用户名: 密码: 验证码:
纳米多孔金属铜冲击响应的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔材料的冲击响应不仅对于冲击物理有着显著的科学意义,而且对于材料合成和工程具有重要的应用价值。本文运用分子动力学模拟方法对纳米多孔金属材料和纳米蜂窝金属材料的冲击响应进行了模拟。研究内容包括弹塑性变形、Hugoniot状态、冲击引起的熔化、部分和完全孔洞塌陷、热点的形成、纳米射流以及气化,讨论了微结构效应、各向异性和孔隙度的影响。
     本文建立了具有圆柱形孔洞的高孔隙度的铜纳米多孔材料的模型,研究了冲击过程在压缩和反射不同阶段下的速度、温度、密度、应力等物理性质。观察到不同冲击强度下冲击波的弹塑性双波结构和超越。提出一个修正的幂律P-α模型来描述Hugoniot状态,验证了Gruneisen状态方程对于多孔材料的有效性。从冲击诱导的熔化来看,没有整体预熔化和过热的明显迹象。孔洞塌陷的发生是通过孔洞的塑性流动成核实现的,其实际过程依赖于冲击强度。随着冲击强度的增加,孔洞塌陷从几何模式(孔洞塌陷由晶体学和孔洞几何主导,并且可能彼此不同)向流体动力学模式(各个孔洞塌陷彼此相似)转变。塌陷可能由以下几种方式主导产生:沿{111}滑移面的塑性流动:压缩和拉伸区域交替分布;横向流动方式:前向和横向流动混合方式;以及前向纳米射流。内部射流会引起明显的波阵面粗糙化,导致内部热点的形成和原子级光滑自由面上的高速射流。
     本文研究了微结构效应对纳米多孔金属铜冲击响应的影响,包括孔洞的形状、大小和排列分布以及晶界。孔洞的塌陷、射流和气化都不同程度地受到微结构的影响。孔洞的排列分布和长细比发挥了重要作用,而晶界和孔洞大小的影响较小。数值模拟结果表明Hugoniot P-V状态对微结构不敏感。孔洞塌陷在低速冲击时以横向塑性流动为主,高速时以内部射流为主。孔洞塌陷时的射流归因于速度梯度和应力梯度张量,是前进、发散和会聚流动不同程度作用的结果。自由面射流可能会包含颈缩和空穴化现象。具有大长细比并且中心排列成直线的椭圆孔洞易于形成高速射流和气化。
     本文建立了孔隙度为0.1-0.9的铜六边形纳米蜂窝的分子动力学模型,并进行了侧限压缩和冲击模拟。比较了不同冲击速度下纳米蜂窝的弹性波和塑性波的波速、应力、密度和温度等物理量和孔洞塌陷及塑性变形;考察了三个冲击方向的异同:还对不同相对密度的结果进行了对比。结果发现,相对密度(或孔隙度)和冲击速度是决定纳米蜂窝材料冲击响应的主要因素。
Shock response of porous materials can be of crucial significance for shock physics and bears many practical applications in materials synthesis and engineering. Molecular dynamics simulations are carried out to investigate shock response of nanoporous metal materials and metal nano-honeycomb materials, including elastic-plastic deformation, Hugoniot states, shock-induced melting, partial or complete void collapse, hotspot formation, nanojetting, and vaporization. The influences of microstructure effects, anisotropy and porosity are discussed.
     A model nanoporous Cu with cylindrical voids and a high porosity under shocking is established to investigate such physical properties as velocity, temperature, density, stress and von Mises stress at different stages of compression and release. The elastic-plastic and overtaking shocks are observed at different shock strengths. A modified power-law P-a model is proposed to describe the Hugoniot states. The Gruneisen equation of state is validated. Shock-induced melting shows no clear signs of bulk premelting or superheating. Void collapse via plastic flow nucleated from voids, and the exact processes are shock strength dependent. With increasing shock strengths, void collapse transits from the "geometrical" mode (collapse of a void is dominated by crystallography and void geometry and can be different from that of one another) to "hydrodynamic" mode (collapse of a void is similar to one another). The collapse may be achieved predominantly by flow along the{111} slip planes, by way of alternating compression and tension zones, by means of transverse flows, via forward and transverse flows, or through forward nano-jetting. The internal jetting induces pronounced shock front roughening, leading to internal hotspot formation and sizable high speed jets on atomically flat free surfaces.
