用户名: 密码: 验证码:
高性能机磁耦合磁触变器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于磁触变胶的机磁耦合问题的研究,是一种将电磁流变工质和机械结构相结合的复杂工作。磁触变胶是一种新型的具有流变特性的磁性功能材料,和磁流变液不同,它本身不流动,只有在磁场下受力时才表现出强抵抗变形的机械力学性能。由于其良好的流变特性、物化性能稳定、低能耗、无泄漏、工作无噪声、易控可调。因此,是一种替代磁流变液及磁粉的新工质,联合电磁和机械结构优化设计的器件,可以广泛应用于航空航天、汽车工业、自动控制、医疗康复器械等领域。
     本文通过对国内外前期相关研究成果的分析,综合考虑磁流变材料工作可靠性、物化稳定性及机磁力学性能,采用化学反应法制备了磁触变胶体,并对其纤维网络结构中化学极性基团对磁粒子的包裹机理进行了表征实验的理论研究及分析。同时,采用自改装试验装置,对磁触变胶在磁场下的电流转矩特性、各剪切速率下的屈服剪应力、粘度剪切速率变化关系进行了试验研究。
     在对基于磁触变胶体良好磁化性能的基础上,突破磁触变器件传统的阀式、剪切、挤压工作模式,提出一种机磁耦合结构的楔形挤压阻尼增效模型,结合流体力学,对该模型的磁粒子在磁场下的受力及运动行为进行了分析,并将该模型的常用两种工作模式-圆周均布板式工作模式和锥型环工作模式进行了静动力学建模、理论分析及实验仿真。
     利用机磁耦合的楔形挤压模型对器件进行了动力输出理论分析、创新设计,优化设计。并对磁触变器件励磁线圈空间任意磁场进行了理论计算。同时,对磁触变离合器、磁触变制动器、磁触变减震器进行了详细介绍,并制造出高性能磁触变制动器试验样机。
     以高性能磁触变制动器为算例,对电磁场和流场耦合下的磁触变胶的流变特性进行了理论分析及数值仿真研究。采用ANSYS电磁通用有限元分析模块对磁触变制动器的磁路优化设计分析及电磁场仿真,同时采用ANSYS Fluent的有限体积法对磁触变胶在磁场下流变状态时的压力场、速度场、动力性能进行了数值计算及分析。
     在前期试验的基础上,以测试磁触变胶及楔形挤压工作模式的阻尼增效效果为目标,设计并搭建了机磁耦合性能测试试验台,对基于磁触变胶的机磁耦合楔形挤压工作模式的磁触变制动器进行了磁场转矩特性、服役稳定性、磁滞性、热稳定性、滑差功率试验研究和结果分析,并在多台机电传动性能测试试验台上开展了应用实验研究。得出有参考价值的结论,对磁触变器件的进一步研究奠定了坚实的理论基础和试验基础。
     最后,总结全文,对本文研究的主要贡献和创造点进行了概括总结,并对基于磁触变胶材料的高性能机磁耦合研究进行了展望。
The research on coupling magneto-mechanical issue based on magneto-thixotropic gel (MTG) is a complex work combining electromagnetic rheological working medium with mechanical structure. The magneto-thixotropic gel is a new type of magnetic func-tion material with rheology behavior. However, compared with magneto-rheological fluid (MRF), the magneto-thixotropic gel is not able to flow and only when the magnet-ic field is present the strong mechanical properties shown to resist deformation. Mean-while, the magneto-thixotropic gel also chatacterises with better rheology, physical and chemical stability, low power, leak tightness, noiseless, easy to control and adjust. Con-sequently, the magneto-thixotropic gel could be used as a new type of working medium to substitute for MRF, its correlative devices combined electromagnetic with mechanics can be wildly used in such industrial fields as aerospace, automotive, automation, med-ical instruments and so on.
     By analyzing on previous related research results home and abroad, comprehen-sively considering working reliability, physical and chemical stability, magne-to-mechanical properties, the magneto-thixotropic gel is prepared by chemical reaction method in the dissertation. The theoretical investigation and analysis of characterization experiments were carried out to account for mechanism that chemical polar group in the fiber network structure to enwrap magnetic particles. Meanwhile, when the magnetic field is present, the characteristics such as current-torque characteristic, the shear rate-yield shear stress characteristic and shear rate-viscosity were tested by modified testing equipments.
     Based on the MTG’s good magnetization property, a coupling magneto-mechanical structure of wedge squeeze damping beneficiated model was proposed, which broke through the traditional working model such as valve model, shear model, squeeze model. Associated with fluid mechanics, the stress and movement behavior of the magnetic particles under the magnetic field were analyzed. Meanwhile, the static dynamic mod-eling, theory analysis and experimental simulation were carried out to the model con-sisting of circular distributed plate working mode and the cone ring working model.
     The theoretical analysis of power output, creative structure design, optimization design based on the wedge squeeze model was carried out and theoretical calculation on MTG devices was fulfilled aimed to coil magnetic field distribution in the space. Meanwhile, a detail introduction to magneo-thixotropic clutchs, magneo-thixotropic brakes, magneo-thixotropic absorbers were present. At last, a high performance mag-neo-thixotropic brake prototype was manufactured.
     Take the high performance magneto-thixotropic brake as example, theoretical analysis and numerical simulation on rheology under electromagnetic and flow field were implemented. The magnetic circuit optimization design and electromagnetic si-mulation on magneto-thixotropic brake were done by applied ANSYS electromagnetic module. Meanwhile, aim to calculate the pressure field, velocity field, power perfor-mance of the MTG under the magnetic fields, the theoretical analysis and numerical simulation were carried out by adopting ANSYS Fluent finite volume method.
     In order to test beneficiated damping efficiency associating MTG with its wedge squeeze working model, a magneto-mechanical coupling performance testing test bench was built, which was used to test magnetic field-torque characteristic, working stability, magnetic hysteresis characteristic, thermal stability, slip power of the magne-to-thixotropic brake. All these experimental tests and application experiments educed some reference value of conclusion which laid a solid theoretical foundation and expe-rimental basis for further study on magneto-thixotropic deveces.
     Finally, the author summarized the main contribution and creative points in this paper, and had a prospect on the future research on magneto-mechanical coupling issues based on the magneto-thixotropic materials.
引文
[1]贾振元,王晓煜,王福吉.超磁致伸缩执行器应力耦合磁化模型及求逆算法[J].功能材料, 2007, 38(3):377-385.
    [2] Jiles DC, Atherton D L. Theory of ferromagnetic hysteresis [J]. Journal of Magnetism and Magnetic Materials, 1986, 61 :48-60.
    [3]卞雷祥,文玉梅,李平.磁致伸缩Π压电叠层复合材料磁/机/电耦合系数分析[J].物理学报, 2009, 58(6):4205-4213.
