用户名: 密码: 验证码:
冲击载荷下磁流变阻尼器动态特性分析及其控制系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火炮与自动武器发射时,由于高温高压火药燃气的瞬时作用产生的强冲击载荷将引起武器发射时的振动和跳动,影响着射击精度和稳定性。武器系统中采用反后坐原理对发射时的冲击作用载荷进行有效控制。面对现代武器向大威力,轻量化及高机动性的发展要求,被动式的液压阻尼缓冲装置越来越显示出它的不足和局限性。随着材料科学的发展,以智能材料磁流变液为工作介质的磁流变阻尼器,相比传统的被动阻尼缓冲装置,其输出阻尼力受工作电流实时可控,同时还具有输出阻力大、动态范围宽、响应速度快、低功耗等优良特性,为研究自动武器发射时的冲击缓冲及振动稳定性问题带来了新的机遇和挑战。
     将磁流变阻尼器用于武器系统的冲击缓冲装置中,建立后坐阻力闭环控制系统,期望能够对后坐阻力规律和后坐运动进行更好的控制,从而提高武器发射精度,保证发射时的静止性、稳定性,满足对架体载荷和后坐长度的要求。本文以武器系统冲击缓冲为应用背景,采用理论分析,仿真设计,试验验证的方法,深入研究了冲击载荷下,磁流变阻尼器的动态特性及其后坐缓冲控制系统,主要内容及创新之处如下:
     (1)对冲击载荷下磁流变阻尼器的动态特性进行了研究。通过非线性最小二乘法对试验数据拟合得到:基于Herschel-Bulkley非线性磁流变液本构特性的平行平板恒流模型能够准确描述冲击载荷下后坐过程速度下降阶段磁流变阻尼器的动态特性。针对以上模型在高低速时函数表达不同且形式复杂的缺点,采用双曲正切函数描述低速时阻尼力随速度的平滑下降特性,提出了一种形式统一、表达简洁的磁流变阻尼器动态模型,并对模型进行了参数辨识。通过对冲击后坐过程的数值仿真,证明了以上简化模型的正确性。
     (2)对磁流变阻尼器在冲击缓冲应用中的可控性进行分析得到:磁流变阻尼器后坐速度峰值由冲击载荷的能量决定,相同冲击载荷下控制电流对磁流变阻尼器后坐速度峰值影响很小;对后坐运动的控制区为后坐速度峰值过后的速度下降区域。
     (3)对磁流变阻尼器的动态响应时间进行了研究。通过对电磁回路的理论分析和试验测试得到,磁流变阻尼器线圈电磁回路中电流的响应时间是磁流变阻尼器响应时间不理想的主要因素。通过对电磁回路的设计校正,改善了电磁回路中电流响应的动态性能,缩短了磁流变阻尼器的响应时间,对于几百毫秒的后坐控制过程,该研究解决了冲击缓冲应用中磁流变阻尼器响应时间过慢的问题。
     (4)对磁流变阻尼器后坐控制系统进行了研究。对于系统的非线性,采用逆系统方法加以解决,并对反馈线性化的伪线性系统进行了PI校正;考虑控制系统简化建模引起的未建模动态,以及控制系统参数的不确定性,并针对后坐过程迅速的特点,采用模型参考自适应控制加以解决。通过后坐缓冲试验测试得到:在相同的后坐行程下,运用PI校正和自适应控制方法均能实现对后坐阻力峰值的有效控制,使后坐阻力曲线达到良好的充满度,后坐动态特性令人满意。两种控制方法相比,自适应控制方法比PI校正更为有效。以上结论证明了磁流变阻尼器后坐控制系统设计方法的有效性。
     (5)对冲击载荷下磁流变阻尼器的结构优化设计方法进行了研究。提出了冲击缓冲应用中,对磁流变阻尼器的性能要求及设计指标,并采用基于Herschel-Bulkley磁流变液本构特性的平行平板恒流模型,运用多目标规划方法,对磁流变阻尼器进行了优化设计。
When firing, the artillery will experience severely impact load, yielding by the high temperature and high pressure powder gas, and vibrations and beats occurs which will decrease the firing precision and stability. Although most weapon systems already have a passive recoil mechanism, the desire for building lighter weapons with increased firing power and more mission flexibility have placed new demands on the recoil mechanicsms that cannot be met with the traditional passive systems.
