用户名: 密码: 验证码:
颗粒阻尼及其控制的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒阻尼技术是一种振动被动控制新技术。该技术利用结构上现存的或附加的空腔,将颗粒体填入其中,结构振动时颗粒体产生碰撞和摩擦,将机械能转化为热能和声能,产生阻尼效应;同时颗粒体与结构间的动量交换也能起到抑制振动的作用。颗粒阻尼具有应用环境范围广、对原结构改动小、产生的附加质量小、减振效果明显等优点,具有明显的应用前景。
     目前对颗粒阻尼技术的研究处于起步阶段,理论研究尚不完善。本文根据该项技术的特点,从理论和试验两方面对颗粒阻尼及其控制进行了全面、深入细致的研究。主要工作是:
     1、在前人研究的基础上,系统讨论了颗粒物质的属性。在假定颗粒体为连续介质的基础上,采用莫尔圆强度理论,对颗粒体在简谐激励作用下的应力状态进行了分析,得到颗粒体处于极限应力状态时所对应的激励加速度理论值,即颗粒产生摩擦效应所需的最小加速度,该值在颗粒阻尼技术当中的地位极其重要。
     2、对颗粒阻尼器在振动约化加速度Γ小于1和Γ大于1两种情况下的损耗能量进行了研究分析。在约化加速度大于1的情况下,采用完全非弹性蹦球力学模型推导出颗粒阻尼总损耗能量的理论表达式。
     3、通过试验对颗粒阻尼器的动态特性进行了系统研究。得到颗粒体冲击力受约化加速度控制经历一系列倍周期性分岔的规律,并给出冲击力的统一谐波表达形式。采用统计能量方法对颗粒阻尼产生的损耗功率和附加质量进行了研究,发现颗粒阻尼器的损耗功率和附加质量存在临界点(转捩点)现象,在临界点之前,阻尼颗粒不损耗能量,附加质量变化不明显;临界点之后,损耗功率随激励强度增加而增大,损耗功率值由阻尼器振动速度幅值决定,附加质量随阻尼器加速度幅值的增加而变小,且对激励频率的变化不敏感。提出通过绘制损耗因子等高线图的方式来确定颗粒阻尼器的最佳工作范围,从而对颗粒阻尼减振效果进行预估的方法。
     4、提出针对颗粒阻尼单自由度系统参数识别的恢复力曲面算法。在窄带随机激励条件下,对不同振动水平、颗粒尺寸和填充率情况下的系统等效阻尼比和等效质量进行了识别,得到了与简谐激励情况类似的结论。
     5、对直流电磁场作用下的颗粒阻尼器减振效果进行了理论分析和试验研究。结果表明:在一定振动强度下,通过施加直流电磁场的方法,可以加大颗粒体与振动系统间的动量交换,提高对结构振动的抑制作用;同时能够增大磁颗粒之间的接触压力,由此加大摩擦力,提高阻尼器的性能。该方法为颗粒阻尼技术由被动控制发展成为半主动控制,来抑制不同强度的振动提供了有益的探索。
Particle damping technology is new vibration passive control approach. It can make use of the structural pre-existing voids or enclosures attached to structure to partially fill with particles. When the structure moves, the particles collide with each other and with the enclosure causing damping through inelastic of nearly collisions, and convert kinetic energy into heat or sound energy. At same time, the momentum conversion between particles and structure can also suppress the dynamic response of primary system. It enjoys a lot of advantages such as: it can be used in a wide range of environment, the structures are modified hardly, additional mass to the system is minimum, and the effect of vibration absorption is notable etc. all of them make it to be used widely in the future.
     At present, the researches on particle damping are falling to doing, and the theories are not far away from satisfactory. In this paper, some theoretical model and experiments are introduced to study the dynamic characteristics of particle damping, and some technique are used to control and improve the performance of particle damper. The dissertation includes:
     1. Based on the predecessors’studies, the properties of granular matter are systematically discussed. Presupposing the granular as continuous material, the stress state of particle is analysised with Mohr stress circle under harmonic excitation, and obtains the acceleration theoretics value at which the granular matter is on utmost stress state. The value is very important for particle damping because it can tell us when the granular friction effectiveness act.
