用户名: 密码: 验证码:
微纳米表面喷雾冷却的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来电子系统、高能激光系统和空间卫星等设备因功率的增加对散热能力的要求越来越高。喷雾冷却以其散热能力强、温度均匀性好、启动系统可靠和稳定时间长备受关注,并已经在汽车行业、功率逆变器等设备中得到了应用。
     本文首先通过实验对比了连续和间歇这两种不同形式的喷雾冷却的换热效果,得出两种喷雾形式的液滴参数相近,若热流密度很高,连续喷雾的换热性能较高,优于间歇喷雾,若热流密度较低,间隙喷雾在无沸腾区对工质的利用更有效,优于连续喷雾,并分析了喷射周期、喷射占空比和喷停时间对间歇喷雾换热性能的影响。随后实验研究了光滑表面、纳米表面、微米表面以及微纳米组合表面上喷雾冷却的换热情况,推导出二维导热问题的理论解,观测到不同热流密度下的换热图像,结合Particle Master Shadow系统测量的液滴参数,分析了喷雾冷却的换热规律。研究发现,在薄膜区和部分蒸干区,微米、纳米表面及组合表面的换热效果均优于光滑表面;对应于一种喷雾,存在最优微结构尺寸,使得微结构表面增大的换热面积在换热中能够被充分利用,换热效果最优;在微结构上表面增加碳纳米管膜对于微结构尺寸小于液滴直径的表面更有效,且对于有微纳结构的硅表面,在沸腾区当功率在很大范围内增大时,表面温度增加很小,且温度的波动很小。
     由于喷雾冷却的换热效果与液滴参数有关,且液滴多为微米量级,为了从微观上分析液滴特性对喷雾冷却换热的影响,应用VOF模型,使用静态接触角、实验动态接触角、Kistler模型和Blake模型四种方法来处理接触角,模拟了单个微米液滴冲击平板的流动情况。计算发现采用Blake模型得到的结果与已有文献的实验结果符合最好,指出在计算中根据铺展速度直接计算出并作为条件赋值的角度并不一定等于视在接触角,也分析了液滴冲击过程中铺展直径、接触角的变化,液滴受力情况及液滴参数对铺展的影响。随之采用三维模型,使用动态接触角方法模拟了单颗微米液滴冲击光滑表面、与液滴直径尺寸相当的微米级矩形凹槽和方柱结构表面的流动,分析了液滴的受力及表面不同位置的润湿情况,发现方柱结构更利于液滴对其底表面的润湿。
Numerous industrial applications require the removal of high heat fluxes, such aselectronic systems, high-power lasers, energy weapons and aerospace satellite. Spraycooling is one of the best solutions due to its high heat dissipating capability with lowcoolant mass fluxes at low wall superheats, precise temperature control, low cost andreliable long-term stability. Spray cooling has been used in hybrid vehicle electronics,power inverter modules, laser surgery and so on.
     Continual and intermittent spray cooling heat transfer experiments on a flat surfacewere performed and the spray droplet parameters were similar. The results show that ifthe heat flux is quite high, the continual spray cooling is better than the intermittentspray cooling since it has a higher heat transfer capability and the effective heat transfercoefficient is equivalent to the intermittent spray cooling in the boiling region. If theheat flux is not high, however, intermittent spray cooling should be used since it is moreeffective than continual spray cooling in the non-boiling region. The effects of the spraycycle, duty ratio and the spray or non-spray time were studied to make more efficientuse of the coolant in intermittent spray cooling.
     The spray characteristics and the differences between spray cooling on smooth andenhanced silicon surfaces with micro-, nano-and hybrid structures was investigated.The shadowgraph technique was used to measure the spray droplet parameters andpictures were got by a camera during the heat transfer process. The two-dimensionalheat conduction analytical equations were derived by local thermal non-equilibriummodel. The spray cooling experiments show that the heat transfer for the enhancedsurfaces was much greater in the thin film and partial dryout regions than for the smoothsurface. There is an optimal groove depth corresponding to a given droplet parameter,groove width and stud size for the liquid to completely take advantage of the areaenlarged by the micro-structures and enhance the heat transfer. Adding carbon nanotubes on the top surfaces of the micro-structured surfaces was more effective as themicro-structure sizes were smaller than the droplet diameter. The wall temperaturedifference and the temperature fluctuations were both small for a wide range of powers.