     Microstructure effects on shock response of nanoporous Cu are investigated, including pore shape, size and arrangement, as well as grain boundaries. The void collapse jetting and vaporization are dependent on the microstructure, although to some different extents. The void arrangement and aspect ratio play an important role. The effects of grain boundaries and void size are less pronounced. The high pressure Hugoniot states are not sensitive to microstructure. Jetting during void collapse is due to tensorial velocity gradients (direction and amplitude), and a combined result of forward, divergent and convergent flows with varying contributions. Free surface jetting involves necking and cavitation. Elliptical voids with large aspect ratios, and with their centers aligned linearly with the shock direction, are particularly efficient in inducing high speed jetting and vaporization.
     A serial of models of hexagonal nano-honeycombs Cu with porosities varying from0.1to0.9are established to simulate their shock response with molecular dynamic method. The shock velocities of elastic and plastic waves, stress, density and temperature at different shock velocities are compared. Similarities and differences for three shock directions are also considered. The shock results of nano-honeycombs with various relative densities are also compared. It shows that the relative density and impact velocity play primary roles in shock response of Cu nano-honeycombs.
引文
[1]Gibson L J, Ashby M F. Cellular solids:structure and properties[M]. Cambridge university press,1999.
    [2]Ashby M F, Medalist R F M. The mechanical properties of cellular solids[J]. Metallurgical Transactions A,1983,14(9):1755-1769.
    [3]张新春.多胞金属材料的动力学特性及微结构设计[D].北京交通大学,2011.
    [4]余同希.关于“多胞材料”和“点阵材料”的一点意见[J].力学与实践,2005,27(3):90-90.
    [5]Meyers M A, Chawla K K. Mechanical behavior of materials[M]. Cambridge:Cambridge University Press,2009.
    [6]Ashby M F. Metal foams:a design guide[M]. Butterworth-Heinemann,2000.
    [7]Ashby M F. The properties of foams and lattices[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2006,364(1838):15-30.
    [8]Hilyard N C. Mechanics of cellular plastics[M]. Applied Science,1982.
    [9]Banhart J. Manufacture, characterisation and application of cellular metals and metal foams[J]. Progress in materials Science,2001,46(6):559-632.
    [10]Scheffler M, Colombo P. Cellular ceramics[M]. Weinheim:Wiley-VCH.2005
    [11]刘培生.多孔材料引论[M].清华大学出版社,2004.
    [12]Degischer, H. P., Kriszt, B. Handbook of cellular metals:production, processing, applications[M]. Weinheim:Wiley-vch,2002.
    [13]张立德,解思深.纳米材料和纳米结构:国家重大基础研究项目新进展[M].化学工业出版社,2005,北京.
    [14]Bringa E M, Monk J D, Caro A, et al. Are nanoporous materials radiation resistant?[J]. Nano letters,2011,12(7):3351-3355.
    [15]张文彦,奚正平,方明等.纳米孔结构金属多孔材料研究进展[J].稀有金属材料与工程.2008,37(7):1129.
    [16]丁轶.纳米多孔金属:一种新型能源纳米材料[J].山东大学学报(理学版).2011,46(10):011.
    [17]Tappan B C, Steiner S A, Luther E P. Nanoporous metal foams[J]. Angewandte Chemie International Edition,2010,49(27):4544-4565.
    [18]Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying[J]. Nature, 2001,410(6827):450-453.
    [19]Ding Y, Erlebacher J. Nanoporous metals with controlled multimodal pore size distribution[J]. Journal of the American Chemical Society,2003,125(26):7772-7773.
    [20]Erlebacher J. An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior[J]. Journal of the Electrochemical Society,2004,151(10): C614-C626.
    [21]Robbie K, Beydaghyan G, Brown T, et al. Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure[J]. Review of scientific instruments,2004,75(4):1089-1097.
    [22]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359(6397):710-712.
    [23]Velev O D, Tessier P M, Lenhoff A M, et al. Materials:a class of porous metallic nanostructures[J]. Nature,1999,401(6753):548-548.
    [24]Shin K, Leach K A, Goldbach J T, et al. A simple route to metal nanodots and nanoporous metal films[J]. Nano Letters,2002,2(9):933-936.
    [25]Liao C L, Chu C W, Fung K Z, et al. Fabrication of nanoporous metal electrode by two-step replication technique[J]. Journal of alloys and compounds,2007,441(1):L1-L6.
    [26]Nath O, Stephen A, R6sler J, et al. Structuring of nanoporous nickel-based superalloy membranes via laser etching[J]. Journal of Materials Processing Technology,2009,209(10): 4739-4743.
    [27]Nyce G W, Hayes J R, Hamza A V, et al. Synthesis and characterization of hierarchical porous gold materials[J]. Chemistry of materials,2007,19(3):344-346.