     2. The dissipated energy by the particle damper is analysised on the cases ofΓ<1 andΓ>1, hereΓis the dimensionless reduced acceleration of damper. WhenΓ>1, the model of completely inelastic boucing ball is used to derive the formula of total dissipated energy of particle damper.
     3. The dynamic characteristics of particle damper are experimentally investigated for thorough understanding its behaviors. It is observed that the impact force between granular bed and container bottom, controlled by the dimensionless reduced vibration acceleration of container, undergoes a series of period doubling bifurcations. Derive a same expression for all of impact forces with different period bifurcations. The Statistical Energy Analysis(SEA)technique is used to estimate the dissipated energy and the dynamic mass of damper. As a result, there is a critical acceleration at which the dissipated energy and the dynamic mass can change suddenly. Below the critical value, the damper can’t dissipate the energy and the additional mass of particles does not change distinctly. Over the point, the dissipated power increases with excitation level and takes some regularity depended on velocity amplitude. However the equivalent mass of damper falls with acceleration amplitude increasing, and is not relative with the vibration frequency. The 3-dimemension contours of loss factor on velocity and frequency is a better way to describe the particle damping performance, by which we can confirm and estimate the best working area of damper.
     4. Based on the conventional restoring force surface (RFS) method, the paper puts forward a new arithmetic to identify the parameters of particle damping single degree of freedom system by the way of adding acceleration terms into the restoring force equation. And utilize the new method to estimate the equivalent damping ratio and equivalent mass of particle damping system on the cases of different vibration level, different particle sizes and different particle filling ratio under the narrowband random excitation. The results resemble with the case of harmonic excitation.
     5. The effect of direct current electromagnetic field on ferromagnetic particle damping is theoretically anlysised and experimently investigated for low level vibration case. As a result, the electromagnetic field can significantly increases the momentum conversion between particles and structure, at same time it can also enlarge the contact and friction force between ferromagnetic particles, therefore enhancing its vibration suppression ability. This result suggests that the electromagnetic field could be used to control the energy dissipation performance of a particle damping system in a semi-active way.
引文
[1]胡海昌谈谈对振动工程的看法[J]噪声与振动控制1996, 1:2-3
    [2]吕鑫振动主动控制技术的研究及发展[J]振动测试与诊断1996, 116(3):1-7
    [3] Beards C.F Damping in structural Joint[J] Shock and Vibration Digest 1982, 14(6): 6-11
    [4] Beards C.F Damping in structural Joint[J] Shock and Vibration Digest 1985,17(11): 17-20
    [5] Jones D.I.G High Temperature Damping of Dynamic Systems[J] Shock and Vibration Digest 1982, 14(5): 13-15
    [6] Jones D.I.G High Temperature Damping of Dynamic Systems[J] Shock and Vibration Digest 1982, 17(10): 3-5
    [7]屈维德等机械加工中的振动问题[M]北京:高等教育出版社1959
    [8]戴德沛阻尼减振降噪技术[M]西安:西安交通大学出版社1986
    [9] Kerwin E.M. Macro-mechanisms of Damping in Composite Structures. Presented at the 67th Annual Meeting of ASTM on Internal Friction Damping and Cyclic Plasticity. ASTM-STP No.378 1964
    [10] Schmidt H. Die schallausbreitung in kornigen substanzen [J] Acustica, 1954, 4:639-652.
    [11] Lenzi A. The use of damping material in industrial machine[D].England: University of southampton,1982.
    [12] Sun J.C. Sun H.B. predictions of total loss factors of structures Part II: loss factors of sand-filled structure [J]. Journal of sound and Vibration, 1986, 104(2):243-257
    [13] Hunt J.B. Dynamic vibration absorbers [M] London: Mechanical Engineering Publications,1979,128-142
    [14]邓危梧冲击减振器的效应及其基本参数的确定[J]机械工程学报,1964, 12 (4):83-94
    [15] Lieber P. Jensen D.P. An acceleration damper,design and some application [J]. Trans. ASME, 1945, 67(7):523-530.
    [16] Grubin C. On the theory of acceleration damper[J]. Journal of Applied Mechanics,1956, 23(3):373-378.
    [17] Arnold R.N. Response of an Impact vibration absorber to force vibration[A], Proceedings of the ninth international congress of applied mechanics 1957
    [18] Masri S.F. General motion of impact dampers[J]. Journal of the Acoustical society of America, 1996, 12(7):229-237.