     The spray cooling heat transfer is mainly influenced by the droplet parameters. A numerical simulation on the micrometer-sized droplet impinging on a flat, unheatedsurface has been investigated based on the spray cooling technology, using the VOFmodel with static contact angle, experimental dynamic contact angle, Kistler model andBlake model for dynamic contact angles. The results show that the simulation resultswith the Blake model agree well with the experimental results and the contact anglecalculated by the spreading velocity and set as the boundary condition in simulationmight not be equal to the apparent contact angle. The development of the spreadvelocity and the the contact angle was described and the droplet parameter effects wereanalyzed by changing the droplet diameters and the velocities.
     A micrometer-sized droplet impinging on enhanced surfaces with micro-grooves ormicro-studs whose size were the same order with the droplet was simulated bythree-dimensional model using dynamic contact angle. The surface area wetted by fluidat various positions was calculated and the results show that the surfaces withmicro-studs were superior for the bottom surface wetted by the droplet.
引文
[1] Zhirnov V V, Cavin R K, Hutchby J A, et al. Limits to binary logic switch scaling-AGedanken model. Proceedings of the IEEE,2003,91(11):1934-1939.
    [2]李腾,刘静.芯片冷却技术的最新研究进展及其评价.制冷学报,2004(3):22-32.
    [3] Visaria M, Mudawar I. Effects of high subcooling on two-phase spray cooling and criticalheat flux. International Journal of Heat and Mass Transfer,2008,51(21-22):5269-5278.
    [4] Estes K A, Mudawar I. Comparison of two-phase electronic cooling using free jets and sprays.Journal of Electronic Packaging,1995,117(4):323-332.
    [5] Yang J, Chow L C, Pais M R. Nucleate boiling heat transfer in spray cooling. Journal of HeatTransfer-Transactions of the ASME,1996,118(3):668-671.
    [6] Kim J H. Spray cooling heat transfer: The state of the art. International Journal of Heat andFluid Flow,2007,28(4SI):753-767.
    [7] Mudawar I, Bharathan D, Kelly K, et al. Two-phase spray cooling of hybrid vehicleelectronics. IEEE Transactions on Components and Packaging Technologies,2009,32(2):501-512.
    [8] Bostanci H, Van Ee D, Saarloos B A, et al. Spray cooling of power electronics using hightemperature coolant and enhanced surface. IEEE Vehicle Power and Propulsion Conference,2009,1-3:549-553.
    [9] http://www.rinitech.com/docs/1007_LaserCooling.pdf.
    [10] Bowman C F. Oriented spray cooling system ultimate heat sink for future nuclear plants.Proceeding of the16th International Conference on Nuclear Engineering,2008,4:383-387.
    [11] Aguilar G, Majaron B, Pope K, et al. Influence of nozzle-to-skin distance in cryogen spraycooling for dermatologic laser surgery. Lasers in Surgery and Medicine,2001,28(2):113-120.
    [12] Aguilar G, Wang G X, Nelson J S. Dynamic behavior of cryogen spray cooling: Effects ofspurt duration and spray distance. Lasers in Surgery and Medicine,2003,32(2):152-159.
    [13] Basinger B, Aguilar G, Nelson J S. Effect of skin indentation on heat transfer during cryogenspray cooling. Lasers in Surgery and Medicine,2004,34(2):155-163.
    [14]刘志峰.喷雾冷却法及其应用.机械工艺师,1997(7):9-11.
    [15]彭跃湘,胡佳英.切削加工中喷雾冷却的应用.新技术新工艺,2006(6):21-22.
    [16]魏振洲,刘春颖,薛跃华. H型钢冷床喷雾冷却实践.山东冶金,2006(2):26-27.
    [17] Boyle Ray, Frick Juergen,邱文光.连铸机中现代二冷技术的应用.钢铁,2004,39:276-279.
    [18] Chen R H, Chow L C, Navedo J E. Effects of spray characteristics on critical heat flux insubcooled water spray cooling. International Journal of Heat and Mass Transfer,2002,45(19):4033-4043.
