用户名: 密码: 验证码:
含内衬纤维复合材料发射筒力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代军事技术的发展要求未来武器装备具有轻便、机动、灵活快速反应和全方位生存防护能力等特点,因此必须大力发展新型结构和功能材料。发射筒作为一类常用的武器装备,也开始大力开发和应用新型材料,其中纤维增强复合材料具有比强度和比刚度高、耐腐蚀、破损安全性好、疲劳寿命高及可设计性好等优点,是目前比较成熟且应用最为广泛的一类新型材料。但纤维复合材料的抗烧蚀能力和密闭性较差,所以一般在纤维复合材料发射筒的内壁附加一层金属材料,这种发射筒作为一类新型复合材料结构,被广泛应用于武器装备中。
     本文围绕含内衬纤维复合材料发射筒的力学性能展开研究,主要研究工作有以下几个方面:
     1)针对单一玻璃纤维和玻-碳纤维混杂含内衬发射筒,设计了拉伸、水压强度和抗冲击性能试验方案,测定了发射筒的刚度、强度和抗冲击性能参数,对这两类发射筒的力学性能进行了试验研究。试验结果表明,发射筒中玻-碳纤维混杂缠绕层的刚度参数高于玻璃纤维层;含内衬纤维发射筒存在两种不同的强度破坏模式;含钢内衬玻-碳纤维混杂筒的抗冲击性能低于含钢内衬玻纤筒。
     2)对发射筒的纤维缠绕层等效模量进行了研究。推导了单一玻璃纤维缠绕层和玻-碳纤维混杂缠绕层三维等效模量的计算公式,其中玻-碳纤维混杂缠绕层考虑了混杂效应的修正。理论计算值与拉伸试验结果吻合较好,指出了多种纤维混杂复合材料必须考虑混杂效应的影响。
     3)对发射筒的刚度、强度和抗冲击等力学性能进行了理论研究。计算了发射筒抗弯刚度、爆破压强和受冲击时的径向位移等性能参数。理论计算结果表明,含钢内衬玻-碳纤维混杂发射筒的抗弯刚度和爆破压强均高于含钢内衬玻璃纤维发射筒,同时,含钢内衬玻璃纤维发射筒受冲击时的径向位移理论计算值与落锤冲击试验结果相一致。
     4)应用有限元软件对发射筒的刚度、强度和抗冲击等力学性能进行了数值分析。刚度性能方面,发射筒中玻璃纤维缠绕层的三维等效模量有限元计算结果与理论和试验值都吻合的较好,但玻-碳纤维混杂缠绕层却误差较大,这是因为ANSYS等商用有限元软件复合材料单元中不考虑混杂效应;强度性能方面,含钢内衬玻璃纤维发射筒的强度参数与理论结果吻合较好;抗冲击性能方面,含钢内衬玻璃纤维发射筒的径向位移与落锤冲击试验结果基本一致。
     5)根据上述试验研究、理论计算和数值分析方法,对影响发射筒力学性能的因素进行了讨论。分析结果表明,内衬材料参数和厚度的增大对提高发射筒的综合力学性能是有利的,但内衬厚度的增大会显著增加发射筒的质量,同时改变发射筒的承载模式。纤维材料的模量和拉伸强度决定着发射筒的抗弯刚度和强度性能,但断裂韧性的降低影[向其抗冲击性能。同时随着环向纤维层厚度和螺旋向缠绕角度的增大,发射筒强度性能导到增强,但抗弯刚度和抗冲击性能都呈下降趋势,说明发射筒的刚度、强度和抗冲击生能之间存在着相互制约的关系。
Modern military technology requires the ability of portable, mobile, flexible rapid response and omnibearing protective for future army weapon equipment, so new structural and functional materials will be developed. New materials begin to apply on launch canister. Fiber reinforced composite is most widely used because of high specific strength and specific stiffness, high corrosion resistance, high fail safety resistance, high fatigue life and designable. But resistance on erosin and sealing of fiber reinforced composite are poor, so fiber composite launch canister with liner is developed. The new type of composite structure is more widely used in army weapon equipment.