     With the development of smart material science, Magneto-rheological(MR) dampers, whose damping force can be controlled by the current applied in the damper coils, are preferd for its large output damping force, wide dynamic range, rapid response and low power supply, which have brought out new challenges for development of the recoil mechanisms and the vibration stability control of weapons.
     For recoil mechanisms applications, MR dampers are desired to provide optimal damping force to control the recoil dynamics, so that large peak of recoil forces can be avoided with a certain limited stroke, and the firing stillness and stability are ensured. In this dissertation, on the background of the recoil mechanisms applications, the dynamic performance of MR damper and its control system under impact load are investigated in depth. The main contributions of this dissertation are as follows:
     (1) The dynamic performance of the MR damper under impact is studied. By fitting the experimental data with nonlinear least square method, it's shown that the steady flow equations for parallel plates based on the non-linear Herschel-Bulkley fluid model are able to accurately describe the dynamic behavior of the MR damper under impact load, at the decreasing stage of the recoil velocities. Since the mathematical expression of the above model is complicated with different forms in high and low velocities respectively, a simplified model with uniform expression is put forward and parameters of the model are identified. The validy of the simplified model is verified by numerical simulation of the recoil cycle.
     (2) The controllability of MR dampers for recoil mechanisms applications is analyzed and it's concluded that the applied current of MR dampers have little effect on the peak of the recoil velocities which is decided by the amount of the imact energy, and during recoil the control region of MR dampers is at the decreasing stage of the recoil velocities.
     (3) The response time of the MR damper is investigated by analysis of the magnetic circuit and test of the MR damper. The results indicate that the response time of MR dampers is mainly due to the current reponse time of the magnetic circuit. By modification of the magnetic circuit, the MR damper's response time can be shortened, and the limit of the MR damper's response time for recoil mechanisms applications is solved.
     (4) The MR damper recoil control system is investigated. For the nonlinear characteristics, inverse system method based on the thought of feedback linearization is used, and the pseudolinear system is modified by PI controller. Considering the dynamic behavior ignored during simplified modeling and the uncertainty of the control system parameters, model reference adaptive control method is adopted. It's shown by test, that with the same recoil stroke, large peak of the recoil force is avoided and the ideal recoil dynamics is achieved by using PI controller or the adaptive control method. The validity of the MR damper recoil control system is verified, and compared with the PI controller the adaptive control method is more effective.
     (5) The optimal design method of MR dampers for recoil applications is discussed. The performance reqirements of MR dampers are proposed, and the optimal design of MR dampers for recoil applications is put forward by using multi-objective planning method, with parallel plates model based on the hurschel bulkley MR fluid characteristic.
引文
[1]马福球,陈运生,朵英贤.火炮与自动武器.北京:北京理工大学出版社,2001:192-218
    [2]高树滋,陈运生等.火炮反后坐装置设计.兵器工业出版社,1995:71-82,83-95,114-143
    [3]Carlson J.D.,夏毅敏译.日益引人注目的磁流变液.机床与液压,1996(10):52-53
