用户名: 密码: 验证码:
飞船返回舱着陆冲击缓冲座椅系统改进设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
载人飞船返回舱安全着陆技术是载人航天的关键技术之一。返回舱内航天员缓冲座椅系统,为减小着陆冲击载荷、保障航天员安全着陆发挥关键作用。现有缓冲座椅主要能有效缓冲航天员胸背向冲击载荷,而对头盆向的缓冲能力较弱。在较大的水平着陆冲击下,通过座椅传递过来的多向冲击过载,存在超过航天员头盆向耐受极限的可能性。为同时提高座椅对航天员胸背向与头盆向冲击过载的缓冲性能,论文通过理论分析和实验研究,系统地研究了缓冲座椅的改进设计、缓冲性能分析、座椅参数优化、冲击缓冲实验等问题。论文主要研究内容包括:
     1)分析了返回舱着陆工况及现有前支座铰接支撑座椅的缓冲性能。
     根据返回舱着陆过程特点和座椅竖直缓冲杆工作原理,建立并验证了现有铰接支撑座椅系统的动力学模型;分析了不同着陆速度、输入冲击波形、测点位置和缓冲杆力学特性下座椅系统的响应特点;发现当存在水平着陆冲击时,现有缓冲座椅可能出现缓冲行程空间不够、头盆向冲击过载超过航天员耐受极限的问题;通过对现有缓冲座椅结构特点的分析,提出了缓冲座椅的改进途径。
     2)研究了前支座弹性支撑改进座椅的缓冲性能及参数影响和优化设计。
     基于座椅前支座设置弹性支撑缓冲器的前提,分别提出了水平向支撑、竖直向支撑、双向支撑和斜向支撑四种改进方案;建立了改进座椅的动力学模型,分析了改进座椅的缓冲性能以及缓冲器的刚度、阻尼和支撑角度对缓冲性能的影响规律;应用多目标优化方法对四种缓冲座椅的缓冲器参数进行了优化设计;研究发现:前支座水平向弹性支撑座椅可有效降低头盆向冲击过载,且工程约束要求低,是四种弹性支撑方案中的最佳方案。
     3)研究了前支座采用不同水平向缓冲器座椅的缓冲性能,确定座椅改进方案。
     水平向非线性缓冲器支撑座椅方案中依次比较了非线性弹簧阻尼、磁流变阻尼器和胀环式缓冲杆三类支撑,其中水平向胀环式缓冲杆支撑座椅具有良好的缓冲效果,使减幅后的头盆向峰值接近于无水平冲击着陆工况下铰接支撑座椅的响应值,同时具有响应时间短、能够参考现有铰接支撑座椅的竖直缓冲杆安装设计的优点,被确定为最合适的改进方案。
     4)提出了胀环与锥套结构的设计方法,并开展结构参数与扩径力的实验测量。
     提出了胀环和锥套结构构型中的设计参数,推导了胀环扩径力的理论计算公式,分析了结构参数对扩径缓冲力的影响规律;利用实验测量的方法获取了胀环力学性能参数和胀环与锥套之间摩擦系数这两个关键的设计参数;开展的胀环拟静态扩径实验研究,验证了理论计算分析的正确性。
     5)发展了缓冲杆的工程设计与优化设计方法,开展缓冲杆冲击缓冲实验研究。
     计及胀环式缓冲杆在典型、极限着陆工况下的全部工作特性,提出了缓冲杆的“初始—中间—末了”的三部分设计方法;引入了缓冲力与缓冲行程调节系数,扩展了等长胀环与不等长胀环缓冲杆的设计范围;针对竖直缓冲杆与水平缓冲杆,分别讨论了工程设计方法和多目标优化设计方法;最后完成的胀环式缓冲杆动态冲击实验,基本验证了其缓冲性能的高效性与工程设计方法的有效性。
The landing technology of reentry capsule of manned spacecraft is a key technology for manned space flight. The buffer seats in reentry capsule are essential to reduce the impact overload on the astronauts to ensure their safety. Buffer seats at present have strong compatibility to attenuate the chest-back impact acceleration,but weak to the head-pelvis one. The multi-directional impact loads imposed on the crewman maybe exceed the head-pelvis acceleration limit. To improve attenuation compatibility of the chest-back and the head-pelvis acceleration, this dissertation presents a systematic survey on the improved design schemes, attenuation capability, parameters optimization of buffer seats and the shock attenuation experiments of the cushion pole. The main research contents and results in this dissertation are summarized as follows.
     1) The landing conditions of reentry capsule and the attenuation compatibility of the present seat with the front gemel support are analyzed.
     A dynamic model of the present buffer seat is established based on the characteristics of the reentry capsule landing and work mechanism of the vertical cushion pole. The response and characteristics of the landing conditions, shapes of shock, various positions of buffer seats, and mechanics of the cushion pole are studied respectively. The analysis of the horizontal impact factors reveal hidden trouble due to short buffer distance and increscent head-pelvis acceleration. The promising measures are presented consequently according to the structural features of the present seat.
     2) The attenuation compatibility, the influence of the parameters and optimal design of the improved seats with the front elastic supports are studied.
     Four promising schemes are provided by supplementing elastic supports on the front end of the buffer seat, consisting of the horizontal support, the vertiacl support, the double support and the titled support. The dynamic models of the improved buffer seats are established. The influence of stiffness, damper and surport angle for all improvement schemes is studied. A multi-objective optimization algorithm is applied for obtaining parameters ranges of the design problems. One design scheme which applying a horizontal elastic support on the front end of the seat is choosed finally, because of its effective reduction of the head-pelvis impact load and small engineering constraints.
     3) The attenuation compatibility of seats with various horizontal buffers support on the front end is studied, and the optimum improved scheme is determined finally.