    [28]Mohanan J L, Arachchige I U, Brock S L. Porous semiconductor chalcogenide aerogels[J]. Science,2005,307(5708):397-400.
    [29]Leventis N, Chandrasekaran N, Sadekar A G, et al. One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol-formaldehyde aerogels:nanostructured energetic materials[J]. Journal of the American Chemical Society,2009,131(13):4576-4577.
    [30]Tappan B C, Huynh M H, Hiskey M A, et al. Ultralow-density nanostructured metal foams: combustion synthesis, morphology, and composition[J]. Journal of the American Chemical Society,2006,128(20):6589-6594.
    [31]Sun L, Chien C L, Searson P C. Fabrication of nanoporous nickel by electrochemical dealloying[J]. Chemistry of materials,2004,16(16):3125-3129.
    [32]Li Z Q, Li B Q, Qin Z X, et al. Fabrication of porous Ag by dealloying of Ag-Zn alloys in H2SO4 solution[J]. Journal of materials science,2010,45(23):6494-6497.
    [33]Jayaraj J, Park B J, Kim D H, et al. Nanometer-sized porous Ti-based metallic glass[J]. Scripta materialia,2006,55(11):1063-1066.
    [34]Qi Z, Zhao C, Wang X, et al. Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys[J]. The Journal of Physical Chemistry C, 2009,113(16):6694-6698.
    [35]Jin H J, Kramer D, Ivanisenko Y, et al. Macroscopically strong nanoporous Pt prepared by dealloying[J]. Advanced Engineering Materials,2007,9(10):849-854.
    [36]Robbie K, Brett M J. Sculptured thin films and glancing angle deposition:Growth mechanics and applications[J]. Journal of Vacuum Science & Technology A,1997,15(3):1460-1465.
    [37]Gibson L J, Easterling K E, Ashby M F. The structure and mechanics of cork[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1981,377(1769): 99-117.
    [38]Easterling K E, Harrysson R, Gibson L J, et al. On the mechanics of balsa and other woods[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1982, 383(1784):31-41.
    [39]Gibson L J, Ashby M F, Schajer G S, et al. The mechanics of two-dimensional cellular materials[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1982,382(1782):25-42.
    [40]Gibson L J, Ashby M F. The mechanics of three-dimensional cellular materials[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1982, 382(1782):43-59.
    [41]Maiti S K, Gibson L J, Ashby M F. Deformation and energy absorption diagrams for cellular solids[J]. Acta metallurgica,1984,32(11):1963-1975.
    [42]Maiti S K, Ashby M F, Gibson L J. Fracture toughness of brittle cellular solids[J]. Scripta Metallurgica,1984,18(3):213-217.
    [43]Gibson L J. The mechanical behaviour of cancellous bone[J]. Journal of biomechanics,1985, 18(5):317-328.
    [44]Huber A T, Gibson L J. Anisotropy of foams[J]. Journal of Materials Science,1988,23(8): 3031-3040.
    [45]Gibson L J, Ashby M F, Zhang J, et al. Failure surfaces for cellular materials under multiaxial loads-Ⅰ. Modelling[J]. International Journal of Mechanical Sciences,1989,31(9):635-663.
    [46]Triantafillou T C, Zhang J, Shercliff T L, et al. Failure surfaces for cellular materials under multiaxial loads-Ⅱ. Comparison of models with experiment[J]. International Journal of Mechanical Sciences,1989,31(9):665-678.
    [47]Triantafillou T C, Gibson L J. Multiaxial failure criteria for brittle foams[J]. International journal of mechanical sciences,1990,32(6):479-496.
    [48]Gibson L J. Modelling the mechanical behavior of cellular materials[J]. Materials Science and Engineering:A,1989,110:1-36.
    [49]Onck P R, Andrews E W, Gibson L J. Size effects in ductile cellular solids. Part I: modeling[J]. International Journal of Mechanical Sciences,2001,43(3):681-699.
    [50]Andrews E W, Gioux G, Onck P, et al. Size effects in ductile cellular solids. Part II: experimental results[J]. International Journal of Mechanical Sciences,2001,43(3):701-713.
    [51]Gibson L J. Mechanical behavior of metallic foams[J]. Annual Review of Materials Science, 2000,30(1):191-227.
    [52]Triantafillou T C, Gibson L J. Failure mode maps for foam core sandwich beams[J]. Materials Science and Engineering,1987,95:37-53.
    [53]Triantafillou T C, Gibson L J. Debonding in foam-core sandwich panels[J]. Materials and structures,1989,22(1):64-69.
