rock Mech. And Min Sci> Vol.11 No.6.
    [82] Panl.B “A Preliminary theory of static penetration by a rigid wedge into a brittle.”
    [83] Dutta ,“Theory of Percussive drill bit penetration “ Vol. 13 1976.
    [84] A.Broese Van Groenou“Scratching experiments on Various Ceramic materials “ Vol.30 1975.
    [85] B.R.Lawn,“Micro-fracture beneath point indentations in brittle solids” < J.Mater .Sci> Vol.10 1970.
    [86] M.V.Swain, “A note on the resedral stress about a point indentation impression in a brittle solid”< J.Mater .Sci> Vol.11 1976.
    [87]A.G.Evans “Quasi-static solid particle damage in brittle solid-I. Observations, analysis and implications” Vol.24 1986.
    [88] 陈献庭.硬质合金手册.北京:冶金工业出版社,1986.
    [89] 吉田邦彦.硬质合金工具.张超凡,等译.北京:冶金工业出版社,1987.
    [90] 郝兆印.人工合成金刚石.吉林:吉林大学出版社,1996.
    [91] 张长鑫,张新.稀土冶金原理与工艺.北京:冶金工业出版社,1997.
    [92] 芮松春.低温沉积金刚石—金属化学键合工艺研究.冶矿工程,1994.
    [93] 胡庚祥,钱苗根.金属学.上海:上海科学技术出版社,1980.
    [94] 方啸虎主编.超硬材料科学与技术(上卷).北京:中国建材工业出版社,1998.
    [95] 方啸虎主编.超硬材料基础与标准.北京:中国建材工业出版社,1998.
    [96] 邹庆化.合金固体材料的热粘弹性稳定性.地学探索,1998(1).
    [97] 邹庆化.固体弹性系统的热力学状态.武汉纺织工学院学报,1997(3).
    [98] 潘爱珍,朱从容.纳米技术与纳米材料的现状和展望.浙江海洋学院学报(自然科学版),1999(3).
    [99] 屠厚泽.球状合金钻头在卵砾石层钻进中的应用研究.地质与勘探,2000,(2).
    [100] 邹庆化.中国地质大学(武汉)博士学位论文, 1999 年 10 月.
    [101] 第一机械工业部上海材料研究所上海工具厂编.工具钢金相图谱.北京:机械工业出版社,1979.
    [102] 《高温合金金相图谱》编写组编著.高温合金金相.北京:冶金工业出版社,1977.
    [103] 符夷雄.中国地质大学(武汉)博士学位论文, 1993 年 4 月.
    [104] 屠世润,高越等编译.金相原理与实践.北京:机械工业出版社,1990.
    [105] (苏)В.С.科瓦连科著.金相显示剂手册.李云盛,郑运荣译.北京:国防工业出版社,1983.
    [106] (苏)Е.Ф.埃普什捷因(ЭПШТЕЙН)著. 岩心钻探中硬质合金磨损.席嘉珍,杨树槐译. 北京:地质出版社,1958.
    [107] 张立,胡顺遂,孙宝琦,等.稀土硬质合金中稀土添加形态与方式的探讨.硬质合金,1996,(2):117-120.
    [108] E.A. Almond, Deformation characteristics and mechanical properties of hardmetals, Modern Developmnets in Powder Metallurgy, Vol.20 1998.
    [109] L.Prakash, H.Holleck, F.Thummler, P. Walter, The influence of the binder compostion of Fe-Ni bonded WC tools, R&HM March 1998.
    [110] 刘永福,田兴才,杨金辉,赖和怡.少钴的 WC-Fe/Co/Ni 硬质合金的研制和应用,硬质合金,1989,(3).
    [111] 裴宇韬.中国地质大学(武汉)博士学位论文,1992 年 11 月.
    [112] 段隆臣.中国地质大学(武汉)博士学位论文,1997 年 4 月.
    [113] 胡国荣.中国地质大学(武汉)博士学位论文,1998 年 5 月.
    [114] 张绍和.金刚石钻头设计与制造新理论、新技术.武汉:中国地质大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700