     The preferred design scheme that uses a horizontal nonlinear buffer support is analyzed in detail. This chapter is concerned with the comparison of three nonlinear support design schemes, including nonlinear spring and damper surpport, magneto-rheological fluid damper support, and expandable ring cushion pole support. The horizontal expandable ring cushion pole support is superior to the other two schemes because of its outstanding head-pelvis energy disppation capability, its short response time and convenient installation resulting from many references to the present buffer seat.
     4)The design methods of the expandable ring and the conic knot are proposed, and the experiments to measure the structural parameters and force are conducted.
     The design parameters of the expandable rings and the conic knot are proposed. The fomula to calculate the expanding force of the expandable rings are raised. The influence of the design parameters to the expanding force are discussed by numeric simulation. Two design parameters are obtained from the expanding ring material mechanical capability tests and the friction coefficient measure tests between expanding rings and a conic knot. The following successful static expanding ring tests show that the design fomula and the theory analysis are reliable.
     5) The engineering design and the multi-objective optimization of the expandable ring cushion pole are developed, and the shock attenuation experiments of the the cushion pole are conducted.
     Three segments design route of the expandable ring cushion pole is put forward, with normal and extreme landing speed considered. By the introduction of adjusting coefficients for the force and the stroke, the design extension is extended for the cushion pole that is made of same or various length rings. The preselecting engineering design and the comprehensive multi-objective optimum design are applied to the vertical cushion pole and the horizontal cushion pole. The high buffer capability of the expandable ring cushion pole and the validity of the engineering design are proved by the dynamic tests of the pole.
引文
[1]戚发韧.载人航天器技术[M].北京:国防工业出版社, 2003.
    [2]吴启明.载人航天系统安全性风险评估的ESD方法研究及软件实现[D].长沙:国防科学技术大学, 2005.
    [3] Joseph R F. How safe must a potential crewed launcher be demonstrated to be before it is crewed?[J]. Journal of Loss Prevention in the Process Industries, 2009, 22: 657~663.
    [4]杜汇良.飞船返回舱故障着陆冲击缓冲系统改进计算分析[D].北京:清华大学, 2003.
    [5]肖国鑫.国外载人飞船各飞行段安全性分析[J].航天器工程, 1995, 2(4): 43~50.
    [6]杜星文,宋宏伟.圆柱壳冲击动力学及耐撞性设计[M].北京:科学出版社, 2004.
    [7]羽佳.载人飞船[J].航天返回与遥感, 1999, 20(4): 61~66.
    [8]廖前芳.物伞系统回收过程动力学仿真与分析[D].长沙:国防科学技术大学, 2005.
    [9]余雄.刚体着陆冲击的有限元分析和返回舱模拟试验床方案研究[D].北京:清华大学, 2000
    [10]赵海洋.返回舱动态稳定性物理机理分析及被动/主动控制方法研究[D].长沙:国防科技大学, 2007.
    [11] Pirmoradi F N, Sassani F, Desilva C W. Fault Detection and Diagnosis in a Spacecraft Attitude Determination System[J]. Acta Astronautica, 2009, 65: 710~729.
    [12]谢燕,李道奎,雷勇军.一种返回舱座椅水平缓冲杆设计[J].振动与冲击, 2010, 29(2): 179~183.
    [13] Shirley L. Gemini Spacecraft Program[R]. NASA/N70-76686,USA, 1965.
    [14]王向阳.国外航天器应急救生[J].中国航天, 1993, (8): 83~94.
    [15] Brice N C. The Human Exploration of Mars[C].43rd AIAA/ASME/SAE /ASEE Joint Propulsion Conference & Exhibit No.5608. Cincinnati, OH, 8-11 July, 2007.
    [16] Arino J, Parkinson R C. Technologies for Lunar Lander Executive Summary[R]. European Space Agency(ESA) Report No.CRP3946, 1995.
    [17] Andrew W. Mars Express: A European Mission to the Red Planet[R]. European Space Agency(ESA) Report No.SP-1240, 2004
    [18] Kumar K. New technology innovations with potential for spaceapplications[J]. Acta Astronautica, 2008, 63: 324~333.
    [19] Watillon D I, Wilson A, Cazaux C, et al. The Atmospheric Reentry Demonstrator[R]. European Space Agency(ESA) Report No.BR-138, 1998.
    [20] Stéphane C. Review: CEAS-ASC highlights 2006[J]. Journal of Sound and Vibration, 2007, 304(3-5): 421~449.
    [21] Danny A B, Alpheus B W, Felecia C B, et al. Photogrammetric Measurements of CEV Airbag Landing Attenuation Systems[R]. NASA No. 20080008867_2008007446,USA, 2008.
    [22] Michael R, Todd F. The crew exploration vehicle (CEV) and the next generation of human spaceflight[J]. Acta Astronautica, 2007, 61: 185~192.
    [23] John M S. Return to the Moon: A sustainable strategy[J]. Space Policy, 2006, 22(2): 118~127.
    [24] Charles L, Justin D L, Edwin L F, et al. Orion Crew Member Injury Predictions During Land and Water Landings[R]. NASA/TM-2008-215171, 2008.
    [25] James M. CEV Seat Attenuation System System Design Tasks[R]. NASA No.20070010702_2007005306, 2007.
    [26] Page Editor: Yvette S. Crew Impact Attenuation Testing, http://www.nasa.gov/multimedia/imagegallery/image_feature_1393.html, Page Last Updated: June 22, 2009
    [27] Page Editor: Bob A. Crew Impact Attenuation System, http://www.nasa.gov/centers/langley/multimedia/iotw-cias.html, Page Last Updated: February 20, 2009
    [28]苑海燕,杜继稳,侯建忠等.“神舟六号”飞船着陆时段主着陆场区风场的数值模拟[J].气象科学, 2008, 28(1): 56~64.
    [29]廖前芳,程文科,宋旭民等.风场对舱-伞系统着陆姿态影响的仿真研究[J].航天返回与遥感, 2005, 26(2): 6~10.
    [30]赵祖虎.低空着陆缓冲制动火箭概述[J].航天返回与遥感, 1995, 16(2): 13~19.