    [54]Gibson L J, Ashby M F, Easterling K E. Structure and mechanics of the iris leaf[J]. Journal of Materials Science,1988,23(9):3041-3048.
    [55]Chung J, Waas A M. The inplane elastic properties of circular cell and elliptical cell honeycombs[J]. Acta mechanica,2000,144(1-2):29-42.
    [56]Okumura D, Ohno N, Noguchi H. Post-buckling analysis of elastic honeycombs subject to in-plane biaxial compression[J]. International journal of solids and structures,2002,39(13): 3487-3503.
    [57]Karagiozova D, Yu T X. Post-collapse characteristics of ductile circular honeycombs under in-plane compression[J]. International journal of mechanical sciences,2005,47(4):570-602.
    [58]Deshpande V S, Fleck N A. Isotropic constitutive models for metallic foams[J]. Journal of the Mechanics and Physics of Solids,2000,48(6):1253-1283.
    [59]Tagarielli V L, Deshpande V S, Fleck N A, et al. A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood[J]. International journal of mechanical sciences,2005,47(4):666-686.
    [60]Biener J, Hodge A M, Hamza A V. Microscopic failure behavior of nanoporous gold[J]. Applied Physics Letters,2005,87(12):121908.
    [61]Biener J, Hodge A M, Hamza A V, et al. Nanoporous Au:A high yield strength material [J]. Journal of Applied Physics,2005,97(2):024301.
    [62]Biener J, Hodge A M, Hayes J R, et al. Size effects on the mechanical behavior of nanoporous Au[J]. Nano letters,2006,6(10):2379-2382.
    [63]Hodge A M, Biener J, Hayes J R, et al. Scaling equation for yield strength of nanoporous open-cell foams[J]. Acta materialia,2007,55(4):1343-1349.
    [64]Hodge A M, Hayes J R, Caro J A, et al. Characterization and mechanical behavior of nanoporous gold[J]. Advanced Engineering Materials,2006,8(9):853-857.
    [65]Volkert C A, Lilleodden E T, Kramer D, et al. Approaching the theoretical strength in nanoporous Au[J]. Applied Physics Letters,2006,89(6):061920-061920-3.
    [66]Mathur A, Erlebacher J. Size dependence of effective Young's modulus of nanoporous gold[J]. Applied physics letters,2007,90(6):061910.
    [67]Sun Y, Ye J, Shan Z, et al. The mechanical behavior of nanoporous gold thin films[J]. Jom, 2007,59(9):54-58.
    [68]Hakamada M, Mabuchi M. Mechanical strength of nanoporous gold fabricated by dealloying[J]. Scripta Materialia,2007,56(11):1003-1006.
    [69]Weissmuller J, Newman R C, Jin H J, et al. Nanoporous metals by alloy corrosion:formation and mechanical properties[J]. MRS bulletin,2009,34(08):577-586.
    [70]Gao Wei, Yu Shouwen, Huang Ganyun. Finite element characterization of the size-dependent mechanical behaviour in nanosystems[J]. Nanotechnology,2006,17(4):1118.
    [71]Xia R, Li X, Qin Q, et al. Surface effects on the mechanical properties of nanoporous materials[J]. Nanotechnology,2011,22(26):265714.
    [72]Lu Zixing, Zhang Cungang, Liu Qiang, et al. Surface effects on the mechanical properties of nanoporous materials[J]. Journal of Physics D:Applied Physics,2011,44(39):395404.
    [73]Reid S R, Peng C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering,1997,19(5):531-570.
    [74]Reid S R, Reddy T Y. Experimental investigation of inertia effects in one-dimensional metal ring systems subjected to end impact-Ⅰ. Fixed-ended systems[J]. International Journal of Impact Engineering,1983,1(1):85-106.
    [75]Reid S R, Bell W W, Barr R A. Structural plastic shock model for one-dimensional ring systems[J]. International Journal of Impact Engineering,1983,1(2):175-191.
    [76]Stronge W J, Shim V P W. Dynamic crushing of a ductile cellular array[J]. International Journal of Mechanical Sciences,1987,29(6):381-406.
    [77]Honig A, Stronge W J. In-plane dynamic crushing of honeycomb. Part Ⅰ:crush band initiation and wave trapping[J]. International journal of mechanical sciences,2002,44(8):1665-1696.
    [78]Honig A, Stronge W J. In-plane dynamic crushing of honeycomb. Part Ⅱ:application to impact[J]. International journal of mechanical sciences,2002,44(8):1697-1714.
    [79]王永刚,胡时胜,王礼立.爆炸荷载下泡沫铝材料中冲击波衰减特性的实验和数值模拟研究[J].爆炸与冲击,2003,23(6):516-522.