    [4] Hakim Bensaidane. 2D Finite Element Modeling of Magnetic MEMS and Coupled Model with Fluid Mechanic Problem: Application to Biological Pumping Fluids [C]. 9th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2008.
    [5] Randy L. Gaigler, et al. Electro magnetic restraint mechanism [P]. USA, UA7,647,857B2, Jan.19,2010.
    [6] Hong-wu Wu, Rong-cheng Zheng, et al. Enhancing mechanical properties and magnetic per-formance of plastics magnet via mixing under vibration force field [J]. Journal of materials processing technology 209(2009)1048–1052.
    [7] X.H. Zhang, W.H. Xiong, et al. Effect of process on the magnetic and mechanical properties of Nd–Fe–B bonded magnets [J]. Materials and Design 30 (2009) 1386–1390.
    [8] Amin Azizi, H. Yoozbashizadeh, et al. Phase formation and change of magnetic properties in mechanical alloyed Ni0.5Co0.5Fe2O4 by annealing [J]. Journal of Magnetism and Magnetic Materials 322 (2010) 56–59.
    [9] L.A. Dobrza′nski, M. Drak. Properties of composite materials with polymer matrix reinforced with Nd–Fe–B hard magnetic particles [J]. Journal of Materials Processing Technology 175 (2006) 149–156.
    [10]张东,邹国棠,等.新型外转子磁齿轮复合电机的设计与研究[J].中国电机工程学报, 2008, 28 (30):67-72.
    [11] http://news.sina.com.cn/w/2006-09-23/055110087903s.shtml.
    [12]董小闵,余淼,廖昌荣,等.磁流变半主动悬架对车辆侧倾稳定性改进分析[J].上海交通大学学报, 2009,43(10):1541-1544.
    [13]董小闵,余淼,廖昌荣,等.具有非线性时滞的汽车磁流变悬架系统自适应模糊滑模控制[J].振动与冲击, 2009,28(11):55-60.
    [14]董小闵,余淼,廖昌荣,等.飞行器磁流变自适应半主动冲击缓冲器[J].西南交通大学学报, 2009,44(5):748-752.
    [15]赵章荣,邬义杰,顾新建,等.超磁致伸缩执行器的三维非线性动态有限元模型[J].浙江大学学报(工学版), 2008,42(2):203-208.
    [16]赵章荣,邬义杰,顾新建,等.用神经网络结构实现超磁致伸缩智能构件滑模控制[J].光学精密工程, 2009,17(4):778-786.
    [17] A.G. Olabi, A. Grunwald. Design and application of magneto-rheological fluid [J]. Materials and Design 28 (2007) 2658–2664.
    [18] G.V. Stepanov, S.S. Abramchuk, et al. Effect of a homogeneous magnetic field on the viscoe-lastic behavior of magnetic elastomers [J]. Polymer 48 (2007) 488-495.
    [19] H.M. Yin, L.Z. Sun. Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles [J]. Journal of the Mechanics and Physics of Solids 54 (2006) 975–1003.
    [20] http://www.xzh.com.cn/news/zlkzq.htm.
    [21] Fei Fei Fang, Hyoung Jin Choi, et al. Magnetorheology of soft magnetic carbonyl iron sus-pension with single-walled carbon nanotube additive and its yield stress scaling function [J]. Colloids and Surfaces A: Physicochem. Eng (2009). doi:10.1016/j.colsurfa.2009.09.032.
    [22] J.L. Viota, F. González-Caballero, et al. Study of the colloidal stability of concentrated bi-modal magnetic fluids [J]. Journal of Colloid and Interface Science 309 (2007) 135–139.
    [23] Takenori Tada, Shogo Onishi, et al. Magnetic particles stabilized by chemically adsorbed monolayers for use in functional fluids [J]. Thin Solid Films 517 (2009) 4360–4364.
    [24]于濂清,袁永锋,燕友果.磁粉粒度对磁体强韧性和磁性能的影响[J].稀有金属材料与工程, 2008,37(11):2034-2036.
    [25] R. Afshar, Y. Moser, T. Lehnert, M.A.M. Gijs. Magnetic particle dosing and size separation in a microfluidic channel [J]. Sensors and Actuators B: Chem (2009), doi: 10.1016/j. snb. 2009.08.044.
    [26] X.J.A. Janssen a, L.J. van IJzendoorn, et al. On-chip manipulation and detection of magnetic particles for functional biosensors [J]. Biosensors and Bioelectronics 23 (2008) 833–838.
    [27] Window W M. Method and Means for Translating Electrical Impulses into Mechanical Force [P].USA:US Patent:2417850,1947.
    [28] http://www.sciencenet.cn/m/Print.aspx?id=216831.
    [29] W J Wen, X X Hang. The giant electrorheologicaleffect in suspensions of nanoparticles [J]. Nature Materials, 2003, 2(11) :727 -730.
    [30] Hao T. Electrorheological fluids [J]. Advanced Materials, 2001, 13(24):1847-1857.
    [31]庞雪蕾,唐芳琼.电流变液体的研究进展[J].化学进展, 2004, 16(6):849-857.
    [32]温维佳,黄先祥,等.巨电流变效应及其机理[J].物理, 2003, 32 (12):777-779.
    [33] Y Tian, H Ji, Y Meng. Investigation of characteristics of electro-rheological fluid couplings [C]. Proceedings of the International Conference on Mechanical Transmissions. Chongqing, China: Chinese Machine Press, 2001:661- 663.
    [34] X P Zhao, et al. A new kind of self-coupled electro-rheological damper and its vibration cha-racter [J]. Journal of Intelligent Material Systems and Structures, 2005, 16(1):57-65.
    [35]路阳,王学昭,等.电流变液研究新进展[J].材料导报, 2009,23(2):6-10.
    [36] Rabinow, J. The Magnetic Fluid Clutch, AIEE Trans., 1948, 67:1308-1315.
    [37] Rabinow, J. Magnetic Fluid Clutch, National Bureau of Standards Technical News Bulletin, 1948, 32(4): 54-60.
    [38] Rabinow, J. Magnetic Fluid Torque and Force Transmitting Device [P], U.S. Patent 2,575,360, 1951.
    [39] Shtarkman, E.M. U.S.Patent 4,992,360, 1991. and U.S.Patent 5,167,850, 1992.
    [40] Kordonsky, W. Magnetorheological Effect As a Base of New Devices and Technologies [J], Mag. and Mag. Mat, 1993, 122, 395-398.
    [41] Weiss K. D. et al. High Strength Magneto- and Electro-rheological Fluids [J], Society of Au-tomotive Engineers, 1993, SAE Paper # 932451.