    [19] Chen R H, Chow L C, Navedo J E. Optimal spray characteristics in water spray cooling.International Journal of Heat and Mass Transfer,2004,47(23):5095-5099.
    [20] Guo Y X, Zhou Z F, Jia J Y, et al. Optimal heat transfer criterion and inclination angle effectson non-boiling regime spray cooling. Proceedings IEEE Semiconductor ThermalMeasurement and Management Symposium,2009:193-200.
    [21] Estes K A, Mudawar I. Correlation of sauter mean diameter and critical heat flux for spraycooling of small surfaces. International Journal of Heat and Mass Transfer,1995,38(16):2985-2996.
    [22] Rybicki J R, Mudawar I. Single-phase and two-phase cooling characteristics of upward-facingand downward-facing sprays. International Journal of Heat and Mass Transfer,2006,49(1-2):5-16.
    [23] Tao Y J, Huai X L, Wang L, et al. Experimental characterization of heat transfer innon-boiling spray cooling with two nozzles. Applied Thermal Engineering,2011,31(10):1790-1797.
    [24] Yan Z B, Toh K C, Duan F, et al. Experimental study of impingement spray cooling for highpower devices. Applied Thermal Engineering,2010,30(10):1225-1230.
    [25] Cheng W L, Han F Y, Liu Q N, et al. Experimental and theoretical investigation of surfacetemperature non-uniformity of spray cooling. Energy,2011,36(1):249-257.
    [26] Cheng W L, Liu Q N, Zhao R, et al. Experimental investigation of parameters effect on heattransfer of spray cooling. Heat and Mass Transfer,2010,46(8-9):911-921.
    [27] Martinez-Galvan E, Ramos J C, Anton R, et al. Film thickness and heat transfermeasurements in a spray cooling system with R134a. Journal of Electronic Packaging,2011,133(1):0110021.1-011002.11.
    [28] Duursma G, Sefiane K, Kennedy A. Experimental studies of nanofluid droplets in spraycooling. Heat Transfer Engineering,2009,30(13):1108-1120.
    [29]李佳,张震,姜培学,等.光滑表面与切槽表面喷雾冷却的实验研究.工程热物理学报,2010(11):1889-1892.
    [30] Chen R H, Tan D S, Lin K C, et al. Droplet and bubble dynamics in saturated FC-72spraycooling on a smooth surface. Journal of Heat Transfer-Transactions of the ASME,2008,130(10):10150110.
    [31] Mudawar I, Estes K A. Optimizing and predicting CHF in spray cooling of a square surface.Journal of Heat Transfer-Transactions of the ASME,1996,118(3):672-679.
    [32] Visaria M, Mudawar I. A systematic approach to predicting critical heat flux for inclinedsprays. Journal of Electronic Packaging,2007,129(4):452-459.
    [33] Wang Y Q, Liu M H, Liu D, et al. Experimental study on the effects of spray inclination onwater spray cooling performance in non-boiling regime. Experimental Thermal and FluidScience,2010,34(7):933-942.
    [34] Pavlova A A, Otani K, Amitay M, Active performance enhancement of spray cooling.International Journal of Heat and Fluid Flow,2008,29(4):985-1000.
    [35] Hsieh S S, Fan T C, Tsai H H. Spray cooling characteristics of water and R-134a. Part1:nucleate boiling. International Journal of Heat and Mass Transfer,2004,47(26):5703-5712.
    [36] Ghodbane M, Holman J P. Experimental study of spray cooling with freon-113. InternationalJournal of Heat and Mass Transfer,1991,34(4-5):1163-1174.
    [37]司春强,邵双全,田长青.高功率固体激光器用一体化制冷喷雾冷却系统实验研究.中国激光,2011(1):44-48.
    [38] Lin L C, Ponnappan R. Heat transfer characteristics of spray cooling in a closed loop.International Journal of Heat and Mass Transfer,2003,46(20):3737-3746.
    [39] Elston L J, Yerkes K L, Thomas S K, et al. Cooling performance of a16-nozzle array invariable gravity. Journal of Thermophysics and Heat Transfer,2009,23(3):571-581.
    [40] Gambaryan-Roisman T, Kyriopoulos O, Roisman I, et al. Gravity effect on spray impact andspray cooling. Microgravity Science and Technology,2007,19(3-4):151-154.