    [80]Deshpande V S, Fleck N A. One-dimensional response of sandwich plates to underwater shock loading[J]. Journal of the Mechanics and Physics of Solids,2005,53(11):2347-2383.
    [81]Yu J L, Wang X, Wei Z G, et al. Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core[J]. International Journal of Impact Engineering, 2003,28(3):331-347.
    [82]虞吉林.泡沫金属材料和结构的冲击力学行为.应用力学进展.2004.63-75.
    [83]Yu J L, Li J R, Hu S S. Strain-rate effect and micro-structural optimization of cellular metals[J]. Mechanics of materials,2006,38(1):160-170.
    [84]Yu J L, Wang E H, Li J R. An experimental study on the quasi-static and dynamic behavior of aluminum foams under multi-axial compression[J]. Advances in Heterogeneous Material Mechanics,2008:879-882.
    [85]Yu J, Wang E, Li J, et al. Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending[J]. International Journal of Impact Engineering,2008,35(8):885-894.
    [86]Yu J L, Wang E H, Guo L W. A Theoretical and Experimental Study on the Dynamic Constitutive Model of Aluminum Foams[C]//Materials Science Forum.2010,638: 1878-1883.
    [87]Jang W Y, Kyriakides S. On the crushing of aluminum open-cell foams:Part I. Experiments[J]. International Journal of Solids and Structures,2009,46(3):617-634.
    [88]Jang W Y, Kyriakides S. On the crushing of aluminum open-cell foams:Part II analysis[J]. International Journal of Solids and Structures,2009,46(3):635-650.
    [89]Lopatnikov S L, Garna B A, Jahirul Haque M, et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment[J]. Composite Structures,2003, 61(1):61-71.
    [90]Lopatnikov S L, Gama B A, Haque M J, et al. High-velocity plate impact of metal foams[J]. International Journal of impact engineering,2004,30(4):421-445.
    [91]Papka S D, Kyriakides S. In-plane compressive response and crushing of honeycomb[J]. Journal of the Mechanics and Physics of Solids,1994,42(10):1499-1532.
    [92]Papka S D, Kyriakides S. In-plane crushing of a polycarbonate honeycomb[J]. International journal of solids and structures,1998,35(3):239-267.
    [93]Papka S D, Kyriakides S. Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb[J]. Acta Materialia,1998,46(8):2765-2776.
    [94]Papka S D, Kyriakides S. Biaxial crushing of honeycombs:-Part 1:Experiments[J]. International Journal of Solids and Structures,1999,36(29):4367-4396.
    [95]Papka S D, Kyriakides S. In-plane biaxial crushing of honeycombs-:Part Ⅱ:Analysis[J]. International Journal of Solids and Structures,1999,36(29):4397-4423.
    [96]Hong S T. Mechanical behavior of aluminum honeycombs under multiaxial loading conditions[M]. University of Michigan.,2005.
    [97]Zarei H, Kroger M. Optimum honeycomb filled crash absorber design[J]. Materials & Design, 2008,29(1):193-204.
    [98]Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs-a finite element study[J]. International Journal of Impact Engineering,2003,28(2):161-182.
    [99]Ruan D, Lu G. In-plane static and dynamic properties of aluminium honeycombs[J]. Australian journal of mechanical engineering,2006,3(1):45-60.
    [100]Wu E, Jiang W S. Axial crush of metallic honeycombs[J]. International Journal of Impact Engineering,1997,19(5):439-456.
    [101]王闯,刘荣强,邓宗全等.铝蜂窝结构的冲击动力学性能的试验及数值研究.振动与冲击.2008,27(11):56-61.
    [102]Radford D D, McShane G J, Deshpande V S, et al. Dynamic compressive response of stainless-steel square honeycombs[J]. Transactions-American Society of Mechanical Engineers Journal of Applied Mechanics,2007,74(4):658.
    [103]Xue Z, Hutchinson J W. Crush dynamics of square honeycomb sandwich cores[J]. International journal for numerical methods in engineering,2006,65(13):2221-2245.
    [104]Baker W E, Togami T C, Weydert J C. Static and dynamic properties of high-density metal honeycombs[J]. International Journal of Impact Engineering,1998,21(3):149-163.
    [105]Zhao H, Gary G. Crushing behaviour of aluminium honeycombs under impact loading[J]. International Journal of Impact Engineering,1998,21(10):827-836.
    [106]Hong S T, Pan J, Tyan T, et al. Dynamic crush behaviors of aluminum honeycomb specimens under compression dominant inclined loads[J]. International Journal of Plasticity, 2008,24(l):89-117.