    [42] Carlson, J. D. et al Magnetorheological Fluid Dampers [P], U.S. Patent 5,277,282, 1994. and Magnetorheological Fluid Devices [P], U.S. Patent 5,284,330, 1994.
    [43] Carlson, J. D. The Promise of Controllable Fluids [C], Actuator 94, 4th Int. Conf. on New Actuators, eds. H. Borgmann and K. Lenz, Axon Technologies Consult GmbH, 1994, 266-270.
    [44] Carlson, J. D. and K. D. Weiss. A Growing Attraction To Magnetic Fluids [J], Machine De-sign, 1994, Aug. 8, 61-66.
    [45] Carlson, J.D., D.M. Catanzarite and K.A.St [C]. Clair, 5th Int. Conf. on Electrorheological, Magneto-rheological Suspensions and Associated Technology, Sheffield, July,1995.
    [46] Lord Corporation Rheonetic Linear Damper-RD-1001/RD-1004 Product Information Sheet, (Lord Corp. Pub. No. PS RD-1001/4) 1997.
    [47] Shames I H, Cozzarelli F A. Elastic and inelastic stress analysis. Prentice hall, Englewood Cliffs, New Jersey, 1992.
    [48] F. Donado, J.L. Carrillo, et al. Dynamical structure and viscosity of dilute magnetorheological suspensions under perturbation [J]. Journal of Magnetism and Magnetic Materials 320 (2008) e354–e357.
    [49] Yongbo Yang, Lin Li, et al. Synthesis and characterization of iron-based alloy nanoparticles for magnetorheological fluids [J]. Journal of Magnetism and Magnetic Materials 320 (2008) 2030–2038.
    [50] Bong Jun Park, Kang Hyun Song, et al. Magnetic carbonyl iron nanoparticle based magne-torheological suspension and its characteristics [J]. Materials Letters 63 (2009) 1350–1352.
    [51] B.J. Park, I.B. Jang, et al. Magnetorheological characteristics of nanoparticle-added carbonyl iron system [J]. Journal of Magnetism and Magnetic Materials 303 (2006) e290–e293.
    [52] P. Domínguez-García, et al. Morphology of anisotropic chains in a magneto-rheological fluid during aggregation and disaggregation processes [J]. Journal of Colloid and Interface Science 333 (2009) 221–229.
    [53] Akira Satoh a, Yasuhiro Sakuda. Rheology and orientational distributions of rodlike particles with magnetic moment normal to the particle axis for semi-dense dispersions [J]. Journal of Colloid and Interface Science 308 (2007) 532–541.
    [54] Tomonori Watanabe, Masayuki Aoshima, Akira Satoh. Rheological properties and particle behaviors of a nondilute colloidal dispersion composed of ferromagnetic spherocylinder par-ticles subjected to a simple shear flow: Analysis by means of mean-field approximation for the two typical external magnetic field directions [J]. Journal of Colloid and Interface Science 302 (2006) 347–355.
    [55] A. Dorfmann, R.W. Ogden, et al. A three-dimensional non-linear constitutive law for magne-torheological fluids, with applications [J]. International Journal of Non-Linear Mechanics 42 (2007) 381–390.
    [56] Tae Gon Kang, Martien A. Hulsen, et al. A direct simulation method for flows with suspended paramagnetic particles [J]. Journal of Computational Physics 227 (2008) 4441-4458.
    [57]党辉,朱应顺,龚兴龙,等.基于分布链修正的磁流变弹性体的物理模型[J].化学物理学报, 2005, 18(6):971-975.
    [58]朱应顺,龚兴龙,等.磁流变液剪切屈服应力的数值分析[J].中国矿业大学学报, 2006, 35(4):498-503.
    [59]李立春,官建国,程海斌,等.聚乙二醇包裹羰基铁核壳粒子的制备及水基磁流变液的性能[J].物理化学学报, 2005, 21(7):817-821.
    [60]程海斌,王金铭,等.有机分子修饰铁粒子表面改善水基磁流变液的抗氧化性和稳定性[J].物理化学学报, 2008, 24(10):1869-1874.
    [61]李海涛,彭向和,等.基于链化分析的磁流变液剪切屈服应力模型[J].物理化学学报, 2005, 18(4):505-509.
    [62]司鹄,李晓红.磁流变液的流体动力学理论[J].功能材料, 2006,37(5):727-732.
    [63] M. Tricard, et al. Magnetorheological Jet Finishing of Conformal, Freeform and Steep Con-cave Optics [J]. Annals of the CIRP Vol. 55/1/2006.
    [64] Carlson, J D, Matthis, W, et al. Smart Prosthetics based on Magnetorheological Fluids [J]. SPIE 8th Annual Symposium on Smart Structures and Materials, Newport Beach, CA, 2001.
    [65] Dana Technology website, http://www.dana.com/technology/intelldriveshaft.shtm.
    [66] S.K. Huang, Y.H. Wen, et al. Application of damping mechanism model and stacking fault probability in Fe–Mn alloy [J]. MATERIALS CHARACTERIZATION 59(2008) 681-687.
    [67] Vikas Arora, S.P. Singh, et al. Comparative study of damped FE model updating methods [J]. Mechanical Systems and Signal Processing 23 (2009) 2113–2129.
    [68] Jean-Marie Berthelot, et al. Damping analysis of composite materials and structures [J]. Composite Structures 85 (2008) 189–204.
    [69]钟文镇,何克晶,等.颗粒离散元模拟中的阻尼系数标定[J].物理学报,2009, 58(8):5155-5161.
    [70]王敬丰,高珊,潘复生,等.热处理对ZK60镁合金力学和阻尼性能的影响[J].稀有金属材料与工程, 2009,38(6):1029-1032.
    [71] Stanway, R., Sproston, J. L., Stevens, N. G. Nonlinear modelling of an electro-rheological vibration damper [J]. Electro- statics 1987, 20, 167-184.
    [72] B.F. Spencer jr., Carlson, J. D., et al. Phenomenological model of a magnetorheological dam-per [J]. ASCE Journal of Engineering Mechanics. 1996, 1-23.
    [73] Kamath, G. M., et al. A nonlinear viscoelastic-plastic model for electrorheological fluids [J]. Smart Materials Struct. 1997, 6, 351-359.
    [74] Gamota, D. R. Filisko, F. E. Dynamic mechanical studies of electrorheological materials: Moderate frequencies. J. Rheology, 1991,35,399-425.
    [75] Makris, N., Burton, S. A., Taylor, D. P. Electrorheological damper with annular ducts for seismic protection applications [J].Smart Materials Struct. 1996, 5, 551-564.
    [76] Burton, S. A. Design and analysis of an electrorheological damper for seismic protection of structures [D]. MS Thesis, University of Notre Dame, IN 1996.
    [77] Brokate, M, Sprekels. Hysteresis and phase transitions [J]. Springer-Verlag, 1996, New York.