    [4]魏铁华,杨晓红.电流变技术与磁流变技术.水利电力机械.2002(24):57-60
    [5]黄俊,赵宏声,姜德生.电流变液和磁流变液及其应用.国外建材科技,1996(17):31-33
    [6]夏毅敏,郭勇,何清华.磁流变液——种新型的流体传动介质.润滑与密封,1998(11):56-58
    [7]汪建晓.磁流变液装置及其在机械工程上的应用.机械强度,2001,23(01):50-56
    [8]房小翠,刘璇,熊光洁等.新型磁流变材料的特性与应用展望.北京轻工业学院学报,2000,8:1-5
    [9]Kordonaky W.Elements and devices based on magnetorheological effect System and Structure,1993,4(1):65-69
    [10]关新春.磁流变液组分选择原则及其机理探讨.化学物理学报,2001,14(5):592-596
    [11]张正勇,张耀华,虞承端等.磁流变液的特性研究.功能材料与器件学报,2001,4:340-344
    [12]浦鸿汀,蒋峰景.磁流变液材料的研究进展和应用前景.化工进展.2005,24(2):132-136
    [13]张平等.磁流变体的制备及性能.化学物理学报,2001,14(5):559-561
    [14]江万权,朱春玲,陈祖耀等.超细α-Fe粒子对磁性粒子浓悬浮体系磁流变性能的增强[J].化学物理学报,2003,14(5):629-632
    [15]杨仕清,彭斌,王豪才.超细Co-Ni合金复合磁流变液的制备及流变性质研究[J].功能材料,2003,32(2):142-146
    [16]江万权,唐新鲁,张国春等.磁流变流体材料的设计和制造及其性能研究[J].机械科学与技术,1998,17:125-127
    [17]Foister R T,Magnetorheological Fluids[P].US 5667715
    [18]郑军,曹兴进.磁流变液特性及其装置在工程领域中的应用.现代制造工程. 2005:6-8
    [19]Jacobs S D,Kordonski W I.Precision control of aqueous magnetorheological fluids for finishing of optics[J].Proc.of 6th.Int.Conf.onMRF,MRsuspensions and the applications.Singapore:World Scientific,1998:861-869.
    [20]张绪祥.电磁流变技术在机械工程中的应用(下).新技术新工艺,2005,12:23-26
    [21]Kordonsky W I,Gorodkin S R,Kolomentsev A V,etc.Magnetorheological valve and devices incorporating magnetorheo-logicalelements.U.S.Patent 5452745,1995.
    [22]陈钢,潘言全,程海斌,汪品红.磁流变液控制阀控制性能研究.武汉理工大学学报,2005,27(3):77-79
    [23]欧进萍.结构振动控制——主动、半主动和智能控制.科学出版社,2003:296-302
    [24]Carlson J.D.MR fluids and devices in the real world[A].In:Lu Kunquan,Shen Rong and Liu Jixing.Proc.of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions.Singapore:World scientific Publication,2005,531-538
    [25]廖昌荣,余淼,陈伟民等.磁流变材料与磁流变阻尼器的潜在工程应用.机械工程材料,2001(25):31-34
    [26]潘双夏,杨礼康,冯培恩.磁流变液减振控制应用的研究动态.汽车工程,2002,3:254-258
    [27]Y.Q.Ni,Y.F.Duan,Z.Q.Chen,and J.M.KO.Damping identification of MR-damped bridge cables from in-situ monitoring under wind-rain-excited conditions.Smart Structures and Materials 2002:Smart Systems for Bridges,Structures,and Highways.Proceedings of SPIE Vol.4696(2002):41-51
    [28]Z G.Ying,Y.Q.Ni,and J.M.Ko.Non-clipping optimal control of randomly excited nonlinear systems using semi-active ER/MR dampers.Smart Structures and Materials 2002:Smart Systems for Bridges,Structures,and Highways.Proceedings of SPIE Vol.4696(2002):209-218
    [29]J.M.Ko,G.Zheng,Z.Q.Chen,and Y.Q.Ni.Field vibration tests of bridge stay cables incorporated with magneto-rheological(MR) dampers.Smart Structures and Materials 2002:Smart Systems for Bridges,Structures,and Highways.Proceedings of SPIE Vol.4696(2002):30-40
    [30]杨臻.磁流变技术在自动武器上的应用前景.华北工学院学报,2001,22(03):194-197
    [31]孙树民.隔震独桩平台地震反应的半主动磁流变阻尼器控制研究.振动与冲击,2001,20(03):61-64
    [32]管友海.海洋平台磁流变阻尼器半主动控制研究.青岛海洋大学学报,2002,32(04): 650-656
    [33]王修勇.斜拉桥拉索风雨振控制的智能阻尼技术.振动与冲击,2002,21(03):26-30
    [34]王琪民.利用增强技术的磁流变液离合器的设计、工程估算和实验研究.机械科学与技术,2002,21(01):131-133
    [35]蔡植善.磁流变阻尼器的应用.泉州师范学院学报,2003,21(02):33-38
    [36]张绪祥.电/磁流变技术在机械工程中的应用(上).新技术新工艺.2005,11:23-26
    [37]David E Simon.Experimental evaluation of semi-active magnetorheological primary suspensions for heavy truck applications[D].Master Dissertation of Virginia Polytechnic Institute and State University,Virginia,1998
    [38]Gordaninejad F,Kelso S P,Fail-safe magneto-rheological fluid dampers for of-highway,high-payload vehicles[J].Journal of Inteligent Material System and Structures:2000,11(5):395-406
    [39]张红辉,廖昌荣,刘永贵,邹卫东,陈伟民.磁流变阻尼技术及其在军用装备系统中的应用.兵器材料科学与工程,2006,29(4):65-69
    [40]D C Batterbee,N D Sims..Skyhook damping with linearised magneto-rheological dampers.Smart Structures and Materials 2004:Damping and Isolation.Proc.of SPIE,2004(5386):72-82.