    [107]Santosa S, Wierzbicki T. Crash behavior of box columns filled with aluminum honeycomb or foam[J]. Computers and Structures,1998,68(4):343-367.
    [108]Xu S, Beynon J H, Ruan D, et al. Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs[J]. Composite Structures,2012,94(8):2326-2336.
    [109]Xu S, Beynon J H, Ruan D, et al. Strength enhancement of aluminium honeycombs caused by entrapped air under dynamic out-of-plane compression[J]. International Journal of Impact Engineering,2012,47:1-13.
    [110]Zhou Q, Mayer R R. Characterization of aluminum honeycomb material failure in large deformation compression, shear, and tearing[J]. Journal of engineering materials and technology,2002,124(4):412-420.
    [111]Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminium alloy foams[J]. International Journal of Impact Engineering,2000,24(3):277-298.
    [112]Calladine C R, English R W. Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure[J]. International Journal of Mechanical Sciences,1984,26(11): 689-701.
    [113]Harrigan J J, Reid S R, Peng C. Inertia effects in impact energy absorbing materials and structures[J]. International Journal of Impact Engineering,1999,22(9):955-979.
    [114]余同希,邱信明.冲击动力学[M].清华大学出版社,2011.
    [115]Meyers M A. Dynamic behavior of materials [M].1994.
    [116]Zhao H. Testing of polymeric foams at high and medium strain rates[J]. Polymer testing, 1997,16(5):507-516.
    [117]Zhao H, Elnasri I, Abdennadher S. An experimental study on the behaviour under impact loading of metallic cellular materials[J]. International Journal of Mechanical Sciences,2005, 47(4):757-774.
    [118]Gilchrist A, Mills N J. Impact deformation of rigid polymeric foams:experiments and FEA modelling[J]. International journal of impact engineering,2001,25(8):767-786.
    [119]Lu G, Wang B, Zhang T. Taylor impact test for ductile porous materials-Part 1:theory[J]. International journal of impact engineering,2001,25(10):981-991.
    [120]Wang B, Zhang J, Lu G. Taylor impact test for ductile porous materials-Part 2: experiments[J]. International journal of impact engineering,2003,28(5):499-511.
    [121]Feng Y, Zhu Z, Zu F, et al. Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams[J]. Materials Characterization,2001, 47(5):417-422.
    [122]潘艺,胡时胜,魏志刚.泡沫铝动态力学性能的实验研究[J].材料科学与工程,2002,20(3):341-343.
    [123]胡时胜,王悟,潘艺,等.泡沫材料的应变率效应[J].爆炸与冲击,2003,23(1):13-18.
    [124]Mukai T, Kanahashi H, Yamada Y, et al. Dynamic compressive behavior of an ultra-lightweight magnesium foam[J]. Scripta materialia,1999,41(4):365-371.
    [125]Kanahashi H, Mukai T, Yamada Y, et al. Dynamic compression of an ultra-low density aluminium foam[J]. Mater Sci Eng A,2000,280(2):349-53.
    [126]Montanini R. Measurement of strain rate sensitivity of aluminium foams for energy dissipation[J]. International journal of mechanical sciences,2005,47(1):26-42.
    [127]Miyoshi T, Itoh M, Mukai T, et al. Enhancement of energy absorption in a closed-cell aluminum by the modification of cellular structures[J], Scripta Materialia,1999,41(10): 1055-1060.
    [128]Paul A, Ramamurty U. Strain rate sensitivity of a closed-cell aluminum foam[J]. Materials Science and Engineering:A,2000,281(1):1-7.
    [129]Dannemann K A, Lankford Jr J. High strain rate compression of closed-cell aluminium foams[J]. Materials Science and Engineering:A,2000,293(1):157-164.
    [130]Mukai T, Miyoshi T, Nakano S, et al. Compressive response of a closed-cell aluminum foam at high strain rate[J]. Scripta Materialia,2006,54(4):533-537.
    [131]Shen J, Lu G, Ruan D. Compressive behaviour of closed-cell aluminium foams at high strain rates[J]. Composites Part B:Engineering,2010,41(8):678-685.
    [132]Hambir S A, Kim H, Dlott D D. Shock Wave Compression of Viscoelastic and Nanoporous Polymers[C]//APS Meeting Abstracts.2000,1:22004.
    [133]Hambir S A, Kim H, Dlott D D, et al. Real time ultrafast spectroscopy of shock front pore collapse[J]. Journal of Applied Physics,2001,90(10):5139-5146.