    [78] Wen, Y. Method for random vibration of hysteretic systems [J]. Engin. Mech. Div. 1976, 102, 249-263.
    [79] Kamath, G M, Wereley, N M. A nonlinear viscoelastic-plastic model for electrorheological fluids [J]. Smart Materials Struct. 1997,6, 351-359.
    [80]丁阳,张路,等. MR-J型磁流变阻尼器性能测试与阻尼力预估模型[J].天津大学学报, 2009, 42(9):763-769.
    [81]廖昌荣,等.汽车磁流变减振器神经网络模型研究[J].中国公路学报, 2003,16 (4): 94-97.
    [82]陈杰平,等.磁流变液阻尼减振器力学模型及其发展[J].安徽科技学院学报, 2008, 22 (2) : 28-34.
    [83] Hiroshi Sodeyama, et al. Dynamic Tests and Simulation of Magneto-Rheological Dampers [J]. Computer-Aided Civil and Infrastructure Engineering18(2003)45-57.
    [84] Doina Bica, Ladislau Ve′ka′s, et al. Sterically stabilized water based magnetic fluids: Synthe-sis, structure and properties [J]. Journal of Magnetism and Magnetic Materials 311 (2007) 17-21.
    [85] J.L. Viota, et al. Study of the magnetorheological response of aqueous magnetite suspensions stabilized by acrylic acid polymers [J]. Journal of Colloid and Interface Science 324 (2008) 199-204.
    [86] John C. Ulicny, et al. Magnetorheological fluid durability test—Iron analysis [J]. Materials Science and Engineering A 443 (2007) 16-24.
    [87] John C. Ulicny, et al. Magnetorheological fluid durability test—Organics analysis [J]. Mate-rials Science and Engineering A 464 (2007) 269-273.
    [88]刘奇怪,唐龙,等.磁流变体材料稳定性和润滑性能研究[J].功能材料, 2005, 36(8):1192-1195.
    [89]易成建,彭向和,等.静磁场下磁流变液微结构形态稳定性分析[J]. 2008, 39 (12): 1961-1964.
    [90] Bong Jun Park, et al. Fabrication and magnetorheological property of core/shell structured magnetic composite particle encapsulated with cross- linked poly(methyl methacrylate)[J]. Materials Letters 63(2009)2178-2180.
    [91]刘献栋,赵梦醒.汽车悬架磁流变减振器模型分析及半主动控制策略研究[J].功能材料, 2006,37(5):780-782.
    [92] Yang F, Sedaghati R, et al. Development of luGre friction model for large-scale magne-tog&euro "rheological fluid dampers [J]. Journal of Intelligent Material Systems and Struc-tures, 2009, 20(8): 923-937.
    [93] Yang F, Sedaghati R, et al. A new lugre friction model for MR-9000 type MR damper [C]. ASME Int Mech Eng Congress Expos Proc, Boston. 2009, 11: 401-408.
    [94] Branco, P.J.C. Continuum electromechanics of a magnetorheological damper including the friction force effects between the MR fluid and device walls: Analytical modelling and expe-rimental validation [J]. Sensors and Actuators, A: Physical, 2009, 155(1): 82-88.
    [95]邱海喆,晏华,等.磁流变液的摩擦与润滑[J].后勤工程学院学报, 2009, 25(1):45-48.
    [96]邱海喆,晏华,等.基于羰基铁磁流变液的摩擦磨损性能研究[J].功能材料, 2007, 38:1211-1213.
    [97]邱海喆,晏华,等.添加剂对羰基铁磁流变液的摩擦磨损特性的影响[J].功能材料, 2007, 38:1183-1185.
    [98] Juan de Vicente, et al. Effect of friction between particles in the dynamic response of model magnetic structures [J]. Journal of Colloid and Interface Science 316 (2007) 867-876.
    [99]洪若瑜.磁性纳米粒和磁性流体制备与应用[M].北京:化学工业出版社, 2008.
    [100]唐龙,刘奇.水基磁流变液的制备及其性能研究[J].功能材料, 2006, 37(4):543- 545.
    [101]黄巍,齐飞霞,等.硅油基磁流变液的制备及其特性[J].机械工程材料, 2008,32 (7): 68 -74.
    [102]李金海,关新春,欧紧萍.可调范围宽,悬浮稳定的磁流变液的配制[J].功能材料, 2004, 4(35):414-416.
    [103]胡林,付伟,等.磁流变液沉降稳定性改进及对流变性能的影响[J].贵州大学学报(自然科学版), 2001, 18(3):176-181.
    [104]蒋明俊,董浚修,郭小川.复合锂-钙基脂的研究[J].石油炼制与化工, 1999, 30(10): 19-22.
    [105]胡性禄.润滑脂应用基础[M].北京:中国石化出版社, 1995.
    [106] A.W. Sisko. The flow of lubricating grease [J]. Industrial and Engineering Chemistry, 50(12): 1789-1792.
    [107] V.C. Kelessidis a, R. Maglione. Modeling rheological behavior of bentonite suspensions as Casson and Robertson-Stiff fluids using Newtonian and true shear rates in Couette viscometry [J]. Powder Technology 168 (2006) 134-147.
    [108] Herschel W H, Bulkey R. Model for time dependent behavior of fluid [J]. Proc. America so-ciety of testing materials, 1926.
    [109] E.J. Fordham, S.H. Bittleston, M.A. Tehrani, Viscoplastic flow in centered annuli, pipes and slots [J]. Ind. Eng. Chem. Res. 29 (1991) 517-524.
    [110] W.J. Bailey, I.S. Weir, Investigation of methods for direct rheological model parameter esti-mation [J]. Pet. Sci. Eng. 21 (1998) 1-13.
    [111] H. Mingzhao, Y. Wang, E. Forssberg, Slurry rheology in wet ultrafine grinding of industrial minerals: a review [J]. Powder Technol. 147 (2004)94–112.
    [112] Foister, Robet T. etal. U.S. Patent: 20030111634.
    [113] John C Ulicny, Michael P.B, Noel M. Potter, Richard A W. Magnetortheologieal fluid Dura-bility test-Ironanalysis. Materials Science and Engineering A 443 (2007) 16-24.
    [114]蒋峰景,浦鸿汀,等. Fe3O4包覆碳纳米管软磁性纳米复合微粒的制备及性能[J].新型碳材料, 2007, 24(4): 371-374.
    [115]李发胜,唐龙,等.聚丙烯酸对水基磁流变液稳定性的改良[J].功能材料, 2007, 38 (5) :717-720.
    [116]程海斌,瞿伟廉,张剑等.磁流变液及其阻尼器的制备与性能研究[J].功能材料, 2006, 37(5): 811-813.