    [41] Rowden B L, Selvam R P, Silk E A. Spray cooling development effort for microgravityenvironments. AIP Conference Proceedings,2006,813:134-144.
    [42] Golliher E L, Zivich C P, Yao S C. Exploration of unsteady spray cooling for high powerelectronics at microgravity using NASA Glenn's drop tower. HT2005: Proceedings of theASME Summer Heat Transfer Conference,2005,2:609-612.
    [43] Yoshida K, Abe Y, Oka T, et al. Spray cooling under reduced gravity condition. Journal ofHeat Transfer-Transactions of the ASME,2001,123(2):309-318.
    [44] Bellerova H, Pohanka M, Raudensky M, et al. Spray cooling by Al2O3and TiO2nanoparticles in water. Intersociety Conference on Thermal and ThermomechanicalPhenomena in Electronic Systems,2010
    [45] Puterbaugh R L, Yerkes K L, Thomas S K. Partially confined FC-72spray-coolingperformance: Effect of dissolved air. Journal of Thermophysics and Heat Transfer,2009,23(3):582-591.
    [46] Jiang S J, Dhir V K. Spray cooling in a closed system with different fractions ofnon-condensibles in the environment. International Journal of Heat and Mass Transfer,2004,47(25):5391-5406.
    [47] Zhang Z, Li J, Jiang P X. Experimental investigation of spray cooling on flat and enhancedsurfaces. Applied Thermal Engineering,2013(51):102-111.
    [48] Ortiz L, Gonzalez J E. Experiments on steady-state high heat fluxes using spray cooling.Experimental Heat Transfer,1999,12(3):215-233.
    [49] Shedd T A, Pautsch A G. Spray impingement cooling with single-and multiple-nozzle arrays,Part II: Visualization and empirical models. International Journal of Heat and Mass Transfer,2005,48(15):3176-3184.
    [50] Karwa N, Kale S R, Subbarao P. Experimental study of non-boiling heat transfer from ahorizontal surface by water sprays. Experimental Thermal and Fluid Science,2007,32(2):571-579.
    [51] Hsieh S S, Tien C H. R-134a spray dynamics and impingement cooling in the non-boilingregime. International Journal of Heat and Mass Transfer,2007,50(3-4):502-512.
    [52] Some T, Lehmann E, Sakamoto H, et al. Pressure based prediction of spray cooling heattransfer coefficients. Proceedings of the ASME International Mechanical EngineeringCongress and Exposition,2008,8:1131-1138
    [53] Abbasi B, Kim J. Development of a general dynamic pressure based single-phase spraycooling heat transfer correlation. Journal of Heat Transfer-Transactions of the ASME,2011,133(5):0522015.
    [54] Oliphant K, Webb B W, McQuay M Q. An experimental comparison of liquid jet array andspray impingement cooling in the non-boiling regime. Experimental Thermal and FluidScience,1998,18(1):1-10.
    [55] Hsieh C C, Yao S C. Evaporative heat transfer characteristics of a water spray onmicro-structured silicon surfaces. International Journal of Heat and Mass Transfer,2006,49(5-6):962-974.
    [56] Alvarado J L, Lin Y. Nanostructured surfaces for enhanced spray cooling.27th Army ScienceConference,2010: No. MP-10.
    [57] Shen J, Graber C, Liburdy J, et al. Simultaneous droplet impingement dynamics and heattransfer on nano-structured surfaces. Experimental Thermal and Fluid Science,2010,34(4Sp.Iss. SI):496-503.
    [58] Shen J, Liburdy J A, Pence D V, et al. Droplet impingement dynamics: effect of surfacetemperature during boiling and non-boiling conditions. Journal of Physics-Condensed Matter,2009,21(46):46413346.
    [59] Liu J, Franco W, Aguilar G. Effect of surface roughness on single cryogen droplet spreading.Journal of Fluids Engineering,2008,130(4):41402-41409.
    [60] Silk E A, Kim J, Kiger K. Spray cooling of enhanced surfaces: Impact of structured surfacegeometry and spray axis inclination. International Journal of Heat and Mass Transfer,2006,49(25-26):4910-4920.