     In this dissertation, mechanical properties of fiber composite launch canister with liner are investigated, the main content includes the following several aspects:
     1) Tensile test, hydrostatic test and impact resistance test for two types of fiber composite launch canister with liner are designed, one is glass fiber composite launch canister with steel liner, the other is glass-carbon hybrid fiber composite launch canister with steel liner. Stiffness, strength and impact resistance parameters of launch canister are determined. The tests show that stiffness of glass-carbon hybrid fiber composite is higher than glass fiber composite; two types of strength failure modes exsit on fiber composite launch canister with liner; impact resistance of glass-carbon hybrid fiber composite launch canister with steel liner is worse than glass fiber composite launch canister with steel liner.
     2)3D equivalent elastic modulus for two types of fiber composite are derived, one is glass fiber composite, the other is glass-carbon hybrid fiber composite which considers hybrid effect. The calculating results for two types of fiber composite agree well with experimental ones, so hybrid effect must be considered for hybrid fiber composite.
     3) Mechanical properties parameters for two types of fiber composite launch canister with liner are calculated, including bending stiffness, burst pressure and radial impact displacement. Theoretical calculation results indicate that bending stiffness and burst pressure for glass-carbon hybrid fiber composite with steel liner are higher than glass fiber composite launch canister with liner, meanwhile, radial impact displacement of glass fiber composite launch canister with liner is consistent with impact resistance test.
     4) Mechanical properties parameters of launch canister by finite element simulation are analysed, including stiffness, strength and impact resistance parameters. At the aspect of stiffness properties,3D equivalent elastic modulus for glass fiber composite from finite element method is agree with theoretical calculation result and test result, but there exist errors between finite element analysis result and theoretical calculation result for glass-carbon hybrid fiber composite because hybrid effect is not considered in commercial finite element software, such as ANSYS. At the aspect of strength properties, working pressure and burst pressure for fiber composite launch canister with liner are agree with theoretical calculation results. At the aspect of impact resistance properties, radial impact displacement of glass fiber composite launch canister with liner is consistent with impact resistance test result.
     5) Influencing factors about mechanical properties of launch canister based on experimental research, theoretical calculation and numerical analysis are discussed. The analysis result shows that comprehensive mechanical properties of launch canister will increase with the growth of liner material parameters and liner thickness, but with the growth of liner thickness, mass of launch canister also increase significantly and bearing mode will change. Stiffness and strength properties of launch canister are determined by modulus and strength of fiber material, but impact resistance properties will decrease with the reduce of fracture toughness, meanwhile, strength properties will increase and stiffness, impact resistance properties will decrease with the growth of fiber thickness ratio and fiber winding angle. It is concluded that mutual restriction relationship exsit between stiffness, strength and impact resistance properties.
引文
[1]Roy A K, Tsai S W. Three-Dimensional effective moduli of orthotropic and symmetric laminates [J]. Journal of applied mechanics,1992,59(1):39-47.
    [2]Xia M, Takayanagi H and Kemmochi K. Bending behavior of filament-wound fiber-reinforced sandwich pipes [J]. Composite Structures,2002.56(2):201-210.
    [3]Bai J B, Hu G K and Bompard P. Mechanical behaviour of ±55°filament-wound glass fibre/epoxy tubes:PartⅢ. Micromechanicalmodel of the the macroscopic behaviour of tubular structures with damage and failure envelope prediction[J]. Composites Science and Technology,1998,58(1):19-29.
    [4]Kaynak C, Salim E, Parnas L, et al. Use of split-disk tests for the process parameters of filament wound epoxy composite tubes [J]. Polymer Testing,2005,24(3):648-655.
    [5]AL-Khalil M F S, Soden P D. Theoretical Through-Thickness elastic constants for filament-wound tubes[J]. Journal of Mechanical,2008,36(1):49-62.
    [6]Sun C T, Li S. Three-dimensional effective elastic constants for thick laminates [J]. Journal of Composite Materials,1988,22(7):629-639.
    [7]谢霞,姜亚明等.多向纤维缠绕玻璃钢筒的纤维体积分数[J].纺织学报,2008,29(9):62-69.
    [8]谢霞,邱冠雄等.多向纤维缠绕复合材料圆筒的研制[J].工程塑料应用,2006,34(10):42-44.
    [9]姜亚明,谢霞等.多向纤维缠绕预制件的纤维取向[J].纺织学报,2006,27(6):36-40.