    [117]沈钟,王果庭.胶体表面与化学[M].北京:化学工业出版社, 1997.
    [118] J.-H. Yoo and N. M. Wereley. Design of a High-Efficiency Magnetorheological Valve [J]. Journal of Intelligent Material Systems and Structures, Vol.13,2002,679-685.
    [119] G. Yang, B.F. Spencer, J.D. Carlson, M.K. Sain. Large-scale MR fluid dampers: modeling and dynamic performance considerations [J]. Engineering Structures 24 (2002) 309-323.
    [120] N M Kwok, Q P Ha, et al. A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization [J]. Sensors and Actuators A 132 (2006) 441-451.
    [121]朱克勤,许春晓.粘性流体理学[M].北京:高等教育出版社, 2009.6.
    [122] Dug-Young Lee, et al. Analysis of electro- and magneto-rhelogical flow mode dampers using Herschel-Bulkley model [J]. In Smart Structures and Materials 2000: Damping and Isolation, T. Tupper Hyde, 244 Editor, Proceedings of SPIE Vol. 3989 (2000).
    [123] White F.M. Fluid Mechanics 3rd edn[M]. (New Youk:McGraw-Hill),1994,p736.
    [124] Alireza Farjoud, Ryan Cavey, et al. Magneto-rheological fluid behavior in squeeze mode[J]. Smart Mater. Struct.18(2009)095001(7pp).
    [125] Phillips R W. Engineering Applications of Fluids with a Variable Yield Stress, 1996(Berkeley, CA: University of California Press).
    [126] R Tao. Super-strong magnetorheological fluids [J]. JOURNAL OF PHYSICS: CONDENSED MATTER13 (2001) R979–R999.
    [127]程国均.大学物理教程[M].北京:科学出版社, 2002, 8.
    [128]李春明,刘承师,张俊峰.计算载流圆线圈磁场分布的方法[J].辽宁工学院学报, 1999, 19(1), 62-66.
    [129]胡豹,张源,等.载流圆线圈全空间的磁场分布[J].中国新技术新产品, 2009,20, 16-17.
    [130]孙鲲.一种稳恒磁场产生装置的设计[D].大连:大连理工大学, 2008.6.
    [131] Weng W. Chooi, S. Olutunde Oyadiji. Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions [J]. Computers and Structures 86 (2008) 473-482.
    [132] Eduarda Costa, P.J. Costa Branco. Continuum electromechanics of a magnetorheological damper including the friction force effects between the MR fluid and device walls: Analytical modelling and experimental validation [J]. Sensors and Actuators A 155 (2009) 82-88.
    [133] Kerem Karakoc, Edward J. Park, et al. Design considerations for an automotive magnetor-heological brake [J]. Mechatronics 18 (2008) 434-447.
    [134] ANSYS FLUENT 12.0/12.1 Documentation/user’s guide/Viscosity for Non-Newtonian Fluids. Release 12.0 ? ANSYS, Inc. 2009-01-29.
    [135] H.K. Versteeg, W. Malalasekera. An introduction to computational fluid dynamics: The finite volume method [M]. Harlow: Pearson Education Limited ,1995.
    [136]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社, 2004.9.
    [1]贾振元,王晓煜,王福吉.超磁致伸缩执行器应力耦合磁化模型及求逆算法[J].功能材料, 2007, 38(3):377-385.
    [2] Jiles DC, Atherton D L. Theory of ferromagnetic hysteresis [J]. Journal of Magnetism and Magnetic Materials, 1986, 61 :48-60.
    [3]卞雷祥,文玉梅,李平.磁致伸缩Π压电叠层复合材料磁/机/电耦合系数分析[J].物理学报, 2009, 58(6):4205-4213.
    [4] Hakim Bensaidane. 2D Finite Element Modeling of Magnetic MEMS and Coupled Model with Fluid Mechanic Problem: Application to Biological Pumping Fluids [C]. 9th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2008.
    [5] Randy L. Gaigler, et al. Electro magnetic restraint mechanism [P]. USA, UA7,647,857B2, Jan.19,2010.
    [6] Hong-wu Wu, Rong-cheng Zheng, et al. Enhancing mechanical properties and magnetic per-formance of plastics magnet via mixing under vibration force field [J]. Journal of materials processing technology 209(2009)1048–1052.
    [7] X.H. Zhang, W.H. Xiong, et al. Effect of process on the magnetic and mechanical properties of Nd–Fe–B bonded magnets [J]. Materials and Design 30 (2009) 1386–1390.
    [8] Amin Azizi, H. Yoozbashizadeh, et al. Phase formation and change of magnetic properties in mechanical alloyed Ni0.5Co0.5Fe2O4 by annealing [J]. Journal of Magnetism and Magnetic Materials 322 (2010) 56–59.
    [9] L.A. Dobrza′nski, M. Drak. Properties of composite materials with polymer matrix reinforced with Nd–Fe–B hard magnetic particles [J]. Journal of Materials Processing Technology 175 (2006) 149–156.
    [10]张东,邹国棠,等.新型外转子磁齿轮复合电机的设计与研究[J].中国电机工程学报, 2008, 28 (30):67-72.
    [11] http://news.sina.com.cn/w/2006-09-23/055110087903s.shtml.
    [12]董小闵,余淼,廖昌荣,等.磁流变半主动悬架对车辆侧倾稳定性改进分析[J].上海交通大学学报, 2009,43(10):1541-1544.
    [13]董小闵,余淼,廖昌荣,等.具有非线性时滞的汽车磁流变悬架系统自适应模糊滑模控制[J].振动与冲击, 2009,28(11):55-60.
    [14]董小闵,余淼,廖昌荣,等.飞行器磁流变自适应半主动冲击缓冲器[J].西南交通大学学报, 2009,44(5):748-752.
    [15]赵章荣,邬义杰,顾新建,等.超磁致伸缩执行器的三维非线性动态有限元模型[J].浙江大学学报(工学版), 2008,42(2):203-208.
    [16]赵章荣,邬义杰,顾新建,等.用神经网络结构实现超磁致伸缩智能构件滑模控制[J].光学精密工程, 2009,17(4):778-786.
    [17] A.G. Olabi, A. Grunwald. Design and application of magneto-rheological fluid [J]. Materials and Design 28 (2007) 2658–2664.
    [18] G.V. Stepanov, S.S. Abramchuk, et al. Effect of a homogeneous magnetic field on the viscoelas-tic behavior of magnetic elastomers [J]. Polymer 48 (2007) 488-495.
    [19] H.M. Yin, L.Z. Sun. Magneto-elastic modeling of composites containing chain-structured mag-netostrictive particles [J]. Journal of the Mechanics and Physics of Solids 54 (2006) 975–1003.
    [20] http://www.xzh.com.cn/news/zlkzq.htm.