    [19] Masri S.F. Steady-State response of a multi-degree system with an impact damper [J]. Journal of Applied Mechanics, 1973, 3:127-131.
    [20] Masri S.F, Caughey T.K On the stability of the impact damper [J]. Journal of Applied Mechanics, 1966, 33:586-592.
    [21] Masri. S.F. Studies of multi-unit impact damper [J]. Journal of the Acoustical society of America, 1968, 45(5):1111-1117.
    [22] Masri S.F., Ibrahim A.M. A hybrid electromechanical analog computer technique for optimizing vibrating systems [J]. Journal of Applied Mechanics, 1972, 94(2):381-387.
    [23] Masri S.F., lbrahim A.M. Response of the impact to stationary random excitation [J].Journal of the Acoustical Society of America, 1973, 53(1):200-211
    [24] Popplowell N., Liao M. A simple design procedure for optimum impact damper[ J]. Journalof Sound and Vibration, 1991, 146:519-526.
    [25] Popplowell N., Bapat C.N., Mclachlan K. Stable periodic vibro-impacts of an oscillator [J]. Journal of Sound and Vibration, 1983, 87:41-59.
    [26] Popplowell N., Bapat C.N., Mclachlan K. Stable periodic motion of multiple-unit impact mechanisms [J]. Journal of Sound and Vibration, 1983, 87:19-40.
    [27] Bapat C.N., Popplowell N. Several similar vibro-impact systems [J].Journal of Sound and Vibration, 1986, 113(1):17-28.
    [28] Bapat C.N., Sanker S., Popplowell N. Respected impact on a sinusoidal vibration table reappeared [J].Journal of Sound and Vibration, 1986, 108 (1): 99-115.
    [29] Bapat C.N., Popplowell N., Mclachlan K. Stable periodic motions of an impact-pair [J]. Journal of Sound and Vibration, 1983, 87:19-40.
    [30] Bapat C.N., Sanker S. Single unit impact damper in free and forced vibration [J]. Journal of Sound and Vibration, 1985, 99:85-94.
    [31]张济生何康渝关于冲击减振机理的讨论[C],中国机械工程学会机械动力学会第四界学术年会论文集,天津大学出版社,1990,316-321
    [32]张济生何康渝冲击系统的动力学模型及其参数识别[C],中国机械工程学会机械动力学会第四界学术年会论文集,天津大学出版社,1990
    [33] Semercigil S.E., Popplowell N. The bean bag impact damping [A]. Proceedings of the 3rd International Conference on Recent Advances in Structural Dynamics. London, 1988, 459-468.
    [34]邵益勤梁小燕李伟柔性约束颗粒冲击阻尼技术及应用[J]汽车工程,1998, 21 (6): 358-363
    [35] Popplewell N., Semercigil S.E. Performance of the bean bag damper for a sinusoidal external force [J]. Journal of Sound and Vibration, 1989,133 (2): 193-233.
    [36] Pang C. An overview of a bean bag damping's effectiveness [J]. Journal of Sound and Vibration, 1989, 133(2):359-26
    [37]陈天宁柔性约束下颗粒结构的冲击减振机理及其工程应用[D]西安:西安交通大学机械工程学院,1996
    [38]李伟冲击减振理论的离散单元法研究及应用[D]西安:西安交通大学机械工程学院,1997
    [39]李伟朱德懋等豆包阻尼器的减振特性研究[J]航空学报1999, 20(2):168-170
    [40] Panossion H.V., Johnson V. J. Rogers L. Non-obstructive impact damping application for cryogenic environments [A]. Proceeding of Damping' 89, California:Wright-Pater air force base, 1989,1-9.
    [41] Panossion H.V., Johnson V. J., Rogers L. NOPD tests on aluminum beams[A]. Proceeding of Damping '91, California: Wright-Patter air force base, 1991, 1-7.
    [42] Abdel-Gawad M. Passive vibration damping with noncohesive granular materials[A]. In the Proceedings of Damping 91[C].1991.GdB1-GDB14.
    [43]徐志伟NOPD减振技术的理论研究及工程应用[D]西安:西安交通大学机械工程学院,1999
    [44]徐志伟陈天宁等非阻塞性颗粒阻尼中颗粒摩擦耗能的仿真计算[J]机械科学与技术,1999,18(6):890-892
    [45]毛宽民陈天宁等非阻塞性微颗粒阻尼的散体元模型[J]西安交通大学学报,1999,33 (5):79 -83
    [46] Chen Q., Worden K., Rongong J. Characterisation of particle dampers using restoring force surface technique[C], EuroDyn2005, 4-7 September, 2005, Paris, France.