    [10]孙江,肖琪.考虑纤维波动[+φ/φ]发射角管件的轴向弹性模量计算方法[J].玻璃钢/复合材料,2006,(1):38-41.
    [11]吕毅,吕国志.细观力学方法预测单向复合材料的宏观弹性模量[J].西北工业大学学报,2006,24(6):787-790.
    [12]刘文庆,姜秉元等.泊松比对复合材料层板断裂韧性的影响[J].纤维复合材料,2006,27(2):27-28.
    [13]刘文庆,姜秉元.对称复合材料层板弹性模量和泊松比的计算[J].宇航材料工艺,2003,(3):53-56.
    [14]刘文庆,孟彩玲.对称复合材料层板面内和厚度方向泊松比的计算和关系[J].玻璃钢/复合材料,2000,(6):7-9.
    [15]张昌天,周涛.复合材料等网格圆筒结构刚度的优化设计[J].高科技纤维与应用, 2008,33(3):10-13.
    [16]Zuraida A, Khalid A A and Ismail A F. Performance of hybrid filament wound composite tubes subjected to quasi static indentation[J]. Materials and Design.2007, 28(1):71-77.
    [17]Kum C S, Jung J L, Ku H K, et al. Axial crush and bending collapse of an aluminum/GFRP hybrid square tube and its energy absorption capability [J]. Composite Structures,2002,57(1):279-287.
    [18]Zong B Y, Wang Y M, Li J, et al. Modeling of mechanical behavior and design of microstruction on Particulate reinforced materials[J]. International Journal of Modern Physics B,2009,23(6):1627-1633.
    [19]Ji X, George C H and Chou T W. A dynamic explanation of the hybrid effect[J]. Journal of Composite Materials,1981,15(2):443-461.
    [20]Babu J S S, Kang C G and Kim H H. Dry sliding wear behavior of aluminum based hybrid composites with graphite nanofiber-alumina fiber[J]. Materials and Design, 2011,32(7):3920-3925.
    [21]Zweben C. Tensile strength of hybrid composites [J]. Journal of Materials Science, 1997, (12):1325-1337.
    [22]张大兴,张佐光.CF/GF、CF/KF混杂纤维复合材料混杂效应实验与分析[J].新型碳材料,1997,12(3):46-51.
    [23]张佐光,宋焕成.混杂化是改善CFRP韧性的有效途径[J].北京航空航天大学学报,1990,24(4):71-77.
    [24]张佐光,宋焕成.混杂纤维复合材料的冲击特性[J].航空学报,1989,10(5):267-275.
    [25]赵谦,王善元.单向混杂复合材料拉伸性能的两级分析[J].南京理工大学学报,2007,31(6):766-769.
    [26]孙志杰,吴燕,仲伟虹等.混杂纤维复合材料热膨胀性能及混杂效应的研究[J].新型碳材料,2002,17(1):49-51.
    [27]蔡长庚.基体韧性和铺层方式对角层混杂纤维复合材料拉伸性能的影响[J].纤维复合材料,2003,30(3):30-33.
    [28]张梅.单向芳纶破璃纤维混杂复合材料板材拉伸性能研究[J].玻璃钢/复合材料,2007,(6):35-37.
    [29]徐新生,郑永峰.FRP筋力学性能试验研究及混杂效应分析[J].建筑材料学报,2007,10(6):705-710.
    [30]曾金芳,乔生儒.用人工神经网络预测混杂复合材料混杂效应[J].玻璃钢/复合材 料,2003,(5):7-9.
    [31]曾金芳,乔生儒,丘哲明等.F-12/CF混杂复合材料纵向拉伸性能研究[J].固体火箭技术,2004,27(1):60-63.
    [32]Chang F K, Chang K Y. A progressive damage model for laminated, composites containing stress concentrations[J]. Journal of Composite Materials,1987,21(9):834-855.
    [33]Sleight D W, Knight N F, Wang J T. Evaluation of a progressive failure analysis methodology for laminated composite structures[C]. Kissimmee:American Institute of Aeronautics and Astronautics,1997.
    [34]Pal P, Ray C. Progressive failure analysis of laminated composite plates by Finite element method[J]. Journal of Reinforced Plastics and Composites,2002,21(16): 1505-1513.