    [21] Fei Fei Fang, Hyoung Jin Choi, et al. Magnetorheology of soft magnetic carbonyl iron suspen-sion with single-walled carbon nanotube additive and its yield stress scaling function [J]. Col-loids and Surfaces A: Physicochem. Eng (2009). doi:10.1016/j.colsurfa.2009.09.032.
    [22] J.L. Viota, F. González-Caballero, et al. Study of the colloidal stability of concentrated bimodal magnetic fluids [J]. Journal of Colloid and Interface Science 309 (2007) 135–139.
    [23] Takenori Tada, Shogo Onishi, et al. Magnetic particles stabilized by chemically adsorbed mo-nolayers for use in functional fluids [J]. Thin Solid Films 517 (2009) 4360–4364.
    [24]于濂清,袁永锋,燕友果.磁粉粒度对磁体强韧性和磁性能的影响[J].稀有金属材料与工程, 2008,37(11):2034-2036.
    [25] R. Afshar, Y. Moser, T. Lehnert, M.A.M. Gijs. Magnetic particle dosing and size separation in a microfluidic channel [J]. Sensors and Actuators B: Chem (2009), doi: 10.1016/j. snb. 2009.08.044.
    [26] X.J.A. Janssen a, L.J. van IJzendoorn, et al. On-chip manipulation and detection of magnetic particles for functional biosensors [J]. Biosensors and Bioelectronics 23 (2008) 833–838.
    [27] Window W M. Method and Means for Translating Electrical Impulses into Mechanical Force [P].USA:US Patent:2417850,1947.
    [28] http://www.sciencenet.cn/m/Print.aspx?id=216831.
    [29] W J Wen, X X Hang. The giant electrorheologicaleffect in suspensions of nanoparticles [J]. Nature Materials, 2003, 2(11) :727 -730.
    [30] Hao T. Electrorheological fluids [J]. Advanced Materials, 2001, 13(24):1847-1857.
    [31]庞雪蕾,唐芳琼.电流变液体的研究进展[J].化学进展, 2004, 16(6):849-857.
    [32]温维佳,黄先祥,等.巨电流变效应及其机理[J].物理, 2003, 32 (12):777-779.
    [33] Y Tian, H Ji, Y Meng. Investigation of characteristics of electro-rheological fluid couplings [C]. Proceedings of the International Conference on Mechanical Transmissions. Chongqing, China: Chinese Machine Press, 2001:661- 663.
    [34] X P Zhao, et al. A new kind of self-coupled electro-rheological damper and its vibration cha-racter [J]. Journal of Intelligent Material Systems and Structures, 2005, 16(1):57-65.
    [35]路阳,王学昭,等.电流变液研究新进展[J].材料导报, 2009,23(2):6-10.
    [36] Rabinow, J. The Magnetic Fluid Clutch, AIEE Trans., 1948, 67:1308-1315.
    [37] Rabinow, J. Magnetic Fluid Clutch, National Bureau of Standards Technical News Bulletin, 1948, 32(4): 54-60.
    [38] Rabinow, J. Magnetic Fluid Torque and Force Transmitting Device [P], U.S. Patent 2,575,360, 1951.
    [39] Shtarkman, E.M. U.S.Patent 4,992,360, 1991. and U.S.Patent 5,167,850, 1992.
    [40] Kordonsky, W. Magnetorheological Effect As a Base of New Devices and Technologies [J], Mag. and Mag. Mat, 1993, 122, 395-398.
    [41] Weiss K. D. et al. High Strength Magneto- and Electro-rheological Fluids [J], Society of Auto-motive Engineers, 1993, SAE Paper # 932451.
    [42] Carlson, J. D. et al Magnetorheological Fluid Dampers [P], U.S. Patent 5,277,282, 1994. and Magnetorheological Fluid Devices [P], U.S. Patent 5,284,330, 1994.
    [43] Carlson, J. D. The Promise of Controllable Fluids [C], Actuator 94, 4th Int. Conf. on New Ac-tuators, eds. H. Borgmann and K. Lenz, Axon Technologies Consult GmbH, 1994, 266-270.
    [44] Carlson, J. D. and K. D. Weiss. A Growing Attraction To Magnetic Fluids [J], Machine Design, 1994, Aug. 8, 61-66.
    [45] Carlson, J.D., D.M. Catanzarite and K.A.St [C]. Clair, 5th Int. Conf. on Electrorheological, Magneto-rheological Suspensions and Associated Technology, Sheffield, July,1995.
    [46] Lord Corporation Rheonetic Linear Damper-RD-1001/RD-1004 Product Information Sheet, (Lord Corp. Pub. No. PS RD-1001/4) 1997.
    [47] Shames I H, Cozzarelli F A. Elastic and inelastic stress analysis. Prentice hall, Englewood Cliffs, New Jersey, 1992.
    [48] F. Donado, J.L. Carrillo, et al. Dynamical structure and viscosity of dilute magnetorheological suspensions under perturbation [J]. Journal of Magnetism and Magnetic Materials 320 (2008) e354–e357.
    [49] Yongbo Yang, Lin Li, et al. Synthesis and characterization of iron-based alloy nanoparticles for magnetorheological fluids [J]. Journal of Magnetism and Magnetic Materials 320 (2008) 2030–2038.
    [50] Bong Jun Park, Kang Hyun Song, et al. Magnetic carbonyl iron nanoparticle based magnetor-heological suspension and its characteristics [J]. Materials Letters 63 (2009) 1350–1352.
    [51] B.J. Park, I.B. Jang, et al. Magnetorheological characteristics of nanoparticle-added carbonyl iron system [J]. Journal of Magnetism and Magnetic Materials 303 (2006) e290–e293.
    [52] P. Domínguez-García, et al. Morphology of anisotropic chains in a magneto-rheological fluid during aggregation and disaggregation processes [J]. Journal of Colloid and Interface Science 333 (2009) 221–229.
    [53] Akira Satoh a, Yasuhiro Sakuda. Rheology and orientational distributions of rodlike particles with magnetic moment normal to the particle axis for semi-dense dispersions [J]. Journal of Colloid and Interface Science 308 (2007) 532–541.
    [54] Tomonori Watanabe, Masayuki Aoshima, Akira Satoh. Rheological properties and particle be-haviors of a nondilute colloidal dispersion composed of ferromagnetic spherocylinder particles subjected to a simple shear flow: Analysis by means of mean-field approximation for the two typical external magnetic field directions [J]. Journal of Colloid and Interface Science 302 (2006) 347–355.
    [55] A. Dorfmann, R.W. Ogden, et al. A three-dimensional non-linear constitutive law for magne-torheological fluids, with applications [J]. International Journal of Non-Linear Mechanics 42 (2007) 381–390.