    [41]Andrew N.Vavreck.Control of a Dynamic Vibration Absorber with Magnetorheological Damping.Fifth European Conference on Smart Structures and Materials.Proceedings of SPIE.2000(4073):252-263
    [42]Young-Tai Choi and Norman M.Wereley.Shock isolation systems using magnetorheological dampers.Smart Structures and Materials 2004:Damping and Isolation.Proc.of SPIE,2004(5386):51-62
    [43]Hiu Fung Lam and Wei Hsin Liao.Semi-Active Control of Automotive Suspension Systemswith Magnetorheological Dampers.Smart Structures and Materials 2001:Smart Structures and Integrated Systems.2000:125-136
    [49]Spencer Jr B F,Dyke S J,Sain M K,Carlson J D.Nonlinear Identification of Semi-Active Control Devices.Proceedings of the 11th Conference,Fort Lauderdale,FL,1996:164-167
    [50]Shtarkman E.M.Fluid responsive to a magnetic field.US Patent.No.4992190,1991
    [51]G.Yang,B.F.Spencer Jr.等.Large-scale MR fluid dampers:modeling and dynamic performance conciderations.Engineering Structures,2002,24:309-323
    [52]Li Zhou and Chih-Chen Chang.Adaptive Fuzzy Control for a Structure-MR Damper System.Smart Structures and Materials 2000:Smart Systems for Bridges,Structures,and Highways.Proceedings of SPIE.2000(3988):105-115
    [53]Yanming Liu,Faramarz Gordaninejad,Cahit A.Evrensel,Gregory Hitchcock,and Xiaojie Wang.Variable structure system based fuzzy logic control of bridge vibration using fail-safe magneto-rheological fluid dampers.Smart Structures and Materials 2002:Smart Systems for Bridges,Structures,and Highways.Proceedings of SPIE.2002(4696):219-227
    [54]Michael J.Craft,Gregory D.Buckner,and Richard D.Anderson.Fuzzy Logic Control Algorithms for MagneShock Semi-Active Vehicle Shock Absorbers:Design and Experimental Evaluations.Smart Structures and Materials 2003:Modeling,Signal Processing,and Control.Proceedings of SPIE.2003(5049):577-588
    [55]Pin-Qi Xia.An inverse model of MR damper using optimal neural network and system identification.Journal of Sound and Vibration.2003(266):1009-1023
    [56]Neil D.Sims,Roger Stanway,Andrew R.Johnson,David J.Peela,and William A.Bullough.Smart Fluid Damping:Shaping the force\velocity response through feedback control.Smart Structures and Materials 2000:Smart Structures and Integrated Systems.Proceedings of SPIE.2000(3985):470-481
    [57]姚昌荣,李亚东,强士中.美国桥梁高性能钢的发展与应用.Roads and Bridges,2004,11:44-47
    [58]胡白香,夏品奇.磁流变夹层简支梁的有限元分析.工程力学.2007,24(9):95-99
    [59]Karakas E.S.,Gordaninejad F,Evrensel C A et al.Control of a quarter HMMWV suspension system using a magneto-rheological fluid damper.In:Kon-Well Wang.Proceedings of SPIE.2004,204-213