    [31]李大耀.着陆缓冲火箭点火高度选择及缓冲效果估计[J].中国空间科学技术, 1994, 14(1): 38~45.
    [32]张小苗,曹勇,于起峰.基于双目视觉的返回舱着陆横向速度测量[J].航天返回与遥感, 2007, 28(3): 1~6.
    [33] Jaroslaw P, Piotr T, Jaroslaw D, et al. Soil stress and deformation determination under a landing airplane on an unsurfaced airfield[J]. Journal of Terramechanics, 2004, 40: 255~269.
    [34] Liu B K, Ma H L, Jiang S Z. Dynamic responses to landing impact at differentkey segments in selected body positions[J]. Aerospace Science and Technology, 2008, 12(4): 331~336.
    [35]吴桂荣.航空航天中冲击过负荷问题[C].全国第3届DSP应用技术&第9届信号与信息处理联合学术论文集. 1997. 428~431.
    [36]国耀宇,谈诚,刘炳坤等.着陆冲击对人体影响及医学评价问题评述[J].航天医学与医学工程, 2002, 15(6): 455~459.
    [37]曹宏年,宋楷.冲击塔可变角度转台设计及应用[J].航天医学与医学工程, 1997, 10(4): 296~299.
    [38]马红磊,刘炳坤,姜世忠等. SZM510与HyridⅢ假人着陆冲击响应特性的比较研究[J].航天医学与医学工程, 2005 18 (5): 346~344.
    [39]王玉兰,成自龙,韩延方等.人体对胸一背向(+Gx)着陆冲击反应特点的研究[J].航天医学与医学工程, 1992, 5(2): 96~101.
    [40] Viano D C, Lau V K. Role of impact velocity and chest compression in thoracic injury [J]. Aviat Space and Environment Medicine, 1983, 54 (1): 16~21.
    [41] Brown W K, Rothstein T D, Foster L P. Human Response to Predicted Apollo Landing Impacts in Selected Body orientations[J]. Aerospace Medicine, 1966, 37(4): 394~398.
    [42] Robinson F R. Response of Rhesus Monkey toLateral Impact[J]. Aerospace Medicine, 1963, 34: 56~66.
    [43] Headlry R N. Human Factors Responses During Ground Impact[R]. PB.171599, 1960.
    [44] Gen X C, Yan G D, Jin Z, Xu Y. +GZ Protection of a New Bladder Anti-G System[J]. Space Medicine& Medical Engineering, 2003, 16(1): 1~4.
    [45]刘挺松,孙喜庆,曹新生等.高+Gz和噪声复合应激对大鼠学习记忆的影响[J].航天医学与医学工程, 2004, 17(2): 20~23.
    [46]成自龙.人体坐姿冲击(+Gz)耐受区间的研究[R].中国国防科技报告(编号GF-A0026431G) 1997.
    [47] Eiband A M. Human Tolerance to Rapidly Applied Accelerations: A Summary of the Literature[R]. NASA Memorandum 5-19-59E, 1959.
    [48] Brinkley J W, Moser S E. Development of Acceleration Exposure Limits for Advanced Escape Systems[R]. AGARD CP-472,USA, 1989.
    [49]王玉兰.飞船着陆冲击人体耐力分析[J].航天医学与医学工程, 1996, 9(1): 60~63.
    [50]刘炳坤,王宪民,王玉兰等.不同体位着陆冲击时人休的动态响应[J].航天医学与医学工程, 2001, 14(2): 120~122.
    [51] Liu B K, Wang X M, Wang Y L. Characteristics of Human Body Dynamic Responses to Landing Impact in Supine Position[J]. Space Medicine & Medical Engineering, 2003, 16(1): 5~9.
    [52]杜汇良,黄世霖,张金换.高G值着陆冲击下头、颈、胸、脊椎损伤因子及评价指标的研究[J].中国临床康复, 2003, 8(8): 1474~1475.
    [53]杜汇良,黄世霖,张金换等. +GX和+Gz复合冲击下人体头部响应的实验分析[J].中国临床康复, 2003, 7(2): 197~198.
    [54] Bernard F H. Eeffects of seat cushions on human response to +Gz impact [J]. Aviat Space and Environment Medicine, 1986, 57(2): 103~112.
    [55] Soong T T, Dargush G F. Passive Energy Dissipation Systems in Structural Engineering[M]. Wiley: NewYork., 1997.
    [56] Lavan O, Levy R. Optimal design of supplemental viscous dampers for irregular shear-frames in the presence of yielding[J]. Earthquake Engineering & Structural Dynamics, 2005, 34(8): 889~907.
    [57] Ephraim Suhir. Shock Protection with a Nonlinear Spring[J]. IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY-PART A, 1995, 18(2): 430~437.
    [58] Chen W L, Chen C C, Chang K N. Development of A New Spring-Dampers Element for General Structural Analysis [R]. IEEE No.0-8186-7901-8/97, 1997.
    [59] Andreaus U, Casini P. Friction oscillator excited by moving base and colliding with a rigid or deformable obstacle[J]. International Journal of Non-Linear Mechanics, 2002, 37: 117~133.
    [60] H Yamaguchi, M Yashima. Vibration Reduction and Isolation Performance for on-off Control of a Friction Force at a Spring Support[J]. Journal of Sound and Vibration, 1997: 729~743.
    [61] Stefano S, Gloria T. Non-linear Dynamic Design Procedure of FV Spring-Dampers for Base Isolation - Frame Building Applications[J]. Engineering Structures, 2001, 23: 1568~1576.
    [62] Takao Y, Yusaku F, Nagaia K, et al. FEA for vibrated structures with non-linear concentrated spring having hysteresis[J]. Mechanical Systems and Signal Processing, 2006, 20: 1905~1922.
    [63] Han H.P, Ang K.K, Wang Q, et al. Buckling enhancement of epoxy columns using embedded shape memory alloy spring actuators[J]. Composite Structures, 2006, 72: 200~211.