    [56] Tae Gon Kang, Martien A. Hulsen, et al. A direct simulation method for flows with suspended paramagnetic particles [J]. Journal of Computational Physics 227 (2008) 4441-4458.
    [57]党辉,朱应顺,龚兴龙,等.基于分布链修正的磁流变弹性体的物理模型[J].化学物理学报, 2005, 18(6):971-975.
    [58]朱应顺,龚兴龙,等.磁流变液剪切屈服应力的数值分析[J].中国矿业大学学报, 2006, 35(4):498-503.
    [59]李立春,官建国,程海斌,等.聚乙二醇包裹羰基铁核壳粒子的制备及水基磁流变液的性能[J].物理化学学报, 2005, 21(7):817-821.
    [60]程海斌,王金铭,等.有机分子修饰铁粒子表面改善水基磁流变液的抗氧化性和稳定性[J].物理化学学报, 2008, 24(10):1869-1874.
    [61]李海涛,彭向和,等.基于链化分析的磁流变液剪切屈服应力模型[J].物理化学学报, 2005, 18(4):505-509.
    [62]司鹄,李晓红.磁流变液的流体动力学理论[J].功能材料, 2006,37(5):727-732.
    [63] M. Tricard, et al. Magnetorheological Jet Finishing of Conformal, Freeform and Steep Concave Optics [J]. Annals of the CIRP Vol. 55/1/2006.
    [64] Carlson, J D, Matthis, W, et al. Smart Prosthetics based on Magnetorheological Fluids [J]. SPIE 8th Annual Symposium on Smart Structures and Materials, Newport Beach, CA, 2001.
    [65] Dana Technology website, http://www.dana.com/technology/intelldriveshaft.shtm.
    [66] S.K. Huang, Y.H. Wen, et al. Application of damping mechanism model and stacking fault probability in Fe–Mn alloy [J]. MATERIALS CHARACTERIZATION 59(2008) 681-687.
    [67] Vikas Arora, S.P. Singh, et al. Comparative study of damped FE model updating methods [J]. Mechanical Systems and Signal Processing 23 (2009) 2113–2129.
    [68] Jean-Marie Berthelot, et al. Damping analysis of composite materials and structures [J]. Com-posite Structures 85 (2008) 189–204.
    [69]钟文镇,何克晶,等.颗粒离散元模拟中的阻尼系数标定[J].物理学报,2009, 58(8):5155-5161.
    [70]王敬丰,高珊,潘复生,等.热处理对ZK60镁合金力学和阻尼性能的影响[J].稀有金属材料与工程, 2009,38(6):1029-1032.
    [71] Stanway, R., Sproston, J. L., Stevens, N. G. Nonlinear modelling of an electro-rheological vi-bration damper [J]. Electro- statics 1987, 20, 167-184.
    [72] B.F. Spencer jr., Carlson, J. D., et al. Phenomenological model of a magnetorheological damper [J]. ASCE Journal of Engineering Mechanics. 1996, 1-23.
    [73] Kamath, G. M., et al. A nonlinear viscoelastic-plastic model for electrorheological fluids [J]. Smart Materials Struct. 1997, 6, 351-359.
    [74] Gamota, D. R. Filisko, F. E. Dynamic mechanical studies of electrorheological materials: Mod-erate frequencies. J. Rheology, 1991,35,399-425.
    [75] Makris, N., Burton, S. A., Taylor, D. P. Electrorheological damper with annular ducts for seis-mic protection applications [J].Smart Materials Struct. 1996, 5, 551-564.
    [76] Burton, S. A. Design and analysis of an electrorheological damper for seismic protection of structures [D]. MS Thesis, University of Notre Dame, IN 1996.
    [77] Brokate, M, Sprekels. Hysteresis and phase transitions [J]. Springer-Verlag, 1996, New York.
    [78] Wen, Y. Method for random vibration of hysteretic systems [J]. Engin. Mech. Div. 1976, 102, 249-263.
    [79] Kamath, G M, Wereley, N M. A nonlinear viscoelastic-plastic model for electrorheological flu-ids [J]. Smart Materials Struct. 1997,6, 351-359.
    [80]丁阳,张路,等. MR-J型磁流变阻尼器性能测试与阻尼力预估模型[J].天津大学学报, 2009, 42(9):763-769.
    [81]廖昌荣,等.汽车磁流变减振器神经网络模型研究[J].中国公路学报, 2003,16 (4): 94-97.
    [82]陈杰平,等.磁流变液阻尼减振器力学模型及其发展[J].安徽科技学院学报, 2008, 22 (2) : 28-34.
    [83] Hiroshi Sodeyama, et al. Dynamic Tests and Simulation of Magneto-Rheological Dampers [J]. Computer-Aided Civil and Infrastructure Engineering18(2003)45-57.
    [84] Doina Bica, Ladislau Ve′ka′s, et al. Sterically stabilized water based magnetic fluids: Synthesis, structure and properties [J]. Journal of Magnetism and Magnetic Materials 311 (2007) 17-21.
    [85] J.L. Viota, et al. Study of the magnetorheological response of aqueous magnetite suspensions stabilized by acrylic acid polymers [J]. Journal of Colloid and Interface Science 324 (2008) 199-204.
    [86] John C. Ulicny, et al. Magnetorheological fluid durability test—Iron analysis [J]. Materials Science and Engineering A 443 (2007) 16-24.
    [87] John C. Ulicny, et al. Magnetorheological fluid durability test—Organics analysis [J]. Materials Science and Engineering A 464 (2007) 269-273.
    [88]刘奇怪,唐龙,等.磁流变体材料稳定性和润滑性能研究[J].功能材料, 2005, 36(8):1192-1195.
    [89]易成建,彭向和,等.静磁场下磁流变液微结构形态稳定性分析[J]. 2008, 39 (12): 1961-1964.
    [90] Bong Jun Park, et al. Fabrication and magnetorheological property of core/shell structured magnetic composite particle encapsulated with cross- linked poly(methyl methacrylate)[J]. Ma-terials Letters 63(2009)2178-2180.
    [91]刘献栋,赵梦醒.汽车悬架磁流变减振器模型分析及半主动控制策略研究[J].功能材料, 2006,37(5):780-782.
    [92] Yang F, Sedaghati R, et al. Development of luGre friction model for large-scale magne-tog&euro "rheological fluid dampers [J]. Journal of Intelligent Material Systems and Structures, 2009, 20(8): 923-937.
    [93] Yang F, Sedaghati R, et al. A new lugre friction model for MR-9000 type MR damper [C]. ASME Int Mech Eng Congress Expos Proc, Boston. 2009, 11: 401-408.
    [94] Branco, P.J.C. Continuum electromechanics of a magnetorheological damper including the fric-tion force effects between the MR fluid and device walls: Analytical modelling and experimen-tal validation [J]. Sensors and Actuators, A: Physical, 2009, 155(1): 82-88.