    [60]Umit Dogrue,Gordaninejad F,and Evrensel C.A magneto-rheological fluid damper for high-mobility multi-purpose wheeled vehicle(HMMWV).In:Kon-Well Wang.Proceedings of SPIE.2004,195-203
    [61]李延成,王炅,钱林方.磁流变技术及其在军事领域中的潜在应用.弹道学报,2006,18(3):68-83
    [62]Marathw S,Gandhi F,Wang K W.Helicopter Blade Response and Aeromechanical Stability with a Magnetorheological Fluid Based Lag Damper.Journal of Intelligent Material Systems and Structures,9(4):272-282
    [63]Yongsheng Zhao,Young T Choi,Norman M Wereley.Semi-Active Damping of Ground Resonance in Helicopters Using Magnetorheological Dampers.AHS 2001
    [64]曹雷团.基于磁流变阻尼器的直升机地面共振主动抑制.[硕士学位论文],南京,南京航空航天大学,2003
    [65]周智勇.基于磁流变阻尼器的旋翼/机身耦合动稳定性半主动控制研究.[硕士学位论文],南京,南京航空航天大学,2005
    [66]王唯.直升机地面共振半主动控制.[博士学位论文].南京,南京航空航天大学,2003
    [67]Hu Wei,Werely N.M.Magnetorheological fluid and elastomeric lag damper for helicopter stability augmentation.In:Lu Kunquan,Shen Rong and Liu Jixing.Proc.of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions.Singapore:World scientific,2005:539-545
    [68]Mehdi Ahmadian.On the Design of magneto rheological recoil dampers for fire out of battery control.
    [69]Mehdi Ahmadian.An evaluateon of magneto rheological recoil dampers for controlling gun recoil dynamoics.Journal of shock and vibration,in press
    [70]Mehdi Ahmadian,Designing magneto-rheological dampers in a fire out-of-battery recoil system.IEEE transactions on magnetics,2003,39(1):256-257
    [71]候保林,赵成章.基于Herschel-Bulkley模型的火炮磁流变后坐阻尼器设计与分析.振动与冲击,2006,35(3):6-10
    [72]Stanway R,Sproston J L,Stevens,N G.Non-linear Identification of an Electro-rheological Vibration Damper.IFAC Identification and System Parameter Estimation,1985,195-200
    [73]Stanway R,Sproston J L,Stevens,N G.Non-linear Modeling of an Electro-rheological Vibration Damper.J.Electrostatics,1987,20:167-184
    [74]Gamota D R,Filisko F E.Dynamic Mechanical Studies of Electrorheological Materials:Moderate Frequencies.Journal of Rheology,1991,35:399-425
    [75]Glen A.Dimock,Jason E.Lindler and Norman M.Wereley.Bingham Biplastie analysis of shear thinning and thickening in magnetorheological dampers.Smart Structures and Materials 2000:Smart structures and Integrated Systems,Proceedings of SPIE,2000,vol.3985:256-266
    [76]Xiaojie Wang,Faramarz Gordaninejad.Study of field-controllable,electro- and magneto-rheological fluid dampers in flow mode using Herschel-Bulkley theory.In:Proceedings of SPIE Smart Structure and Materials Conference,vol.3989,2000:232-243
    [77]Dug-Yong Lee,Norman M.Wereley.Analysis of electro- and magneto-rhelogical flow mode dampers using Herschel-Bulkley model.In:Proceedings of SPIE Smart Structure and Materials,2000,vol.3989:244-255
    [78]廖昌荣,陈伟民.基于混合模式的汽车磁流变减振器阻尼特性分析与测试.机械工程学报,2001,37(5):44-47.