    [61] Sehmbey M S, Pais M R, Chow L C. A study of diamond laminated surfaces in evaporativespray cooling. Thin Solid Films,1992,212(1-2):25-29.
    [62] Sodtke C, Stephan P. Spray cooling on micro structured surfaces. International Journal ofHeat and Mass Transfer,2007,50(19-20):4089-4097.
    [63]谢宁宁,胡学功,唐大伟.毛细矩形微槽群表面喷雾冷却实验研究.工程热物理学报,2010(5):805-809.
    [64] Coursey J S, Kim J G, Kiger K T. Spray cooling of high aspect ratio open microchannels.Journal of Heat Transfer-Transactions of the ASME,2007,129(8):1052-1059.
    [65] Yang B H, Wang H, Zhu X, et al. Heat transfer enhancement of spray cooling with ammoniaby microcavity surfaces. Applied Thermal Engineering,2013,50(1):245-250.
    [66] Bostanci H, Saarloos B A, Rini D P, et al. Spray cooling with ammonia on micro-structuredsurfaces. Intersociety Conference on Thermal and Thermomechanical Phenomena inElectronic Systems.2008:290-295.
    [67]刘振华.高温物体喷雾冷却时冷却水水质的影响.钢铁,1998(3):59-62
    [68] Pais M R, Chow L C, Mahefkey E T. Surface roughness and its effects on heat transfermechanism in spray cooling. Journal of Heat Transfer-Transactions of the ASME,1993,115(4):1083-1085.
    [69] Sehmbey M S, Chow L C, Hahn O J, et al. Effect of spray characteristics on spray coolingwith liquid-nitrogen. Journal of Thermophysics and Heat Transfer,1995,9(4):757-765.
    [70] Lee J. Role of surface roughness in water spray cooling heat transfer of hot steel plate. ISIJInternational,2009,49(12):1920-1925.
    [71] Kim J H, You S M, Choi S. Evaporative spray cooling of plain and microporous coatedsurfaces. International Journal of Heat and Mass Transfer,2004,47(14-16):3307-3315.
    [72] Kim Y H, Choi C, Lee K J, et al. Experimental study of spray cooling performance onmicro-porous coated surfaces. Heat and Mass Transfer,2009,45(10):1285-1292.
    [73] Srikar R, Gambaryan-Roisman T, Steffes C, et al. Nanofiber coating of surfaces forintensification of drop or spray impact cooling. International Journal of Heat and MassTransfer,2009,52(25-26):5814-5826.
    [74] Silk E A. Investigation of pore size effect on spray cooling heat transfer with porous tunnels.AIP Conference Proceedings,2008,969:112-122.
    [75] Silk E A, Bracken P. Spray cooling heat flux performance using POCO HTC foam. Journal ofThermophysics and Heat Transfer,2010,24(1):157-164.
    [76] Pautsch A G, Shedd T A. Adiabatic and diabatic measurements of the liquid film thicknessduring spray cooling with FC-72. International Journal of Heat and Mass Transfer,2006,49(15-16):2610-2618.
    [77] Zhao R, Cheng W L, Liu Q N, et al. Study on heat transfer performance of spray cooling:model and analysis. Heat and Mass Transfer,2010,46(8-9):821-829.
    [78] Pais M, Tilton D, Chow L, et al. High-heat-flux, low-superheat-evaporative spray cooling. In:27th AIAA Aerospace Sciences Meeting,1989,1.
    [79] Pais M R, Chow L C, Mahefkey E T. Surface roughness and its effects on heat transfermechanism in spray cooling. Journal of Heat Transfer-Transactions of the ASME,1993,115(4):1083-1085
    [80] Rini D P, Chen R H, Chow L C. Bubble behavior and nucleate boiling heat transfer insaturated FC-72spray cooling. Journal of Heat Transfer-Transactions of the ASME,2002,124(1):63-72.
    [81] Chen R H, Tan D S, Lin K C, et al. Droplet and bubble dynamics in saturated FC-72spraycooling. Heat Transfer Division of the American Society of Mechanical Engineers,2005,376-2:247-254.
    [82] Selvam R P, Lin L C, Ponnappan R. Computational modeling of spray cooling: Current statusand future challenges. AIP Conference Proceedings,2005,746:55-63.