    [35]Maim P, Camanho P P and Mayugo J A. Matrix cracking and delamination in laminated composites. Part I:Ply constitutive law, first ply failure and onset of delamination[J]. Mechanics of Materials,2011,43(4):169-185.
    [36]Flatscher T, Pettermann H E. A constitutive model for fiber-reinforced polymer plies accounting for plasticity and brittle damage including softening Implementation for implicit FEM[J]. Composite Structures,2011,93(9):2241-2249.
    [37]程起有,童小燕,姚磊江等.低速冲击下复合材料层合板分层损伤的数值模拟[J].机械强度,2009,31(2):321-324.
    [38]徐颖,温卫东,崔海坡.复合材料层合板低速冲击逐渐累积损伤预测方法[J].材料科学与工程学报,2006,24(1):77-81.
    [39]Schlichting L H, Andrada M A C and Vieira L C C. Composite resin reinforced with pre-tensioned glass fibers influence of prestressing on flexural properties [J]. Dental Materials,2010,26(2):118-125.
    [40]边文凤,王小燕.复合材料容器最佳预压力的研究.固体火箭技术,2007,30(2):146-149.
    [41]边文凤,孙芳,王彪.提高金属内衬容器承载能力的预外压力[J].固体火箭技术,2005,28(1):60-63.
    [42]薛忠民.金属内衬纤维发射内压容器几个设计公式的探讨[J].玻璃钢/复合材料,1991,(4):22-25.
    [43]晏飞.纤维发射/金属内衬复合材料气瓶应力分析[J].固体火箭技术,2011,37(1):46-56.
    [44]林再文,侯涤洋,陈平等.薄壁铝内衬芳纶缠绕高压气瓶的研制[J].纤维复合材 料,2003,30(1):30-32.
    [45]Xia M, Kemmochi K and Takayanagi H. Analysis of filament-wound fiber-reinforced sandwich pipe under combined internal pressure and thermomechanical loading[J]. Composite Structure,2001,51(3):273-283.
    [46]Kobayashi S, Imai T and Wakayama S. Burst strength evaluation of the FW-CFRP hybrid composite pipes considering plastic deformation of the liner[J]. Composites: Part A,2007, (38):1344-1353.
    [47]Sayir M B. Modeling Energy absorption with a damage mechanics based composite material model[J]. Journal of Composite Materials,2009,43(5):427-444.
    [48]Sayir M B, Motavalli M. Fibre-reinforced laminated composite tubes with free ends under uniform internal pressure[J]. Journal of the Mechanics and Physics of Solids, 1995,43(11):1691-1725.
    [49]Curtis J, Hinton M J, Li S, et al. Damage deformation and residual subjected to impact or quasi-static indentation[J]. Composite,2000,31(5):419-433.
    [50]邢静忠,陈利.内外压作用下纤维发射厚壁柱形容器的强度[J].复合材料学报,2010,28(1):124-131.
    [51]邢静忠,陈利,孙颖.纤维发射厚壁柱形压力容器的应力和变形[J].固体火箭技术,2009,32(6):680-685.
    [52]程昕.复合材料固体火箭发动机壳体强度设计[D].南京:南京理工大学,2004.
    [53]赵立晨.金属内衬纤维增强复合材料筒体设计[J].宇航材料工艺,2007,37(2):45-47.
    [54]黄代尧.固体发动机纤维缠绕壳体设计准则判别式[J].固体火箭技术,1997,20(1):9-13.
    [55]陈汝训.固体火箭发动机混杂纤维发射壳体设计分析[J].宇航学报,2000,21(4):129-133.
    [56]陈汝训.纤维发射圆筒压力容器结构分析[J].固体火箭技术,2004,27(2):105-107.
    [57]陈汝训.环向纤维增强钢压力容器设计分析[J].固体火箭技术,2002,25(1):58-60.
    [58]林再文,李涛,孙浩伟等.几种纤维复合材料压力容器的性能对比研究[J].纤维复合材料,2005,21(1):21-23.
    [59]李小明,邱桂杰,刘锦霞.某型复合材料气瓶优化设计[J].纤维复合材料,2007,21(1):21-23.