    [79]余淼,廖昌荣.磁流变阻尼器PWM快速控制.中国机械工程,2002,13(14):1238-1240
    [80]Spencer Jr B F,Dyke S J,Sain M K,Carlson J D.Idealized Model of a Magnetorheological Damper.Proceedings of the 12th Conference on Analysis and Computation,ASCE,1996:361-370
    [81]Spencer B F Jr,Dyke S J,Sain M K,Carlson J D.Phenomenological Model of a Magnetorheological Damper.J.Eng.Mech.,1997,123(3):230-238
    [82]王恩荣,陈余寿.MR阻尼器控制与滞环特性相分离的F-v模型.机械工程学报,2005,41(7):187-191
    [83]杨礼康,潘双夏,王维锐,等.磁流变减振器滞环特性试验及建模方法.机械工程学报,2006,42(11):137-143
    [84]关新春,欧进萍.磁流变耗能器的阻尼力模型及其参数确定.振动与冲击,2001,20(1):7-10
    [85]Fernando D.Goncalves,Mehdi Ahmadian.A study on MR fluids subjected to high shear rates and high velocities.Smart Structures and Materials 2005:Damping and Isolation,Proceedings of SPIE,vol.5760:46-56
    [86]Mehdi Ahmadian and James A Norris.Rhelogical controllability of double-ended MR dampers subjected to Impact loading.Smart Structures and Materials 2004:Damping and Isolation,Proc.of SPIE,2004,5386:225-236.
    [87]侯保林,MEHDI Ahmadian.冲击载荷作用下磁流变阻尼器的建模与分析.机械工程学报,2006,42(4):174-178
    [88]Carlson J.D.and Spencer B.F.Magnetorheological fluid dampers:scalability and design issues for application to dynamic hazard mitigation.Proc.Of 2th Intel workshop on structure control.Hong Kong:Hongkong University of Science and Technology,1996:99-109
    [89]Carlson J D and Weiss K D.A growing attraction to magnetic fluids.Machine design. 1996(66):61-64
    [90]Carlson J D.What makes a good MR fluid? Journal of intelligent material system and structure.2003(13):431-435
    [91]Carlson J D,Catanzarite D M,Clair K A St.Commercial MR fluid devices.In:Bullogh W A.Proc of the 5th Int Conf on ER Fluids,MR Suspensions and Associated Technology,2000:128-129
    [92]D C Batterbee,N D Sims.Skyhook damping with linearised magneto-rheological dampers.Smart Structures and Materials 2004:Damping and Isolation.Proc.of SPIE,2004(5386):72-82.
    [93]Andrew N.Vavreck.Control of a Dynamic Vibration Absorber with Magnetorheological Damping.Fifth European Conference on Smart Structures and Materials.Proceedings of SPIE.2000(4073):252-263
    [94]Young-Tai Choi and Norman M.Wereley.Shock isolation systems using magnetorheological dampers.Smart Structures and Materials 2004:Damping and Isolation.Proc.of SPIE,2004(5386):51-62
    [95]Hiu Fung Lam and Wei Hsin Liao.Semi-Active Control of Automotive Suspension Systemswith Magnetorheological Dampers.Smart Structures and Materials 2001:Smart Structures and Integrated Systems.2000:125-136
    [96]Li Zhou and Chih-Chen Chang.Adaptive Fuzzy Control for a Structure-MR Damper System.Smart Structures and Materials 2000:Smart Systems for Bridges,Structures,and Highways.Proceedings of SPIE.2000(3988):105-115
    [97]徐天成,钱冬宁,张胜付.信号与系统.哈尔滨,哈尔滨工程大学出版社,2000:183-184
    [98]周玉峰,吴龙.磁流变阻尼器的响应时间研究.重型机械科技,2006,5:10-12