    [83] Selvam R P, Lin L C, Ponnappan R. Direct simulation of spray cooling: Effect of vaporbubble growth and liquid droplet impact on heat transfer. International Journal of Heat andMass Transfer,2006,49(23-24):4265-4278.
    [84] Horacek B, Kiger K T, Kim J. Single nozzle spray cooling heat transfer mechanisms.International Journal of Heat and Mass Transfer,2005,48(8):1425-1438.
    [85] PasandidehFard M, Qiao Y M, Chandra S, et al. Capillary effects during droplet impact on asolid surface. Physics of Fluids,1996,8(3):650-659.
    [86] Chandra S, Avedisian C T. On the collision of a droplet with a solid-surface. Proceedings ofthe Royal Society of London Series a-Mathematical Physical and Engineering Sciences,1991,432(1884):13-41.
    [87] Fukai J, Shiiba Y, Yamamoto T, et al. Wetting effects on the spreading of a liquid dropletcolliding with a flat surface-Experiment and modeling. Physics of Fluids,1995,7(2):236-247.
    [88] Pasandideh-Fard M, Aziz S D, Chandra S, et al. Cooling effectiveness of a water dropimpinging on a hot surface. International Journal of Heat and Fluid Flow,2001,22(2):201-210.
    [89] Sikalo S, Marengo M, Tropea C, et al. Analysis of impact of droplets on horizontal surfaces.Experimental Thermal and Fluid Science,2002,25(7):503-510.
    [90] Sikalo S, Tropea C, Ganic E N. Dynamic wetting angle of a spreading droplet. ExperimentalThermal and Fluid Science,2005,29(7):795-802.
    [91] Sikalo S, Wilhelm H D, Roisman I V, et al. Dynamic contact angle of spreading droplets:Experiments and simulations. Physics of Fluids,2005,17(0621036).
    [92] Lunkad S F, Buwa V V, Nigam K. Numerical simulations of drop impact and spreading onhorizontal and inclined surfaces. Chemical Engineering Science,2007,62(24Sp. Iss.SI):7214-7224.
    [93] Roisman I V, Opfer L, Tropea C, et al. Drop impact onto a dry surface: Role of the dynamiccontact angle. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2008,322(1-3):183-191.
    [94] Gunjal P R, Ranade V V, Chaudhari R V. Dynamics of drop impact on solid surface:Experiments and VOF simulations. AIChE Journal,2005,51(1):59-78.
    [95] Fukai J, Zhao Z, Poulikakos D, et al. Modeling of the deformation of a liquid dropletimpinging upon a flat surface. Physics of Fluids A-Fluid Dynamics,1993,5(11):2588-2599.
    [96] Mao T, Kuhn D, Tran H. Spread and rebound of liquid droplets upon impact on flat surfaces.AIChE Journal,1997,43(9):2169-2179.
    [97] Bussmann M, Mostaghimi J, Chandra S. On a three-dimensional volume tracking model ofdroplet impact. Physics of Fluids,1999,11(6):1406-1417.
    [98] Bussmann M, Chandra S, Mostaghimi J. Modeling the splash of a droplet impacting a solidsurface. Physics of Fluids,2000,12(12):3121-3132.
    [99] Josserand C, Zaleski S. Droplet splashing on a thin liquid film. Physics of Fluids,2003,15(6):1650-1657.
    [100] Theodorakakos A, Bergeles G. Simulation of sharp gas-liquid interface using VOF methodand adaptive grid local refinement around the interface. International Journal for NumericalMethods in Fluids,2004,45(4):421-439.
    [101] Kamnis S, Gu S. Numerical modelling of droplet impingement. Journal of Physics D-AppliedPhysics,2005,38(19):3664-3673.
    [102] Davidson M R. Boundary integral prediction of the spreading of an inviscid drop impactingon a solid surface. Chemical Engineering Science,2000,55(6):1159-1170.
    [103] van Dam D B, Le Clerc C. Experimental study of the impact of an ink-jet printed droplet on asolid substrate. Physics of Fluids,2004,16(9):3403-3414.