    [64] Daley S, Hatonen J, Owens D.H. Active vibration isolation in a 'smart spring' mount using a repetitive control approach[J]. Control Engineering Practice, 2006, 14: 991~997.
    [65]严蔚,刘承斌,王柏生等.新型高阻尼弹簧及其性能研究[J].振动与冲击, 2004, 23(3): 76~79.
    [66] Chen W M, Liu G, Chen W. Research on ring structure wire-rope isolators[J]. Journal of Materials Processing Technology, 1997, 72: 24~27.
    [67] Gerges R R, Vickery B J. Design of tuned mass dampers incorporating wire rope springs:Part I: Dynamic representation of wire rope springs[J]. Engineering Structures, 2005, 27: 653~661.
    [68] Jiang H Y, Yan H, Li G X, et al. Experimental Research on Static Characteristics of Special Wire-rope isolator [J]. Chinese Journal of Southeast University, 2006, 22(4): 505~509.
    [69] Binod P. Y. Vibration damping using four-layer sandwich[J]. Journal of Sound and Vibration, 2008, 317: 576~590.
    [70] Lalli J H, Hill A, Demirci N, et al. Metal Rubber? Sheet and Fabric Materials and Devices [C].Active and Passive Smart Structures and Integrated Systems. Proc. of SPIE Vol. 6525 65251S-1, 2007.
    [71]敖宏瑞.金属橡胶干摩擦阻尼机理及应用研究[D].哈尔滨:哈尔滨工业大学, 2003.
    [72]谭宗柒,汪云峰,陈永清.阻尼孔连续型液压缓冲器研究及设计[J].起重运输机械, 2008, (2): 27~30.
    [73] Samantaray A K. Modeling and analysis of preloaded liquid spring/damper shock absorbers[J]. Simulation Modelling Practice and Theory, 2009, 17: 309~325.
    [74] Yang P. Mechanical Characteristics of Oil-Damping Shock Absorber for Protection of Electronic-Packaging Components[J]. TSINGHUA SCIENCE AND TECHNOLOGY, 2005, 10(2): 216~220.
    [75]师翼.液压技术在机械缓冲应用中的讨论[J].贵州工业大学学报(自然科学版), 2008, 37(4): 164~168.
    [76] Zhao Y S, Wereley N M. Nonlinear Damping Identification in Smart Structural Systems Utilizing ER or MR Dampers No.AIAA 2002-1670[C].43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver, Colorado, 2002.
    [77] Rosenfeld N C, Wereley N M. Volume-constrained Optimization of Magnetorheological and Electrorheological Valves and Dampers No.AIAA 2003-1720[C].44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Norfolk, Virginia, 2003.
    [78] Spencer B F, Dyke S J, Sain M K, et al. Phenomenological model of a magnetorheological damper[J]. ASCE Journal of Engineering Mechanics, 1997, 123(3):230~238.
    [79]汪建晓.磁流变液及其在机械振动控制中的应用[D].上海:上海交通大学, 2003.
    [80] Guo D L, Hu H Y. Nonlinear Stiffness of a Magneto-Rheological Damper[J]. Nonlinear Dynamics, 2005, 40: 241~249.
    [81] Maganti G B. Semi-active Control Techniques for Shock Isolation[D]. Las Vegas,USA: University of Nevada, 2005.
    [82] Satoshi F, Takashi T, Akira S. Adaptive Isolation Control for Uncertain Structure with MR Damper: Experimental Studies[C].SICE-ICASE International Joint Conference 2006. Oct. 18-21, 2006 in Bexco, Busan, Korea.
    [83] Huang Y J, Liu X M, Chen B S. Autoregressive Trispectral Characteristics of Magnetorheological Damping Device[C].International Conference on Intelligent Robots and Systems Proceedings of the 2006 IEEE/RSJ. October 9 - 15, 2006, Beijing, China.
    [84] Zapateiroa M, Taylorb E, Dykeb S J, et al. Modeling and identification of the hysteretic dynamics of an MR actuator for its application to semiactive control of flexible structures[C].Modeling, Signal Processing, and Control for Smart Structures, Proc. of SPIE Vol. 6523 0J-1. 2007.
    [85] Lai D K, Wanga D H. Principle, Modeling, and Validation of A Relative Displacement Self-Sensing Magnetorheological Damper[C].Smart Structures and Materials : Smart Structures and Integrated Systems,Proc. of SPIE Vol. 5764. Bellingham, 2005.
    [86] Huseyin S, Faramarz G, Wang X J, et al. Rheological behavior of magneto-rheological grease (MRG)[C].Active and Passive Smart Structures and Integrated Systems Proc. of SPIE Vol. 65250Q-1. 2007.
    [87] Faramarz G, Barkan M K, Wang X J. Study of a magneto-rheological grease (MRG) clutch[C].Active and Passive Smart Structures and Integrated Systems Proc. of SPIE Vol. 65250Q-1. 2007.
    [88] Cho S W, Jung H J, Lee I W. Smart Passive System Based onMagnetorheological Damper[J]. Journal of Smart Materials and Structure, 2005, 14: 707~714.
    [89]王家胜,朱思洪.带附加气室空气弹簧动刚度的线性化模型研究[J].振动与冲击, 2009, 28(2): 72~76.
    [90]吴善跃,黄映云.有限元法计算长方型橡胶空气弹簧隔振器的垂向刚度[J].噪声与振动控制, 2005, (2): 16~20.
    [91]应杏娟,李郝林,倪争技.空气弹簧隔振器的动力特性研究[J].上海理工大学学报, 2006, 28(2): 164~168.
    [92]郑明军,陈潇凯,林逸.空气弹簧力学模型与特性影响因素分析[J].农业机械学报, 2008, 39(5): 10~14.
    [93] Shinji W. Incline compensation control using an air-spring type active isolated apparatus[J]. Precision Engineering, 2003, 27: 170~174.