    [60]肖文刚,王嵘,乔仁海.碳纤维复合材料圆筒受外压结构分析[J].玻璃钢/复合材料,2009,(4):11-13.
    [61]嵇醒,顾星若,戴瑛.纤维缠绕压力容器的爆破压力与纤维强度转换率[J].高科 技纤维与应用,2003,28(4):40-41.
    [62]Huang J C, Wang X W. Effect of boundary conditions on the energy absorption ofcomposite tubes[J]. Advanced Composites Letters,2011,20(3):73-79.
    [63]Ochelski S, Gotowicki P. Experimental assessment of energy absorption capability of carbon-epoxy and glass-epoxy composites[J]. Composite Structures,2009,87(3): 215-224.
    [64]Stapleton S E, Adams D. Core design for energy absorption in sandwich composite[J]. Journal of Composite Materials,2009,43(2):175-190.
    [65]Xiao X R. Modeling Energy absorption with a damage mechanics based composite material model[J]. Journal of Composite Materials,2009,43(5):427-444.
    [66]Stamenovic M, Putic S, Zrilic M, et al. Specific energy absorption capacity of glass-polyester composite tubes under static compressive loading[J]. Metalurgija, 2011,50(3):197-200.
    [67]贺成红,张佐光等.复合材料的冲击吸能与动态黏弹特性[J].北京航空航天大学学报,2007,33(7):851-855.
    [68]赵桂范,王伟东.复合管撞击吸能特性的数值研究[J].哈尔滨工业大学学报,2005,37(2):177-179.
    [69]马晓静.复合材料圆筒件静态吸能特性研究[J].直升机技术,2007,(2):32-36.
    [70]宋毅,王璠.复合材料层合圆柱壳体缓冲吸能的实验与模拟[J].复合材料学报,2009,37(12):140-145.
    [71]宋毅.复合材料圆柱壳缓冲吸能特性的力学分析[D].广州:暨南大学,2008.
    [72]蒋海滨,魏伯荣,陈青等.薄层复合材料的抗平头冲击特性研究[J].航空材料学报,2005,25(3):45-50.
    [73]Lin H J, Lee Y J. Impact-induced fracture in laminated Plates and shells [J]. Journal of Composite Materials,1990,24(11):1179-1199.
    [74]Will M A, Franz T and Nurick G N. The effect of laminate stacking sequence of CFRP filament wound tubes subjected to projectile impact[J]. Composite Structures,2002, 58(2):259-270.
    [75]益小苏,许亚洪,唐邦铭,陈永刚,张子龙.复合材料结构-功能一体化技术与吸能结构的研究[J].工程材料,2004,(9):3-8.
    [76]谢志民,万志敏,杜星文.复合材料管的缓冲吸能研究[J].玻璃钢/复合材料,1999,(2):15-19.
    [77]黄建城,王鑫伟,袁张贤.含薄弱环节复合材料圆管耐撞性研究[J].南京航空航天大学学报,2010,42(4):423-428.
    [78]王熙,卢国兴,余同希.复合材料管状结构的能量吸收性能[J].工程力学,2003,200):155-160.
    [79]Hernandez M H, Douchin B, Collombet F, et al. Influence of winding pattern on the mechanical behavior of filament wound composite cylinders under external pressure[J]. International Journal of Modern Physics B,2009,23(6):1627-1633.
    [80]Uyaner M, Kara M. Dynamic response of laminated composites subjected to low-velocity impact[J]. Journal of Composite Materials,2007,41(24):2877-2896.
    [81]Mamalis A G, Manolakos D E, Ioannidis M B, et al. The static and dynamic axial collapse of CFRP square tubes:Finite element modeling[J]. Composite Structures, 2006,74(2):213-225.
    [82]Will M A, Franz T and Nurick G N. The e ect of laminate stacking sequence of CFRP filament wound tubes subjected to projectile impact[J]. Composite Structures,2002, 58(2):259-270.
    [83]李学斌.正交各向异性圆柱壳的瞬态动力响应分析[J].舰船科学与技术,2000,(5):22-28.
    [84]王安稳,李竹影,章向明.复合材料层合圆柱壳的动力响应与层间应力[J].海军工程大学学报,2000,93(4):1-5.
    [85]彭俊,刘元镛.低速冲击下复合材料层合板的响应过程模拟[J].力学季报,2001,22(1):138-142.