    [104] Son Y, Kim C, Yang D H, et al. Spreading of an inkjet droplet on a solid surface with acontrolled contact angle at low weber and Reynolds numbers. Langmuir,2008,24(6):2900-2907.
    [105] Briones A M, Ervin J S, Putnam S A, et al. Micrometer-sized water droplet impingementdynamics and evaporation on a flat dry surface. Langmuir,2010,26(16):13272-13286.
    [106] Vadillo D C, Soucemarianadin A, Delattre C, et al. Dynamic contact angle effects onto themaximum drop impact spreading on solid surfaces. Physics of Fluids,2009,21(12):12200212.
    [107] Harvie D, Fletcher D F. A hydrodynamic and thermodynamic simulation of droplet impactson hot surfaces, Part I: theoretical model. International Journal of Heat and Mass Transfer,2001,44(14):2633-2642.
    [108] Harvie D, Fletcher D F. A hydrodynamic and thermodynamic simulation of droplet impactson hot surfaces, Part II: validation and applications. International Journal of Heat and MassTransfer,2001,44(14):2643-2659.
    [109] Nikolopoulos N, Theodorakakos A, Bergeles G. A numerical investigation of the evaporationprocess of a liquid droplet impinging onto a hot substrate. International Journal of Heat andMass Transfer,2007,50(1-2):303-319.
    [110] Strotos G, Gavaises M, Theodorakakos A, et al. Numerical investigation on the evaporationof droplets depositing on heated surfaces at low Weber numbers. International Journal of Heatand Mass Transfer,2008,51(7-8):1516-1529.
    [111] Strotos G, Gavaises M, Theodorakakos A, et al. Numerical investigation of the coolingeffectiveness of a droplet impinging on a heated surface. International Journal of Heat andMass Transfer,2008,51(19-20):4728-4742.
    [112] Negeed E, Ishihara N, Tagashira K, et al. Experimental study on the effect of surfaceconditions on evaporation of sprayed liquid droplet. International Journal of Thermal Sciences,2010,49(12):2250-2271.
    [113] Panao M, Moreira A. Thermo-and fluid dynamics characterization of spray cooling withpulsed sprays. Experimental Thermal and Fluid Science,2005,30(2):79-96.
    [114] Moreira A L N, Panao M R O. Heat transfer at multiple-intermittent impacts of a hollow conespray. International Journal of Heat and Mass Transfer,2006,49(21-22):4132-4151.
    [115]于霄.径向内流旋转盘腔流动与换热研究[博士学位论文].北京:北京航空航天大学能源与动力工程学院,2009.
    [116]江普庆.带肋通道中含雾空气冷却的实验研究和数值模拟[硕士学位论文].北京:清华大学热能工程系,2010.
    [117] Ouyang X L, Jiang P X, Xu R N. Thermal boundary conditions of local thermalnon-equilibrium model for convection heat transfer in porous media. International Journal ofHeat and Mass Transfer,2013,60:31-40.
    [118] Lee C Y, Bhuiya M, Kim K J. Pool boiling heat transfer with nano-porous surface.International Journal of Heat and Mass Transfer,2010,53(19-20):4274-4279.
    [119] Im Y, Joshi Y, Dietz C, et al. Enhanced boiling of a dielectric liquid on copper nanowiresurfaces. International Journal of Micro-Nano Scale Transport,2010,1:79-95.
    [120] Kwark S M, Amaya M, Kumar R, et al. Effects of pressure, orientation, and heater size onpool boiling of water with nanocoated heaters. International Journal of Heat and MassTransfer,2010,53(23-24):5199-5208.
    [121] Li Q, Wang W, Oshman C, et al. Enhanced pool boiling performance on micro-, nano-, andhybrid-structured surfaces. ASME2011International Mechanical Engineering Congress&Exposition,2011:69421.
    [122] Launay S, Fedorov A G, Joshi Y, et al. Hybrid micro-nano structured thermal interfaces forpool boiling heat transfer enhancement. Microelectronics Journal,2006,37(11SI):1158-1164.
    [123] Kim H D, Kim J, Kim M H. Experimental studies on CHF characteristics of nano-fluids atpool boiling. International Journal of Multiphase Flow,2007,33(7):691-706.