    [94]周英,王晓雷,郑钢铁.空气弹簧隔振器主动控制的鲁棒控制方法研究[J].振动与冲击, 2007, 26(1): 125~130.
    [95] Wakui S, Kato H. Control performance of an air-spring type vibration isolated apparatus having pressure feedback[J]. Int J Japan Soc Prec Eng, 1999, 33(3): 251~252.
    [96] Kuren M B, Shukla A. System design for isolation of a neonatal transport unit using passive and semi-active control strategies[J]. Journal of Sound and Vibration, 2005, 286: 382~394.
    [97]张忠平,王文生,丁国宾等.空气弹簧漏风故障的调查分析和研究[J].铁道机车车辆, 2004, 26: 61~63.
    [98]张利国,张嘉钟,贾力萍等.空气弹簧的现状及其发展[J].振动与冲击, 2007, 26(2): 146~154.
    [99]任冬远.空气垫在受到跌落冲击时的缓冲机理及性能研究[D].无锡:江南大学, 2008.
    [100]沈剑锋,卢立新,任冬远.柱状塑膜空气垫承载与缓冲性能的试验研究[J]. 2008,包装工程, 29(6): 6~9.
    [101] Rosamari F B, Hugh E.Lockhart. Effect of Plate Separation on Restrained Burst Test[J]. Packag.Techn Sci, 2003, 16: 191~198.
    [102]马永明,冀相安,傅顺军等.利用MSC·Marc分析气囊结构参数对空气弹簧垂向特性的影响[J].船舶工程, 2008, 30(增刊): 80~85.
    [103]马剑,钱少明,胡夏夏.船舶气囊下水过程结构应力变化的测试与分析[J].船舶工程, 2008 30(3): 16~21.
    [104]张战宁,何琳,鲍海阁.气囊隔振装置压力分布优化控制研究[J].振动与冲击, 2007, 26(9): 60~63.
    [105]戈嗣诚,陈斐.缓冲特性可控的智能气囊装置实验研究[J].振动工程学报, 2004, 17(4): 377~382.
    [106] Ge S S. Characteristic of Intelligent Air Bag Venting Structure Actuating by Electrostrictive Stack Actuator[J]. Chinese Journal of Southeast University(English Edition), 2002, 18(2): 119~123.
    [107]戈嗣诚,陈斐.智能气囊的冲击主动控制原理实验研究[J].宇航学报, 2004, 25(6): 600~604.
    [108] Balcha D K, Dwyerb J G, Graham R. Davisc, et al. Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions[J].Materials Science and Engineering, 2005, A 391: 408~417.
    [109]刘荣强,罗昌杰,王闯等.腿式着陆器缓冲材料缓冲特性及其表征方法研究[J].宇航学报, 2009, 30(2): 786~785.
    [110]杨建中,曾福明,满剑锋等.月球着陆器软着陆机构研制的关键问题及其解决思路[C].2006中国科协年会. 2006. 16~20.
    [111] Dongi F, Burnage S, Cottard H. Lander shock alleviation techniques[R]. ESA Reprot No.11.703/95/NL/FG, 1997.
    [112] Crupi V, Montanini R. Aluminium foam sandwiches collapse modes under static and dynamic three-point bending[J]. International Journal of Impact Engineering, 2007, 34: 509~521.
    [113] Becker W. The inplane stiffnesses of a honeycomb core including the thickness effect[J]. Archive of Appl Mech, 1998, 68: 334~341.
    [114] Wilfried B. Closed-form analysis of the thickness effect of regular honeycomb core material[J]. Composite Structures, 2000, 48: 67~70.
    [115] Giorgi M D, Carofalo A, Dattoma V, et al. Aluminium foams structural modelling[J]. Computers and Structures, 2009, 88: 1~11.
    [116] Gama B A, Bogetti T A, Fink B K, et al. Aluminum foam integral armor: a new dimension in armor design[J]. Composite Structures, 2001, 52: 381~395.
    [117]于英华,杨春红.泡沫铝夹芯结构的研究现状及发展方向[J].机械工程师, 2006, (3): 43~46.
    [118] Lorenzo P, Massimiliano A, Marco P. The mechanical behaviour of aluminium foam structures in different loading conditions[J]. International Journal of Impact Engineering, 2008, 35: 644~658.
    [119] Wang Z H, Ma H W, Zhao L M, et al. Studies on the dynamic compressive properties of open-cell aluminum alloy foams[J]. Scripta Materialia, 2006, 54: 83~87.
    [120]王闯,刘荣强,邓宗全等.铝蜂窝结构的冲击动力学性能的试验及数值研究[J].振动与冲击, 2008, 27(11): 56~62.
    [121] Rakow J F, Waas A M. Size effects and the shear response of aluminum foam[J]. Mechanics of Materials, 2005, 37: 69~82.
    [122]曹晓卿.泡沫铝材料动力学特性的实验研究与理论分析[D].太原:太原理工大学, 2005.
    [123] Feng Y, Zhu Z G, Zu F Q, et a1. Strain rate effects on the compressive property and the energy absorbing capacity ofaluminum alloy foams[J]. Materials Characterization, 2001, 47: 417~422.
    [124] Deshpande F N. High strain rate compressive behaviour ofaluminium alloy foams[J]. International Journal of Impact Engineering, 2000, 24: 277~298.
    [125]胡时胜,王悟,潘艺等.泡沫材料的应变率效应[J].爆炸与冲击, 2003, 23(1): 13~18.
    [126]风仪,朱震刚,潘艺等.时效处理对泡沫铝动态力学性能和能量吸收性能的影响[J].金属功能材料, 2004, 11(3): 19~22.
    [127] Mukal T, Kanahashi H, Miyoshi T, et a1. Experimental study ofenergy absorption in a close-celled aluminum foam underdynamic loading[J]. Scfipta Material, 1999, 40(8): 92l~927.