    [134]Erhart P, Bringa E M, Kumar M, et al. Atomistic mechanism of shock-induced void collapse in nanoporous metals[J]. Physical Review B,2005,72(5):052104.
    [135]Zhao S, Germann T C, Strachan A. Molecular dynamics simulation of dynamical response of perfect and porous Ni/Al nanolaminates under shock loading[J]. Physical Review B, 2007,76(l):014103.
    [136]Duchaineau M, Hamza A V, La Rubia D, et al. Atomistic Simulation of Compression Wave Propagation in Nanoporous Materials[J]. arXiv preprint arXiv:0807.1332,2008.
    [137]Huang L, Han W Z, An Q, et al. Shock-induced consolidation and spallation of Cu nanopowders[J]. Journal of Applied Physics,2012,111(1):013508.
    [138]Ruestes C J, Bringa E M, Stukowski A, et al. Atomistic simulation of the mechanical response of a nanoporous body-centered cubic metal[J]. Scripta Materialia,2013,68(10): 817-820.
    [139]Al-Qananwah A K, Koplik J, Andreopoulos Y. Shock wave interactions with nano-structured materials:a molecular dynamics approach[J]. Shock Waves,2013,23(1):69-80.
    [140]王礼立.应力波基础[M].国防工业出版社,2005.
    [141]Marsh.S.P, LASL Shock Hugoniot Data(University of California Press, Berkely,1980).
    [142]An Q, Luo S N, Han L B, et al. Melting of Cu under hydrostatic and shock wave loading to high pressures[J]. Journal of Physics:Condensed Matter,2008,20(9):095220.
    [143]Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Dover, Mineola,2002).
    [144]Herrmann W. Constitutive equation for the dynamic compaction of ductile porous materials[J]. Journal of Applied Physics,1969,40(6):2490-2499.
    [145]Carroll M M, Holt A C. Static and Dynamic Pore-Collapse Relations for Ductile Porous Materials[J]. Journal of Applied Physics,1972,43(4):1626-1636.
    [146]Brown J L, Vogler T J, Grady D E, et al. Dynamic compaction of sand[C]//AIP Conference Proceedings.2007,955:1363.
    [147]Grady D E, Winfree N A, Kerley G I, et al. Computational modeling and wave propagation in media with inelastic deforming microstructure[J]. Le Journal de Physique IV,2000, 10(PR9):Pr9-15-Pr9-20.
    [148]Wu Q, Jing F. Thermodynamic equation of state and application to Hugoniot predictions for porous materials[J]. Journal of Applied Physics,1996,80:4343.
    [149]张跃,谷景华,尚家香等.计算材料学基础[M].北京航空航天大学出版社,2007.
    [150]Alder B J, Wainwright T E. Phase transition for a hard sphere system[J]. Journal of Chemical Physics,1957,27(7):1208-1209.
    [151]Alder B J, Wainwright T E. Studies in molecular dynamics. I. General method[J]. Journal of Chemical Physics,1959,31(2):459-466.
    [152]Rahman A. Correlations in the motion of atoms in liquid argon[J]. Physical Review,1964, 136(2A):A405-A411.
    [153]Verlet L. Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules[J]. Physical review,1967,159(1):98.
    [154]Rahman A, Stillinger F H. Molecular dynamics study of liquid water[J]. The Journal of Chemical Physics,1971,55:3336.
    [155]Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical integration of the cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes[J]. Journal of Computational Physics,1977,23(3):327-341.
    [156]van Gunsteren W F and Berendsen H J C. Algorithms for macromolecular dynamics and constraint dynamics Mol. Phys.34 (1977) 1311-1327.
    [157]Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. The Journal of chemical physics,1980,72(4):2384.
    [158]Parrinello M, Rahman A. Polymorphic transitions in single crystals:A new molecular dynamics method[J]. Journal of Applied physics,1981,52:7182.
    [159]Gillan M J, Dixon M. The calculation of thermal conductivities by perturbed molecular dynamics simulation[J]. Journal of Physics C:Solid State Physics,1983,16(5):869.
    [160]Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of chemical physics,1984,81:3684.
    [161]Nose S. A molecular dynamics method for simulations in the canonical ensemble[J]. Molecular physics,1984,52(2):255-268.
    [162]Nose S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics,1984,81:511.
    [163]Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory[J]. Physical review letters,1985,55(22):2471.
    [164]Cagin T, Pettitt B M. Grand molecular dynamics:a method for open systems[J]. Molecular simulation,1991,6(1-3):5-26.
    [165]王奉超.纳尺度固液界面力学中的边界滑移与接触角滞后[D].北京:中国科学院力学研究所.2012
    [166]Plimpton S, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys,1995,117:1-19
    [167]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].化学工业出版社,2007.