    [47]陆坤权刘寄星颗粒物质(上)[J]物理2004 Vol.33 No.9: 629-635
    [48] Liu C.H et al Science 1995, 296:513
    [49] Bak P., Tang C., Wiesenfeld K. Self-organized criticality: An explanation of the 1/f noise [J], Phys. Rev. Lett. 1987, 59, 381
    [50] Bak P., Tang C., Wiesenfeld K. Self-organized criticality [J], Phys. Rev. A 1988, 38: 364
    [51]黄松元散体力学[M]北京:机械工业出版社1992
    [52] Jaeger H M., Nagel S R., Behringer R P. Granular solids, liquids, and gases [J]. Rev. Mod. Phys., 1996, 68, 1259-1273
    [53] Evesque P, Rajchenbach J. Instability in a Sand Heap [J] Phys. Rev. Lett, 1989, 62:44-46
    [54] Clement E, Duran J, Rajchenbach J. Experimental Study of Heaping in a Two-Dimensional“Sandpile”[J]. Phys. Rev. Lett 1992 , 69:1189-1892
    [55] Falcon Eric, Kumar K, Bajaj K.M.S. et al Heap corrugation and hexagon formation of powder under vertical vibrations [J] Phys. Rev. E 1999, 59:5716-5720
    [56] Duran J. Sands Powders and Grains [M]. New York :Springer 2000, 95
    [57] Aoki K.M, Akiyama T, Maki Y, et al Convective roll patterns in vertically vibrated beds of granules [J] Phys. Rev. E 1996, 54:874-883
    [58] Bizon C., Shattuck M.D., Swift J.B., et al Patterns in 3D Vertically Oscillated Granular Layers: Simulation and Experiment [J]. Phys. Rev. Lett, 1998, 80: 57-60.
    [59] Melo F., Umbanhowar P.B., Swinney H.L. Hexagons, Kinks, and Disorder in Oscillated Granular Layers [J] Phys. Rev. Lett., 1995, 75: 3838-3841
    [60] Goldman D.I., Moon S.J., Swift J.B. et al, Lattice Dynamics and Melting of a Nonequilibrium Pattern [J] Phys. Rev. Lett, 2003, 90: 104302.
    [61] Wassgren C.R, Brennen C.E, Hunt M.L Vertical vibration of a deep Bed of granular material in a container [J] J. Appl. Mech 1996, 63:712-719
    [62] Osamu Sano Dilatancy, buckling, and undulations on a vertically vibrating granular layer [J] Phys. Rev. E 72, 051302
    [63]张鹏缪国庆魏荣爵振动下颗粒物质系统中扭结孤立波的实验观察[J]声学技术2004 z2:11-12
    [64] Umbanhowar P., Melo F., Swinney H.L. Nature, 382, (1996) 793.
    [65] Breu A.P.J., Ensner H.M., Kruelle C.A. Reversing the Brazil-Nut Effect: Competition between Percolation and Condensation [J] Phys. Rev. Lett 2003, 90:014302
    [66]姜泽辉陆坤权厚美瑛等振动颗粒混合物中的三明治式分离[J]物理学报2003, 52:2244-2248
    [67] Shi Q F, Yan X.Q, Hou M.Y, et al Experimental study of segregation patterns in binary granular mixtures under vertical vibration [J] Chinese Science Bulletin 2003, 48: 627-629
    [68] Goldshtein A., Shapiro M., Moldavsky L. et al Mechanics of Collisional motion of granular materials: Part 2. Wave propagation through vibrofluidized granular layers [J]. Fluid Mech 1995, 287:349-382
    [69] Hostler S.R., Brennen C.E. Pressure wave propagation in a granular bed [J]. Phys.Rev.E 2005, 72, 031303
    [70] Hostler S.R., Brennen C.E. Pressure wave propagation in a shaken granular bed [J]. Phys.Rev.E 2005, 72, 031304
    [71] Umbanhowar P., van Hecke M. Force dynamics in weakly vibrated granular packings [J] Phys.Rev.E 2005, 72, 030301(R)
    [72]吴爱祥孙业志刘湘平著散体动力学理论及其应用[M]北京:冶金工业出版社2002
    [73]金栋平胡海岩碰撞振动与控制[M]北京:科学出版社,2005
    [74] Hunt K.H., Crossley F.R.E. Coefficient of restitution interpreted as damping in vibroimpact[J], Journal of Applied Mechanics 42, Series E (1975) 440–445.