    [128] Hall I W, Guden M, Yu C J. Crushing ofaluminum closed cell foams:density and strain rate effects[J]. Scfipta Material, 2000, 43: 515~521.
    [129]凤仪,朱震刚,潘艺等.泡沫铝的动态力学性能研究[J].稀有金属材料与工程, 2005, 34(4): 544~550.
    [130]杜汇良,黄世霖,张金换.一种飞船返回舱座椅缓冲器力学特性设计[J].工程力学, 2005, 22(5): 231~235.
    [131]马春生,张金换,杜汇良等.胀环式飞船座椅缓冲器建模方法研究[J].振动与冲击, 2009, 28(4): 90~92.
    [132]熊菁.翼伞系统动力学与归航方案研究[D].长沙:国防科技大学, 2005.
    [133] Jean F. Vergnolle. Soft Landing Impact Attenuation Technologies Review[C].13th AIAA Aerodynamic Deecelerator Systems Technology Conference Paper No.AIAA-95-1535-CP. Clearwater Beach, FL, May 15-18, 1995.
    [134]王利荣.降落伞理论与应用[M].北京:宇航出版社, 1997.
    [135]李扬,夏刚,秦子增.基于预处理方法的冲压式翼伞非定常气动特性数值研究[J].航天返回与遥感, 2004, 25(2): 1~5.
    [136]李健.前缘切口对冲压式翼伞的气动力影响[J].航天返回与遥感, 2005, 26(1): 36~41.
    [137] Bennett T W, Fox R. Design & development & flight testing of the NASA X-38 7500 ft2 parafoil[C].17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Paper No.2107. Monterey, California,19-22 May 2003.
    [138] Smith J, BellIlen T. DeVelopmem of the NASA x-38 parafoil landing system[C].15th CEAS/AIAA Aerodynamic Decelerator Systems Technology Conference, Paper No.AIAA-99-1730. Toulouse, France, 1999.
    [139] Machin R A, Lacomini C S. Flight testing the parachute system for the space station crew return vehicle[J]. Journal of Aircraft, 2001, 38(5): 786~799.
    [140] Dieter S, Ralf K, Norbert Puttmann, et al. X-38, CRV and CRV Evolution Program Overview and European Role[J]. Acta Astronautica, 2001, 48(5-12): 859~868.
    [141] Uwe S, Thomas G, Axel Justus Roenneke. German contribution to the X-38 CRV demonstrator in the field of guidance, navigation and control[J]. Acta Astronautica,2005, 56: 737~749.
    [142] Marco C, Luisa L. Future European launcher plans[J]. Acta Astronautica, 2002, 51(1-9): 537~548.
    [143] Klijn J M. The instrumentation for the ESA parafoil technology demonstrator test[C].10th SFTE European Chapter Symposium. Link?ping, Sweden, 15-17 June, 1998.
    [144] Lands J F.Development of a Terminal Landing Rocket System for Apollo-Type Vehicles[J]. Journal of Spacecraft, 1967, 4(3): 61~68.
    [145]童旭东.着陆缓冲装置特性分析[J].中国空间科学技术, 1993, (3): 64~69.
    [146] Richard E. Wirz, Shaun S Shariff. Ground Effects for CEV Vertical Retrorockets[C].43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit No.5758. Cincinnati, OH, 8-11 July 2007.
    [147] Joshua A V, Gurkirpal S, Ravi P, et al. Design of a Retro Rocket Earth Landing System for the Orion Spacecraft[C].27th IEEE Aerospace Conference Paper No. 1513. USA, 2006.
    [148] Glen B, Roy H, Richard B, et al. A New Pneumatic Actuator and Its Use in Airdrop Applications[C].Proceedings of the CEAS/AIAA 15th Aerodynamic Decelerator Systems Technology Conference, Paper No.AIAA-99-1719. Toulouse, France, 1999.
    [149] Zhang W Q, Michael L A, John W. Leonard. Analysis of geometrically nonlinear anisotropic membranes: application to pneumatic muscle actuators[J]. Source Finite Elements in Analysis and Design archive, 2005, 41(9~10): 944~962.
    [150]沈祖炜.燃气收缩式作动器——一种新颖高效的着陆缓冲装置[J].航天返回与遥感, 2002, 23(2): 5~8.
    [151] Timothy R S, Charles R S. Orion CEV Earth Landing Impact Attenuating Airbags Design Challenges And Application[C].28th IEEE Aerospace Conference Paper No. 1111, Montana,USA. 3-10 March ,2007, 2007.
    [152] Northey D, Morgan C. Improved inflatable landing systems for low cost planetary landers[J]. Acta Astronautica, 2006, 59(8-11): 726~733.
    [153] Donald W, Cole J K, Tommaso P. Rivellini. Mars Pathfinder Airbag Impact Attenuation System[C].13th AIAA Aerodynamic Deecelerator Systems Technology Conference Paper No.AIAA-95-1552-cp. Clearwater Beach, FL, May 15-18, 1995.
    [154] Jacquse B, Jack A J. A New Method for Landing on Mars[J]. Acta Astronautica, 2002, 51(10): 723~726.
    [155]沈人豪.月球探测器气囊缓冲系统结构设计和缓冲过程模拟[D].哈尔滨:哈尔滨工业大学, 2005.
    [156] Cadogan D, Sandy C, Grahne.M. Development and evaluation of the mars pathfinder inflatable airbag landing system[J]. Acta Astronautica, 2002, 50(10): 633~640.
    [157] Allouisa E, Ellery A, Welch C S. Entry descent and landing systems for small planetary missions: Parametric comparison of parachutes and inflatable systems for the proposedVanguard Mars mission[J]. Acta Astronautica, 2006, 59: 911~922.
    [158] Lee T J, John M K, James M C. Airbag Landing Impact Performance Optimization for the Orion Crew Module[R]. NASA No.20080013518_2008013349, 2008.
    [159]娄汉文,杨建中,刘志全.从提高载人返回安全性的角度看“联盟”号飞船的改进[J].载人航天, 2005, 11(4): 50~53.