    [168]王秀喜,吴恒安.计算力学基础[M].合肥:中国科学技术大学出版社,2009
    [169]文玉华,朱如曾,周富信等.分子动力学模拟的主要技术[J].力学进展,2003,33(1).
    [170]Mishin Y, Mehl M J, Papaconstantopoulos D A, et al. Structural stability and lattice defects in copper:Ab initio, tight-binding, and embedded-atom calculations[J]. Physical Review B, 2001,63(22):224106.
    [171]Luo S N, An Q, Germann T C, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates[J]. Journal of Applied Physics,2009,106(1):013502.
    [172]Luo S N, Germann T C, Desai T G, et al. Anisotropic shock response of columnar nanocrystalline Cu[J]. Journal of Applied Physics,2010,107(12):123507.
    [173]Shimizu F, Ogata S, Li J. Theory of shear banding in metallic glasses and molecular dynamics calculations[J]. Materials transactions,2007,48(11):2923-2927.
    [174]Li J. AtomEye:an efficient atomistic configuration viewer[J]. Modelling and Simulation in Materials Science and Engineering,2003,11(2):173.
    [175]Kelchner C L, Plimpton S J, Hamilton J C. Dislocation nucleation and defect structure during surface indentation[J]. Physical Review B,1998,58(17):11085.
    [176]Han L B, An Q, Fu R S, et al. Local and bulk melting of Cu at grain boundaries[J]. Physica B:Condensed Matter,2010,405(2):748-753.
    [177]He A M, Duan S, Shao J L, et al. Shock melting of single crystal copper with a nanovoid: Molecular dynamics simulations[J]. Journal of Applied Physics,2012,112(7): 074116-074116-5.
    [178]Trunin R F, Simakov G V, Sutulov Y U N, et al. Compressibility of porous metals in shock waves[J]. Soviet Physics JETP 1989,69(3),580-588. (Zh. Eksp. Teor. Fiz.,1989,96: 1024-1038.)
    [179]Luo S N, Ahrens T J, Cagin T, et al. Maximum superheating and undercooling:Systematics, molecular dynamics simulations, and dynamic experiments[J]. Physical Review B,2003, 68(13):134206.
    [180]Davila L P, Erhart P, Bringaa E M, et al. Atomistic modeling of shock-induced void collapse in copper[J]. Applied Physics Letters,2005,86:161902.
    [181]Bowden F P, Yoffe A D. Initiation and growth of explosion in liquids and solids[M]. Cambridge University Press, Cambridge,1952.
    [182]Loomis E N, Greenfield S R, Johnson R P, et al. Investigations into the seeding of instabilities due to x-ray preheat in beryllium-based inertial confinement fusion targets[J]. Physics of Plasmas,2010,17:056308.
    [183]Durand O, Soulard L. Large-scale molecular dynamics study of jet breakup and ejecta production from shock-loaded copper with a hybrid method[J]. Journal of Applied Physics, 2012,111:044901.
    [184]Luo S N, Germann T C, Tonks D L, et al. Shock wave loading and spallation of copper bicrystals with asymmetric ∑3< 110> tilt grain boundaries[J]. Journal of Applied Physics, 2010,108(9):093526.
    [185]McCrory R L, Bahr R E, Betti R, et al. OMEGA ICF experiments and preparation for direct drive ignition on NIF[J]. Nuclear fusion,2001,41(10):1413.
    [186]Chen Y, Hu H, Tang T, et al. Experimental study of ejecta from shock melted lead[J]. Journal of Applied Physics,2012,111(5):053509.
    [187]Walsh J M, Christian R H. Equation of state of metals from shock wave measurements[J]. Physical Review,1955,97:1544-1556.
    [188]Luo S N, Han L B, Xie Y, et al. The relation between shock-state particle velocity and free surface velocity:A molecular dynamics study on single crystal Cu and silica glass[J]. Journal of Applied Physics,2008,103(9):093530.
    [189]Shaw M C, Sata T. The plastic behavior of cellular materials[J]. International Journal of Mechanical Sciences,1966,8(7):469-478.
    [190]Rinde J A. Poisson's ratio for rigid plastic foams[J]. Journal of applied polymer science, 1970,14(8):1913-1926.
    [191]基泰尔,Kittel C,项金钟,等.固体物理导论[M].化学工业出版社,2005.
    [192]Callister Jr W D, Rethwisch D G. Materials Science and Engineering:An Introduction[M]. 2007.
    [193]经福谦.实验物态方程导引[M].科学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700