    [86]张涛,刘土光,周晶晶等.低速冲击载荷下加筋板弹塑动力响应分析[J].应用力学学报,2004,21(4):28-32.
    [87]刘理,刘土光,张涛等.非均匀轴向冲击载荷作用圆柱壳的弹塑性动力屈曲[J].兵工学报,2002,23(3):508-511.
    [88]陆赛华,钟宏志.两端自由圆柱壳受局部横向冲击瞬态响应的一个近似级数解[J].工程力学,2004,21(6):65-71.
    [89]周丽军,孙奇涵,门长峰.自由圆管在横向冲击载荷下的动力学行为研究[J].天津工程师范学院学报,2005,15(3):15-20.
    [90]Hufenbach W, Zejewski W, Kroll L, et al. Manufacture and multiaxial test of composite tube specimens with braided glass fiber reinforcement[J]. Journal of Materials Processing Technology,2005,162-163(15):65-70.
    [91]任明法,陈浩然.低速冲击下含金属内衬的纤维发射容器损伤特征[J].玻璃钢/复合材料,2006,(2):3-7.
    [92]Li D S, Wisnom M R. Modeling damage initiation and propagation in composites using interface elements:Proceedings of the 4th International Conference on Computer Aided Design in Composite Material Technology[C]. Southampton: Computational Mechanics Publisher,1994.
    [93]Lo D C. Modeling of damage evolution in thick laminates subjected to low veloeity impact[J]. Mechanics of Thick Composites,1993,162(2):137-150.
    [94]Lammerant L, VerPoest. Modeling of the interaction between matrix Cracks and delaminations during impact of composite plates[J]. Composi Sci and Tech,1996, 56(10):1171-1178.
    [95]崔志华等.复合材料层合板的疲劳特性[M].北京:航空工业出版社,1996.
    [96]Choi H Y, Wu H Y and Chang F K. Effect of laminate configuration and impactor's mass on the initial impact damage of graphite/epoxy composite plates due to line-loading impact[J]. Journal of Composite Material,1992,26(6):804-827.
    [97]Minak G. Low-velocity impact on carbon/epoxy tubes subjected to torque-experimental results, analytical models and FEM analysis[J]. Composite Structures,2010,92(3):623-632.
    [98]Li S, Reid S R, Soden P D, et al. Modelling transverse cracking damage in thin filament-wound tubes subjected to lateral indentation followed by internal pressure[J]. International Journal of Mechanical Sciences,2005,47(4):621-646.
    [99]Carla J, McGeorge, Vaziri R, et al. Simulation of progressive damage development in braided composite tubes under axial compression[J]. Applied Science and Manufacturing,2007,38(11):2247-2259.
    [100]程小全,吴学仁.复合材料层合板低速冲击损伤容限的改进方法和影响因素[J].高分子材料科学与工程,2002,18(3):20-25.
    [101]程小全,寇长河.低速冲击后复合材料层合板的弯曲破坏行为[J].复合材料学报,2001,18(1):115-119.
    [102]Moura M F S, Marques A T. Prediction of low velocity impact damage in carbon-epoxy laminates[J]. Composites Part A:Applied Science and Manufacturing, 2002,33(3):361-368
    [103]杨光松等.损伤力学与复合材料损伤[M].北京:国防工业出版社,1995.
    [104]罗靓,沈真,杨胜春.炭纤维增强树脂基复合材料层合板低俗冲击性能实验研究[J].复合材料学报,2008,25(3):20-24.
    [105]Aktas M, Karakuzu R and Arman Y. Compression after impact behavior of laminated composite plates subjected to low velocity impact in high temperatures [J]. Composite Structures,2009,89(1):77-82.
    [106]Cheng X Q, Al-Mansour A, Li Z N. Residual strength of stitched laminates after low velocity impact. Journal of Reinforced Plastics and Composites,2009,28(14): 1679-1688.
    [107]Ghelli D, Minak G Low velocity impact and compression after impact tests on thin carbon/epoxy laminates[J]. Composites Part B, Engineering,2011,42B(7): 2067-2079.