    [160]刘志全,满剑锋.载人飞船座椅缓冲机构的可靠性试验方法[J].中国空间科学技术, 2009, 29(2): 33~38.
    [161]杨建中,曾福明,满剑锋等.“神舟”号飞船胀环式座椅缓冲装置缓冲特性研究[C].中国航空学会全国第九届安全救生学术交流会文集,13~18. 2005.
    [162] Jerry E. McCullough, Frank A. Stafford, Harold E. Benson. Attenuation of Landing Impact for Manned Spacecraft[R]. NASA No.65-35265, 1964.
    [163]毛林章.基于磁流变技术的登月缓冲装置研究[D].重庆:重庆大学, 2007.
    [164]李洪波.磁流变缓冲阻尼器在月球着陆车软着陆过程中的理论与应用研究[D].西安:西北工业大学, 2002.
    [165] Jones R H. Landing Impact Attenuation for Non-surface-Planing Landers[R]. NASA No. SP-8046,USA, 1970.
    [166] Allen I B, Alberto S M. MIDAS-A Mechanical Impact System for Advanced Spacecraft[C].AIAA 3rd Annual Meeting Paper No.989. Boston,Massachusetts,November 29-December 2, 1966. 1~12.
    [167] Spencer. Mars pathfinder entry, descent, and landing reconstruction[J]. Journal of Spacecraft and Rockets, 1999, 36(3): 357~366.
    [168]陈金宝,聂宏,汪岸柳等.月球软着陆系统关键技术研究与发展综述[J].中国机械工程, 2006, 17(增刊): 46~48.
    [169] Willcockson W H. Mars pathfinder heatshield design and flight experience[J]. Journal of Spacecraft and Rockets, 1999, 36(3): 374~379.
    [170] Bernard F H, James W B. Effect of Seat Cushions on Human Response to +G(z) Impact[R]. USA AD Report No.A176-168, 1986.
    [171] Funkhouser G E, George M H. Alternative Methods for Flotation Seat Cushion Use[R]. USA Technical Report No.DOT/FAA/AM-95/20, 1995.
    [172] Fox R G. OH-58 Energy Attenuating Crew Seat Feasibility Study[R]. USAAD Report No.A207-506, 1988.
    [173] Steven M P, Chris E P. Investigation of Occupant Restraint Improvements to the SIIIS-3 Ejection Seat[R]. United States Air Force Research Laboratory Report No.HE-WP-SR-2000-0002, 2000.
    [174]戈嗣诚,黄礼耀.直升机抗坠毁座椅用智能气囊缓冲器初步研究[J].洪都科技, 2002, (3): 12~17.
    [175]李霞.现代飞机起落架缓冲性能分析、优化设计一体化技术[D].西安:西北工业大学, 2004.
    [176]魏小辉.飞机起落架着陆动力学分析及减震技术研究[D].南京:南京航空航天大学, 2005.
    [177] Bartholomew R J. Rational Dynamic Loads Analysis for Air Cushion Vehicles in Random Seaway or Terrain[J]. Journal of Hydronautics, 1975, (9): 90~98.
    [178] Stein G J. A Driver's seat withe active suspension of electro-pneumatic type[J]. Journal of Vibration and Acoustics, 1997, 119: 230~235.
    [179] Lorenz M, Heimann B, Tschimmel J, etal. Applying semi-active friction damping to elastic supports for automotive applications[C].Proceedings of the IEEE/ASME International Confrence on Advanced Intelligent Mechatronics. 2003.
    [180]檀润华.汽车减振器及乘坐动力学非线性建模研究[D].杭州:浙江大学, 1998.
    [181]潘立.基于人椅系统三向振动的汽车平顺性建模与仿真[D].杭州:浙江工业大学, 2004.
    [182]石秀东,钱林方,李守成.随机和冲击载荷下悬架参数的优化[J].振动、测试与诊断, 2006, 26(2 ): 122~126.
    [183]张启应.非线性弹簧汽车悬架设计方法研究[D].上海:同济大学, 2003.
    [184]朱明.汽车半主动悬架系统的建模研究[D].重庆:重庆大学, 2004.
    [185] Hong S R, Wang G, Hu W, etal. An automotive suspension strut using compressible magnetorheological fluids[C].Smart Structures and Materials : Damping and Isolation Proceedings of SPIE Vol. 5760. 2005.
    [186] Seung B C, Lee H S, Hong S R, etal. Control and response characteristics of a magneto-rheological fluid damper for passenger vehicles[C].Smart Structures and Materials : Smart Structures and Integrated System Proceedings of SPIE Vol. 3985. 2000.
    [187]方卫国,师瑞峰.飞机方案多目标优化的Pareto遗传算法[J].北京航空航天大学学报, 2003, 29(8): 668~672.
    [188]唐云岚,赵青松,高妍方等. Pareto最优概念的多目标优化算法综述[J].计算机科学, 2008, 35(10): 25~27.
    [189]谢涛,陈火旺,康立山.多目标优化的演化算法[J].计算机学报, 2003, 26(8): 997~1003.
    [190] Deb K, Tiwar iS. Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization[J]. European Journal of Operational Research, 2008, 185(3): 1062~1087.
    [191] Deb K, Pratap A, Agarwal S. A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II[J]. IEEE TrANSACTIONS ON EVOUTION COMPUTATION, 2002, 6(2): 182~197.
    [192] Brintrup A M, Ramsden J, Tiwari A. An interactive genetic algorithm-based framework for handling qualitative criteria in design optimization[J]. Computers in Industry, 2007, (58): 279~291.
    [193] Lacomme P, Prins C, Sevaux M. A genetic algorithm for bi-objective capacitated arc routing problem[J]. Computers & Operation Research, 2006, 33: 3473~3493.
    [194]孟祥众,石秀华,杜向党.基于非支配排序遗传算法的振动主动控制优化方法[J].鱼雷技术, 2008, 16(4): 27~30.