    [95]邱海喆,晏华,等.磁流变液的摩擦与润滑[J].后勤工程学院学报, 2009, 25(1):45-48.
    [96]邱海喆,晏华,等.基于羰基铁磁流变液的摩擦磨损性能研究[J].功能材料, 2007, 38:1211-1213.
    [97]邱海喆,晏华,等.添加剂对羰基铁磁流变液的摩擦磨损特性的影响[J].功能材料, 2007, 38:1183-1185.
    [98] Juan de Vicente, et al. Effect of friction between particles in the dynamic response of model magnetic structures [J]. Journal of Colloid and Interface Science 316 (2007) 867-876.
    [99]洪若瑜.磁性纳米粒和磁性流体制备与应用[M].北京:化学工业出版社, 2008.
    [100]唐龙,刘奇.水基磁流变液的制备及其性能研究[J].功能材料, 2006, 37(4):543- 545.
    [101]黄巍,齐飞霞,等.硅油基磁流变液的制备及其特性[J].机械工程材料, 2008,32 (7): 68 -74.
    [102]李金海,关新春,欧紧萍.可调范围宽,悬浮稳定的磁流变液的配制[J].功能材料, 2004, 4(35):414-416.
    [103]胡林,付伟,等.磁流变液沉降稳定性改进及对流变性能的影响[J].贵州大学学报(自然科学版), 2001, 18(3):176-181.
    [104]蒋明俊,董浚修,郭小川.复合锂-钙基脂的研究[J].石油炼制与化工, 1999, 30(10): 19-22.
    [105]胡性禄.润滑脂应用基础[M].北京:中国石化出版社, 1995.
    [106] A.W. Sisko. The flow of lubricating grease [J]. Industrial and Engineering Chemistry, 50(12): 1789-1792.
    [107] V.C. Kelessidis a, R. Maglione. Modeling rheological behavior of bentonite suspensions as Casson and Robertson-Stiff fluids using Newtonian and true shear rates in Couette viscometry [J]. Powder Technology 168 (2006) 134-147.
    [108] Herschel W H, Bulkey R. Model for time dependent behavior of fluid [J]. Proc. America so-ciety of testing materials, 1926.
    [109] E.J. Fordham, S.H. Bittleston, M.A. Tehrani, Viscoplastic flow in centered annuli, pipes and slots [J]. Ind. Eng. Chem. Res. 29 (1991) 517-524.
    [110] W.J. Bailey, I.S. Weir, Investigation of methods for direct rheological model parameter estima-tion [J]. Pet. Sci. Eng. 21 (1998) 1-13.
    [111] H. Mingzhao, Y. Wang, E. Forssberg, Slurry rheology in wet ultrafine grinding of industrial minerals: a review [J]. Powder Technol. 147 (2004)94–112.
    [112] Foister, Robet T. etal. U.S. Patent: 20030111634.
    [113] John C Ulicny, Michael P.B, Noel M. Potter, Richard A W. Magnetortheologieal fluid Durabil-ity test-Ironanalysis. Materials Science and Engineering A 443 (2007) 16-24.
    [114]蒋峰景,浦鸿汀,等. Fe3O4包覆碳纳米管软磁性纳米复合微粒的制备及性能[J].新型碳材料, 2007, 24(4): 371-374.
    [115]李发胜,唐龙,等.聚丙烯酸对水基磁流变液稳定性的改良[J].功能材料, 2007, 38 (5) :717-720.
    [116]程海斌,瞿伟廉,张剑等.磁流变液及其阻尼器的制备与性能研究[J].功能材料, 2006, 37(5): 811-813.
    [117]沈钟,王果庭.胶体表面与化学[M].北京:化学工业出版社, 1997.
    [118] J.-H. Yoo and N. M. Wereley. Design of a High-Efficiency Magnetorheological Valve [J]. Journal of Intelligent Material Systems and Structures, Vol.13,2002,679-685.
    [119] G. Yang, B.F. Spencer, J.D. Carlson, M.K. Sain. Large-scale MR fluid dampers: modeling and dynamic performance considerations [J]. Engineering Structures 24 (2002) 309-323.
    [120] N M Kwok, Q P Ha, et al. A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization [J]. Sensors and Actuators A 132 (2006) 441-451.
    [121]朱克勤,许春晓.粘性流体理学[M].北京:高等教育出版社, 2009.6.
    [122] Dug-Young Lee, et al. Analysis of electro- and magneto-rhelogical flow mode dampers using Herschel-Bulkley model [J]. In Smart Structures and Materials 2000: Damping and Isolation, T. Tupper Hyde, 244 Editor, Proceedings of SPIE Vol. 3989 (2000).
    [123] White F.M. Fluid Mechanics 3rd edn[M]. (New Youk:McGraw-Hill),1994,p736.
    [124] Alireza Farjoud, Ryan Cavey, et al. Magneto-rheological fluid behavior in squeeze mode[J]. Smart Mater. Struct.18(2009)095001(7pp).
    [125] Phillips R W. Engineering Applications of Fluids with a Variable Yield Stress, 1996(Berkeley, CA: University of California Press).
    [126] R Tao. Super-strong magnetorheological fluids [J]. JOURNAL OF PHYSICS: CONDENSED MATTER13 (2001) R979–R999.
    [127]程国均.大学物理教程[M].北京:科学出版社, 2002, 8.
    [128]李春明,刘承师,张俊峰.计算载流圆线圈磁场分布的方法[J].辽宁工学院学报, 1999, 19(1), 62-66.
    [129]胡豹,张源,等.载流圆线圈全空间的磁场分布[J].中国新技术新产品, 2009,20, 16-17.
    [130]孙鲲.一种稳恒磁场产生装置的设计[D].大连:大连理工大学, 2008.6.
    [131] Weng W. Chooi, S. Olutunde Oyadiji. Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions [J]. Computers and Structures 86 (2008) 473-482.
    [132] Eduarda Costa, P.J. Costa Branco. Continuum electromechanics of a magnetorheological damper including the friction force effects between the MR fluid and device walls: Analytical modelling and experimental validation [J]. Sensors and Actuators A 155 (2009) 82-88.
    [133] Kerem Karakoc, Edward J. Park, et al. Design considerations for an automotive magnetorheo-logical brake [J]. Mechatronics 18 (2008) 434-447.
    [134] ANSYS FLUENT 12.0/12.1 Documentation/user’s guide/Viscosity for Non-Newtonian Fluids. Release 12.0 ? ANSYS, Inc. 2009-01-29.
    [135] H.K. Versteeg, W. Malalasekera. An introduction to computational fluid dynamics: The finite volume method [M]. Harlow: Pearson Education Limited ,1995.
    [136]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社, 2004.9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700