    [99]F.Goncalves,J.H.Koo,and M.Ahmadian,"Experimental Approach for Finding the Response Time of MR Dampers for Vehicle Applications," DETC 2003 19th Biennial Conference on Mechanical Vibration and Noise,2003:2-6
    [100]N.Cobanoglua,F.Gordaninejad,etc,Time response of a controllable multi-plate magneto-rheological fluid limited slip differential clutch.Smart Structures and Materials 2003:Smart Structures and Integrated Systems,Amr M.Baz,Editor,Proceedings of SPIE,2003,5056,2003,514-523
    [101]Young Tai Choi and Norman M.Wereley.Assessment of time response characteristics of electrorheological and magnetorheological dampers.Smart Structures and Materials 2001:Damping and Isolation,Proceedings of SPIE,2001,vol.4331:92-102
    [102]Jeong-Hoi Koo,Fernando D.Goncalves,Mehdi Ahmadian.Investigation of the respose time of magnetorheological fluid dampers.2004:Damping and Isolation,Proc.of SPIE,2004,vol.5386
    [103]王志刚.现代电子线路.北京,清华大学出版社,2003,391-394
    [104]Riccardo Marino,Patrizio Tomei,姚郁,贺风华译.非线性系统设计——微分几何、自适应及鲁棒控制.北京,电子工业出版社,2006:28-73
    [105]Jean-Jacques E.Slotine.应用非线性控制,北京,机械工业出版社,2006:138-152
    [106]韩曾晋.自适应控制.北京,清化大学出版社,2002:49-52
    [107]刘兴堂.应用自适应控制.西安,西北工业大学出版社,2003:203-240
    [108]徐湘元.自适应控制理论与应用.北京,电子工业出版社,2007:91-127
    [109]胡寿松.自动控制原理.北京,科学出版社,2002,389-393
    [110]Seorg D E,Edgar T F and Shan S L.Adaptive control Strategies for processs control a Survey.AICHEJournal,19
    [111]Li Zhou,Chih-Chen Chang.Adaptive Fuzzy Control for a structure-MR Damper System.In Smart Structures and Materials 2000:Smart Systems for Bridges,Structures,and Highways,S.C.Liu.Editor,Proceedings of SPIE,2000,3988:105-115
    [112]Li Zhou,Chih-Chen Chang.Multivariable Adaptive Fuzzy Control For Nonlinear Building-MR Dampers Systems.Smart Structures and Materials 2003:Smart Systems and Nondestructive Evaluation for Civil Infrastructures,Shih-Chi Liu,Editor,Proceedings of SPIE,2003,5057:236-246
    [113]薛定宇,基于MATLAB/Simulink的系统仿真应用技术.北京,清华大学出版社,2002:301-304
    [114]杨涤.系统实时仿真开发环境与应用.北京,清华大学出版社,2002:339-418
    [115]薛定宇.控制系统计算机辅助设计——MATLAB语言与应用.北京,清华大学出版社,2006:362-365.
    [116]李延成.冲击载荷下磁流变减振器半主动控制研究.南京,南京理工大学博士论文,2007
    [117]沈娜.冲击载荷下磁流变减振器半主动控制研究.南京,南京理工大学博士论文,2007
    [118]王炅,王乾龙,黄文良.磁流变装置结构与磁路耦合有限元分析.弹道学报.2004,16(4):62-67.
    [119]王乾龙,王炅,李延成.磁流变阻尼器设计中的基本问题分析.机床与液压,2004,11:52-54
    [120]张红辉,廖昌荣等.重庆大学学报.2005,28(10):9-12
    [121]候保林.磁流体特性对磁流变火炮后坐阻尼器性能的影响.爆炸与冲击,2006,26(3):245-249
    [122]侯保林.基于磁场有限元分析的磁流变缓冲器结构设计[J].弹道学报,2007,19(3):80-84
    [123]侯保林.基于Herschel Bulkley模型的火炮磁流变后坐阻尼器设计与分析.振动与冲击,2006,125(3):6-10
    [124]廖昌荣,陈伟民,余淼,等.汽车磁流变减振器设计准则探讨.中国机械工程,2002,13(9):723-726
    [125]Jiong Wang,Qianlong Wang,Yancheng Li.Finite Element Analysis of Magnetorheological damper.Proc.Of Ninth International Conference on ER Fluids and MR Suspensions,Beijing,2004:98-105
    [126]滕昱棠.磁流变缓冲器的结构设计与模糊控制研究.南京理工大学硕士论文,南京,南京理工大学,2006
    [127]顾苗.冲击载荷作用下磁流变阻尼器缓冲控制算法研究.南京理工大学硕士论文,南京,南京理工大学,2006
    [128]李良军.磁流变冲击阻尼器在火炮反后坐装置中的应用研究.南京理工大学硕士论文,南京,南京理工大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700