    [75] Johnson K.L.徐秉业等译接触力学[M]北京:高等教育出版社1992
    [76] Gladwell G.M.L.范天佑译经典弹性理论中的接触问题[M]北京:北京理工大学出版社, 1988.
    [77] CundallP.A, Strack O.D.L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1):47-65
    [78] Wassgren C R, Brennen C E., Hunt M.L. Vertical vibration of a deep Bed of granular material in a container[J] Appl. Mech 1996, 63:712-719
    [79] Lading S., Clement E., Blumen A. et al Studies of columns of beads under external vibrations[J] Phys.Rev.E 1994 ,49:1634-1646
    [80] Melo F., Umbanhowar P.B., Swinney H.L. Hexagons, Kinks, and Disorder in Oscillated Granular Layers[J] Phys.Rev.Lett 1995, 75:3838-3841
    [81] Mon S J., Shattuck M.D., Bizon C. et al Phase bubbles and spatiotemporal chaos in granular patterns[J] Phys.Rev.E 2001, 65:011301
    [82] Miao G., Sui L.,Wei R. Dissipative properties and scaling law for a layer of granular material on a vibrating plate[J] Phys.Rev.E 2001, 63:31304
    [83] Luck J M., Mehta A. Bouncing ball with a finite restitution: Chattering, locking and chaos[J] Phy.Rev.E 1993, 48:3988
    [84] Mehta A.,Luck J.M. Novel temporal behavior of a nonlinear dynamical system: the completely inelastic bouncing ball[J] Phy.Rev.Lett 1990, 65:393
    [85]姜泽辉郑瑞华赵海发等完全非弹性蹦球的动力学行为[J]物理学报2007 56(07):3727-06
    [86]王其政结构耦合动力学[M]北京:宇航出版社,1999.5
    [87]姚德源王其政统计能量分析及其应用[M]北京:北京理工大学,1995
    [88]倪振华振动力学[M]西安:西安交通大学出版社1989
    [89] Ranky M F., Clarkson B L. frequency average loss factors of plates and shells [J]. Journal of Sound and Vibration, 1983, 89(3):309-323
    [90] Norton M.P., Greenhalgh R. On the estimation of loss factors in lightly damped pipeline systems: some measurement techniques and their limitations [J]. Journal of Sound and Vibration, 1986, 105(3):397-423
    [91] Norton M P.工程噪声和振动分析基础[M].北京:航空工业出版社,1993.9
    [92] Brown K.T., Clarkson B.L. Average loss factors for use in statistical energy analysis [C].Vibration Damping Workshop, Wright-Patterson Air Force Base, Ohio, U.S.A
    [93]姜泽辉李斌赵海发等竖直振动颗粒物厚层中冲击力分岔现象[J]物理学报2005 54(03):1273-1278
    [94] Yang M.Y. Development of master design curves for particle impact dampers [D], Department of Mechanical and Nuclear Engineering, The Pennsylvania State University,2003.
    [95] Saluena C., Poschel T., Esipov S.E. Dissipative properties of vibrated granular materials,Physical Review 1999,59 : 4422–4425.
    [96] Masri S.F., Caughey T.K. A nonparametric identification technique for nonlinear dynamic problems[J]. Journal of Applied Mechanics, 1979, 46: 433-447
    [97] Masri S.F., Caughey T.K A nonparametric identification of nearly arbitrary nonlinear system[J]. Journal of Applied Mechanics, 1982, 49:619-628.
    [98] Kerschen G, Lenaerts V, Golinval J.C. et al Application of the Restoring Force Surface Method[J] . Mechanical Systems and Signal Processing, 2003, 17(1): 189-193.
    [99] Peifer M, Timmer J, Voss H.U. Non-parametric identification of non-linear oscillating systems[J]. Journal of Sound and Vibration, 2003, 267, Issue 5, 6: 1157-1167.