    [124] Huang C K, Lee C W, Wang C K. Boiling enhancement by TiO2nanoparticle deposition.International Journal of Heat and Mass Transfer,2011,54(23-24):4895-4903.
    [125] Ahn H S, Jo H J, Kang S H, et al. Effect of liquid spreading due to nano/microstructures onthe critical heat flux during pool boiling. Applied Physics Letters,2011,98(7):0719087.
    [126] Kim H, Kim J, Kim M H. Effect of nanoparticles on CHF enhancement in pool boiling ofnano-fluids. International Journal of Heat and Mass Transfer,2006,49(25-26):5070-5074.
    [127] Kim S, Kim H D, Kim H, et al. Effects of nano-fluid and surfaces with nano structure on theincrease of CHF. Experimental Thermal and Fluid Science,2010,34(4SI):487-495.
    [128] Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension.Journal of computational physics,1992,100:335-354.
    [129] Sciffer S. A phenomenological model of dynamic contact angle. Chemical EngineeringScience,2000,55(23):5933-5936.
    [130] Hong S D, Ha M Y, Balachandar S. Static and dynamic contact angles of water droplet on asolid surface using molecular dynamics simulation. Journal of Colloid and Interface Science,2009,339(1):187-195.
    [131] Yokoi K, Vadillo D, Hinch J, et al. Numerical studies of the influence of the dynamic contactangle on a droplet impacting on a dry surface. Physics of Fluids,2009,21(7):0721027.
    [132] Yang C W, He F, Hao P F. The apparent contact angle of water droplet on themicro-structured hydrophobic surface. Science China Chemistry,2010,53(4):912-916.
    [133] Blake T D. The physics of moving wetting lines. Journal of Colloid and Interface Science,2006,299(1):1-13.
    [134] Sun Z H, Han R J. Simulation solution for micro droplet impingement on a flat dry surface.Chinese Physics B,2008,17(9):3185-3188.
    [135] Berg J C. Wettability. New York: Marcel Dekker, Inc,1993.
    [136] Lee J B, Lee S H. Dynamic wetting and spreading characteristics of a liquid dropletimpinging on hydrophobic textured surfaces. Langmuir,2011,27(11):6565-6573.
    [137] Yoshimitsu Z, Nakajima A, Watanabe T, et al. Effects of surface structure on thehydrophobicity and sliding behavior of water droplets. Langmuir,2002,18(15):5818-5822.
    [138] Kannan R, Sivakumar D. Drop impact process on a hydrophobic grooved surface. Colloidsand Surfaces A-Physicochemical and Engineering Aspects,2008,317(1-3):694-704.
    [139] Parizi H B, Rosenzweig L, Mostaghimi J, et al. Numerical simulation of droplet impact onpatterned surfaces. Journal of Thermal Spray Technology,2007,16(5-6):713-721.
    [140] Reis N C, Griffiths R F, Santos J M. Numerical simulation of the impact of liquid droplets onporous surfaces. Journal of Computational Physics,2004,198(2):747-770.
    [141] Ye X, Zhou M, Jiang D L, et al. Transition of super-hydrophobic states of droplet on roughsurface. Journal of Central South University of Technology,2010,17(3):554-559.
    [142] Liu H, Lavernia E J, Rangel R H. Modeling of molten droplet impingement on a nonflatsurface. Acta Metallurgica et Materialia,1995,43(5):2053-2072.
    [143] Miwa M, Nakajima A, Fujishima A, et al. Effects of the surface roughness on sliding anglesof water droplets on superhydrophobic surfaces. Langmuir,2000,16(13):5754-5760.
    [144] Pasandideh-Fard M, Bussmann M, Chandra S, et al. Simulating droplet impact on a substrateof arbitrary shape. Atomization and Sprays,2001,11(4):397-414.
    [145] Li X Y, Ma X H, Lan Z. Dynamic Behavior of the water droplet impact on a texturedhydrophobic/superhydrophobic surface: The effect of the remaining liquid film arising on thepillars' tops on the contact time. Langmuir,2010,26(7):4831-4838.
    [146] Kim H, Lee C, Kim M H, et al. Drop impact characteristics and structure effects ofhydrophobic surfaces with micro-and/or nanoscaled structures. Langmuir,2012,28(30):11250-11257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700