    [108]Wang B, Wu L Z, Ma L, et al. Low-velocity impact characteristics and residual tensile strength of carbon fiber composite lattice core sandwich structures[J]. Composites Part B, Engineering,2011,42B(4):1359-1368.
    [109]Zheng C L, Ren M F, Zhao W, et al. Delamination prediction of composite filament wound vessel with metal liner under low velocity impact[J]. Composite Structures, 2006,75(1-4):387-392.
    [110]Zhou G, Hill M D. Impact Damage and energy-absorbing characteristics and residual in-plane compressive strength of honeycomb sandwich panels[J]. Journal of Sandwich Structures and Materials,2009,11(4):329-356.
    [111]崔海坡,温卫东,崔海涛.层合复合材料板的低速冲击损伤及剩余压缩强度研究[J].机械科学与技术,2006,25(9):1013-1017.
    [112]崔海波,温卫东.T300/BMP316层合板冲击后压缩强度试验[J].航空动力学报,2008,23(11):2001-2006.
    [113]李永池,王志海等.纤维增强复合材料靶板抗钢球贯穿的工程分析方法研究[J].应力数学与力学,2009,30(3):406-413.
    [114]陈浩然,刘远东.考虑破坏过程含损复合材料层合板动力响应[J],大连理工大学学报2003,43(6):723-728.
    [115]张宝艳,陈祥宝,李敏等.碳纤维增强双马来酰亚胺树脂基复合材料体系冲击后压缩强度研究[J].航空材料学报,2002,22(1):36-40.
    [116]蔡奕霖,周仕刚.玻璃纤维复合材料层合板冲击后的压缩强度[J].纤维复合材料,2010,8(1):8-12.
    [117]张子龙,程小全,益小苏.复合材料冲击损伤及冲击后弯曲强度的等效实验方法[J].实验力学,2001,16(3):314-319.
    [118]益小苏,杜善义,张立同.复合材料工程[M].北京:化学工业出版社,2006.
    [119]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [120]刘锡礼,王秉权.复合材料力学基础[M].北京:建筑工业出版社,1984.
    [121]张晓宏,宋焕成,张佐光.多向混杂纤维复合材料拉伸行为的研究[J].宇航材料工艺,1994,24(5):27-30.
    [122]李卫东,曹海琳,刘毅佳等.胶含量对CF/BF复合材料性能的影响[J].宇航材料 工艺,2010,40(1):49-52.
    [123]宋焕成,张佐光.混杂纤维复合材料的界面[J].北京航空航天大学学报,1990,56(4):17-21.
    [124]宋焕成,邓浩,梁志勇.混杂纤维复合材料混杂效应的理论估算与实验[J].航空学报,1990,11(1):65-69.
    [125]庄懋年,马晓士,蒋潞.工程塑性力学[M].北京:高等教育出版社,1983.
    [126]王仲仁,苑世剑,胡连喜.弹性和塑性力学基础[M].哈尔滨:哈尔滨工业大学出版社,1997.
    [127]Luke G D. A study of the ignition transient in large aspect ratio rocket motors[D]. Berkeley:University of California,1996.
    [128]肖汉林.复合材料圆柱壳结构动响应及屈曲[D].武汉:华中科技大学,2006.
    [129]王天霖.复合材料圆柱壳的动力响应及动力屈曲研究[D].上海:上海交通大学,2006.
    [130]余晓菲.加筋圆柱壳在水下爆炸载荷作用下的动力响应及动力屈曲[D].武汉:华中科技大学,2007.
    [131]程国强,雷建平,张善元.经受侧向撞击圆管的大变形分析[J].固体力学学报,2000,21(1):57-60.
    [132]Soreide T H, Amdahi J. Deformation characteristics of tubular members with reference to impact loads from collision and dropped objects[J]. Norwegian Maritime Research,1982,10(2):3-12.
    [133]Jone N, Shen W Q. A theoretical study of the lateral impact of fully clamped pipelines [J]. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering,1992,206(2):129-146.
    [134]Bai Y, Peterson. Elastic-plastic behavior of offshore steel structures under impact loads. International Journal of Impact Engineering [J],1993,13(1):99-115.
    [135]Smith C S. Assessment of damage in offshore steel platforms:Marine and Offshore Safety, Proceedings of an International Conference[C], Amsterdam:Elsevier Science Publ Company.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700