    [195]孙悦年.联盟号飞船上的典型机构设计[J].航天器工程, 1994, 1(2): 28~32.
    [196]马宗诚.载人航天器返回舱的软着陆安全问题[J].返回与救生, 2003: 52~56.
    [197]杜汇良,黄世霖,张金换.航天飞船座椅着陆缓冲系统的力学模型[J].清华大学学报, 2004, 44(5): 717~720.
    [198] Sandy M S. Landing Characteristics of a Reentry Vehicle with a Passive Landing System for Impact Alleviation[R]. NASA/TND2035,USA, 1964.
    [199]谢燕,雷勇军,李道奎,周建平.缓冲座椅系统着陆冲击响应的研究与分析[J].中国空间科学技术, 2007, 27(6): 37~41.
    [200]成自龙,韩延方,曾文艺等.人体坐姿着陆冲击(+Gz)耐限区间的研究[J].航天医学与医学工程, 1997, 10(5): 340~343.
    [201] Fasanella E L. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules[R]. NASA No. 20080014175_2008013561,USA, 2008.
    [202] Carcaterra A, Ciappi E. Hydrodynamic shock of elastic structures impacting on the water: theory and experiments[J]. Journal of Sound and Vibration, 2004, 271(2): 411~439.
    [203]陈小庆,侯中喜,郭良民等.基于排挤机制改进的多目标进化算法[J].国防科技大学学报, 2006, 28(4): 18~21.
    [204]汪建晓,孟光.磁流变液装置及其在机械工程中的应用[J].机械强度, 2001, 23(1): 50~56.
    [205] Aslam M, Yao X L, Deng Z C. Review of magnetorheological (MR) fluids and its applications in vibration control[J]. Journal of Marine Science and Application, 2006, 5(3): 17~29.
    [206] Pan G Y, Hiroshi M, Yoshihisa H. Analytical Model of a Magnetorheological Damper and Its Application to the Vibration Control[J]. IEEE, 2000, No. 0-7803-6456-2: 1851~1855.
    [207] Ma X Q, Rakheja S, Su C Y. Relative Assessments of Current Dependent Models for Magneto-Rheological Fluid Dampers[J]. IEEE, 2006, No.1-4244-0065-1/06: 510~515.
    [208]刘晓燕,杨邵普,申永军.基于磁流变阻尼器的汽车悬架控制研究[J].振动与冲击, 2007, 26(5): 130~132.
    [209]李韶华,杨邵普.采用改进Bingham模型的非线性汽车悬架的主共振[J].振动与冲击, 2006, 25(4): 109~111.
    [210] James A. N. Behavior of Magneto-Rheological Fluids Subject to Impact and Shock Loading[D]. Blacksburg, Virginia: Virginia Polytechnic Institute and State University, 2003.
    [211]李延成.冲击载荷下磁流变缓冲器半主动控制研究[D].南京:南京理工大学, 2007.
    [212] Yao G Z, Yap F F, Chen G. MR damper and its application for semi-active control of vehicle suspension system[J]. Mechatronics, 2002, (12): 963~973.
    [213] Norio I, Katsuhiko H, Hiroshi S, Etal. Application of MR damper to base-isolated structures[C].Smart Structures and Materials Proceedings of SPIE Vol.4696:352~362. 2002.
    [214]李韶华,杨邵普,李皓玉.基于ADAMS-MATLAB联合仿真的汽车悬架半主动控制[J].系统仿真学报, 2007, 19(10): 2304~2307.
    [215] James A N, Mehdi A. Behavior of magneto-theological fluids subject to impact and shock loading[C].IMECE.(42891):1~5. 2003.
    [216]谢燕,李道奎,雷勇军,唐国金.新型双向缓冲飞船座椅及其性能研究[J].振动工程学报, 2009, 22(6): 571~575.
    [217]陈同祥,娄汉文,吴国庭等.神舟飞船结构与机构分系统研制及飞行结果评价[J].航天器工程, 2004, l3(1): 72~81.
    [218]温景林,丁桦,曹富荣.有色金挤压与拉拔技术[M].北京:化学工业出版社, 2007.
    [219]胡念军,林大为.圆管扩径力的解析[J].锻压技术, 2006, (2): 32~34.
    [220]汪大年.金属塑性成形原理[M].北京:机械工业出版社, 1982.
    [221]许文斌,葛培琪,张鹏顺.薄壁管压入扩径成形力的计算[J].锻压技术, 1996, (3): 19~21.
    [222]俞汉清,陈金德.金属塑性成形原理[M].北京:机械工业出版社, 2005.
    [223]惠媛媛,唐文亭,袁中岳.圆环在平板间镦粗变形规律的数值模拟[J].铸造设备研究, 2005, (1): 34~36.
    [224]贾玉玺,赵振铎,赵国群.测定高接触压力下的摩擦系数的新型液压试验装置[J].锻压机械, 2000, (1): 20~21.
    [225]郭正华,李志刚,黄重九等.塑性成形过程摩擦测试的研究进展[J].塑性工程学报, 2004, 11: 1~6.
    [226]韩强,赵振铎,贾玉玺,王丽君.板料成形摩擦系数测试方法[J].航空制造技术, 2002, (11): 65~67.
    [227]沈洁,陈润斋,朱昌琳.固体膜润滑剂在飞船机构中的应用研究[J].航空材料学报, 2006, 26(3): 193~196.
    [228]林治平.在锻压条件下测定塑性变形摩擦系数-关于圆环镦粗法应用的研究[J].南昌大学学报(工科版), 1979, (4): 51~65.
    [229]王礼立,胡时胜.铝合金LF6R和纯铝L4R在高应变率下的动态应力应变关系[J].固体力学学报, 1986, (2): 163~166.
    [230]高玉华.铝合金LC4和LY12CZ在高应变率拉伸和压缩下的本构关系[J].材料科学与工艺, 1994, 2(2): 24~29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700