    [100] Worden K, Tomlinson G.R. Nonlinearity in structural dynamics[M]. Institute of Physics publishing, 2001:285-376.
    [101] Liu W, omlinson G.T, Worden K Nonlinearity Study of Particle Dampers [C]. Proceeding of ISMA2002 - Volume I 495-500
    [102]凌永祥陈明逵《计算方法教程》[M],西安:西安交通大学出版社2005:83-124
    [103]莫国端刘开第《函数逼近方法论》[M],北京:科学出版社2003:100-113
    [104] Worden K. Data processing and experiment design for the restoring force surface method, Part1: integration and differentiation of measured time data [J]. Mechanical Systems and Signal Processing, 1990, 4(4): 195-219.
    [105] Hollkamp J.J, Gordon R.W. Experiments with Particle Damping[J]. Smart Structures and Materials, 1998, SPIE VOL 3327: 2-12.
    [106] Liu W., Tomlinson G.R., Rongong J.A. The dynamic characterization of disk geometry particle dampers[J] Journal of Sound and Vibration 2005 ,280:849–861
    [107]陆厚根粉体技术导论[M]上海:同济大学出版社1998
    [108]杨凤昌磁偶极子在外磁场中受的力[J]纺织基础科学学报1989,(1-2):108-110
    [109]何济洲缪贵玲两个磁偶极子间的相互作用[J]南昌大学学报1996 18 (3):96-98
    [110]刘棣华粘弹性阻尼减振降噪应用技术[M]北京:宇航出版社,1990
    [111]吴清松胡茂彬颗粒流的动力学模型和实验研究进展[J]力学进展2002,32(2):250
    [112] Ogawa S. Multi-temperature theory of granular materials[J], In:Gukujutsu, Bunken, Fukyukai eds. Proc. US-Jpn. Semin. Contin. Mech, and Stat. Approaches Mech. Granular Matter. Tokyo, Japan, 1978, 208-217
    [113] Jenkins J.T., Richman M.W. Grad's 13-moment system for a dense gas of inelastic spheres [J], Arch. Rat. Mech. Anal. 1985, 87,355-377
    [114] Grad H. On the kinetic theory of rarefied gases[J], Comm. Pure.Appl.Maths. 1949, 2:331-407
    [115] Sela N., Goldhirsch I. Hydrodynamical equations for rapid flows of smooth inelastic spheres[J], to Burnett order, J.F.M. 1998, 361,41-74
    [116] Brey J.J, Moreno F., Dufty J.W Model kinetic equation for low-density granular flow[J], Phys .Rev. E 1996, 54: 445-456.
    [117] Brey J.J., Dufty J.W., Kim C.S., Santos A Hydrodynamics for granular flow at low density[J], Phys.Rev.E 1998, 58(4):4638-4653
    [118] Brey J.J., Dufty J.W., Santos A., Kinetic models for granular flow[J], Stat. Phys. 1999, 97: 281- 323
    [119] Brey J.J., Ruiz-Montero M.J. Direct monte carlo simulation of dilute granular flow[J], Comp.Phys.Comm. 1999, 121-122:278-283
    [120] Spencer A.J.M. A theory of the kinematics of ideal soils under plane strain conditions[J], Mech .Phys. Solids 1964, 12:337-351
    [121] De Josselin de Jong G. The double sliding free rotation model for granular assemblies[J], Geotechnique 1971, 21:155-162
    [122] Hill J.M., Wu Y.H. Some axially symmetric flows of Mohr-Coulomb compressible granular materials[J], Proc. R .Soc.Lond. A 1992, 438:67-93
    [123] Cundall P.A. A discrete numerical model for granular assemblies[J], in Proc. Symp. Lnt Soc.Rock Mech., Nancy, France, Paper No.II -8 (1971).
    [124] Cundall P.A., Ball-a program to model granular media using the distinct element Method[C], Technical Report TN-LN-13, Dames and Moore, Advanced Technology Group, London( 1978).
    [125] Cundall P.A., Strack O.D.L. A discrete numerical model for granular assemblies[J]. Geotechnque 1979, 29:47
    [126]蒋华恢复力曲面法在颗粒阻尼器研究中的应用[硕士学位论文]南京:南京航空航天大学2007
    [127]王青梅颗粒阻尼减振的试验研究与理论计算[硕士学位论文]南京:南京航空航天大学2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700