用户名: 密码: 验证码:
微磨料浆体射流的流体特性及其抛光模具钢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微磨料浆体射流抛光技术是在磨料水射流加工技术基础上发展起来的集流体力学、表面技术于一体的一种新型精密加工技术。其具有切削力低、无热变形、无污染、材料利用率高、几乎能抛光所有的材料和几何形状等优点,特别是在微小复杂曲面零件的精密抛光等方面,具有其它传统技术无可比拟的灵活性。目前国内外对微磨料浆体射流抛光技术只进行了一些探索性实验研究,还没有形成系统的理论体系。本文研究的微磨料浆体射流抛光技术结合了射流抛光技术和非牛顿流体技术的特点,利用添加高聚物聚丙烯酰胺(PAM)对射流束产生集束稳定作用,提出利用非牛顿流体的低压微磨料浆体射流对复杂精密金属模具局部实现可控切除量的精密抛光加工基础理论问题和加工工艺。采用理论、实验与计算机仿真相结合的研究方法,以高速摄影、冲击力测量、扫描电镜为手段研究了在普通微磨料水射流中加入高分子长链聚合物包覆微磨料和用流态化理论来混合浆体与微磨料来改善浆体的射流特性;采用计算流体力学和理论推导研究了微磨料浆体射流形成过程中浆体和磨粒的动力学特性、喷嘴的效率及系统能量传输效率;采用有限元分析研究微磨粒冲蚀工件的材料去除机理和工件材料的应力、应变分布规律及工件材料的等效塑性应变的影响因素:实现用微磨料浆体射流抛光40CrMnMo7模具钢。本文主要研究内容如下:
     (1)流化混合时,流化床混合罐内微磨粒在流化床中心位置上升,而在流化床沿壁的环形区下降,这个上升和下降的反向零点速度发生在无因次半径的0.6~0.7的位置范围内。反向零点的无因次半径位置的值随着浆体粘度和磨料粒径的增加而增加。流化床内沿着高度径向方向的浆体速度和浓度断面呈现抛物线形状。
     (2)在射流压力分别为0.6MPa,1.2MPa和1.8MPa的压力下,用计算流体力学(CFD)仿真喷嘴出口的浆体最大速度分别为34.2m/s,48.4m/s和59.3m/s。CFD模型预测射流速度无论在趋势上还是数值上都能很好地符合实验数据和理论公式得出的数据。喷嘴出口到大气的一段时间内,动压、浆体速度继续增大,当在一定距离处达到最大的动压和速度后,动压和速度开始线性递减,然会非线性递减。磨料浆体射流的加工应用区域是速度常数和线性递减的区域。在微磨料浆体射流过程中,磨粒首先被加速直到接近浆体相的速度,当浆体和磨粒在集中管同时推进时,浆体保持一个比磨料高的加速度,从出口到大气,浆体相开始减速,由于磨粒和浆体存在相对速度,磨粒继续以较低的加速度加速,直到与浆体相速度达到一致。磨粒和浆体的滑移速度随着离出口越远而减少,直到滑移速度收敛到零。
     (3)纯水射流、磨料浆体射流和加入高聚物的磨料浆体射流对Cr40MnMo7工件材料的冲击力信号的密集程度、峰值大小依次为添高聚物磨料浆体、磨料浆体、纯水射流。微磨料浆体射流与纯水射流的冲击力约相差20%。随着射流压力增大,喷嘴效率会降低,射流冲击力与水力能量之比也会降低,可通过射流冲击力与水力能量之比来评估喷嘴效率和优化喷嘴的结构。
     (4)磨粒撞击工件的最大残余应力、最大应力与撞击速度呈线性关系,冲蚀率与撞击角度呈类似抛物线关系。在75°撞击角度出现一个冲蚀应力的峰值,在55°左右出现应变的峰值。经过3个粒子冲击后体积去除率保持稳定。带尖角的磨粒形状对冲击工件点冲击导致较大的应力和材料去除率。当冲击角小于15°时的小角度冲击工件时,浅的耕犁和粒子的卷边是主要的冲蚀方式,当冲击角大于15°小于750时,材料的冲蚀方式主要是微切削和深犁耕,当以冲击角大于75°小于90°时,则主要是以凹坑和隆起对材料去除起作用。入射角度在30°~60°之间时,材料去除量随着入射角度的增大而增大,当入射角在60°到75°范围内时,材料去除量达到最大,然后在750~90°范围内,材料去除量又随着入射角度的增大而逐渐减少。
     (5)微磨料浆体射流抛光40CrMnMo7模具钢表面较微磨料水射流抛光时,磨粒对工件的嵌入少,定点较大材料的去除抛光较喷嘴有一定移动速度的较少材料的去除抛光嵌入工件表面的磨粒相对较多。长链高聚物聚丙烯酰胺(PAM)的加入,磨料浆体射流抛光特性在过渡面陡峭切痕较深,在较小喷射距离的范围内,添加高聚物的磨料射流对材料的切除深度是普通磨料水射流的1.5-2倍,但在较大的喷射距离范围内(通常大于40mm),去除深度存在明显的差异;添加高聚物#2000SiC磨料颗粒对工件抛光45min,工件表面粗糙度能够达到Ra=0.049μm。微磨料浆体射流抛光,微磨粒适宜的使用周期是连续循环使用一次。
With the development of abrasive water jet machining technology, micro-abrasive slurry jet polishing technology is proposed. It is a new type of precision processing technology which is combined the set of fluid mechanics with surface technology. Micro-abrasive slurry jet polishing technology is high flexibile compared with other traditional machining techniques due to its characterization of low cutting force, no heat distortion, non-polluting, high material utilization ratio and polishing workpieces with almost all of the materials and geometry shapes, especially the small complex surface parts. Currently, it is only carried out some exploratory experimental study on the micro-abrasive slurry jet polishing technology in our country and abroad, and there is no theoretical system. In this paper, it is proposed that complex precision metal molds is polisheded partially and cutting amount is controllable by polishing basic theory and machining technology of micro-abrasive slurry jet, which is combined jet polishing technology and low pressure characteristics of non-Newtonian fluid. At the same time, polyacrylamide (PAM) polymer added into slurry can stabilize the jet beam and have effect of cluster. Long-chain polymers are added into micro-abrasive water jet and mixed with water in the fluidized bed to improve the properties of the slurry jet It is also studied the dynamics of slurry and abrasive particles motion, nozzle efficiency and system energy transfer efficiency, material removal mechanism of micro-abrasive particles erosion into the workpiece, effect factors analysis of stress and strain and equivalent plastic strain during the process of polishing mold steel 40CrMnMo7 with micro-abrasive slurry jet. The paper uses the research methods combined theory with experiment and computer simulation. The results are characterized by high-speed photography, impact measurement, scanning electron microscopy and three-dimensional surface morphology. Main researches and conclusions are described as follows:
     When micro-abrasive particles are mixed with water and the slurry is fluided in the mixing tank as the fluidized bed, they are raised in center position of the fluidized bed and decreased in the annular region near the wall. The rise and fall positions of the reverse zero point velocity are in the range of 0.6-0.7 times of non-dimensional radius, which is increased with the increasing of slurry viscosity and abrasive particle size. The slurry velocity and cross-section concentration distribution is parabolic along the radial direction of the fluidized bed.
     Established a micro-abrasive slurry jet computational fluid dynamics (CFD) model, The maximum slurry velocity in the nozzle exit is simulated respectively as 34.2,48.4, 59.3m/s under the condition of jet pressure 0.6,1.2 and 1.8MPa based on FLUENT analysis software. Simulation and experimental results and theoretical calculation results are in good agreement. With the increasing of jet distance from nozzle exit to the atmosphere, the dynamic pressure and slurry velocity increases continuously, up to the maximum, then linearly decreases, then is non-linear decline. The machining application region of micro-abrasive slurry jet is the region where the velocity keeps constant and linearly decreases. In the process of micro-abrasive slurry jet, abrasive particles is firstly accelerated until its velocity is close to the slurry velocity, then the slurry maintains a higher acceleration than abrasive particles when they are advancd simultaneously in the concentration tube, finally the slurry begins to slow and abrasive particles continues lower acceleration until the both velocity reaches the same when they are advanced from nozzle exit to the atmosphere. The slip velocity of slurry and abrasive particles is decreasing with farther away from the exit, until they converge to zero.
     By measuring impact on the workpiece of Cr40MnMo7 materials and nozzle efficiency of different jet parameters, the maxium signal intensity and peak size of impact force is abrasive slurry jet added polymer, next abrasive slurry jet, then pure water jet, and the difference of impact force between micro-abrasive slurry jet and pure water jet is about 20%. Similarly, one can conclude that with jet pressure increasing, the nozzle efficiency will reduce, the ratio of jet impact force and hydraulic energy will reduce, too. The impact force calculated theoretically is 20 percent larger than that measured actually. Therefore, the nozzle efficiency is evaluated by the ratio of jet impact force and hydraulic energy, and the nozzle structure is also optimized by it.
     As for the research of materials erosion processes and erosion mechanisms, we researched the effect factors like impact velocity, impact angle, shape and number of abrasive paticles, etc. After the workpiece is impacted with abrasive particles, the relationship between maximum residual stress and maximum stress and impact velocity is linear, the erosion rate and impact angle is similar parabolic relationship, erosion stress peaks in a 75°impact angle, strain peaks at 55°, the volume removal rate remains stable with three particles, the stress and material removal rate is greater with abrasive particles with sharp corner shape. When the impact angle is less than 15°, erosion mechanism of the workpiece is shallow plowing and particle curling, it is mainly micro-cutting and deep plowing when the impact angle is greater than 15°and less than 75°, there are material pits and uplifts removal work when the impact angle is greater than 75°and less than 90°. The material removal amount is increasing when the incident angle increase from 30°to 60°, until reaches the maximum at 60°~75°, then is reducing with the increasing of the incident angle from 75°~90°.
     Compared micro-abrasive slurry jet polishing 40CrMnMo7 mold steel surface with micro-abrasive water jet polishing, the former is embedded less abrasive particles into the workpiece. It is embedded more abrasive particles into the workpiece with the larger material removal polishing with fixed point than that of relatively less materials with a slip velocity of nozzle. The abrasive slurry jet polishing added long-chain polymer PAM is different characteristic with different jet distance. The steep cutting depth is deeper in the transition region. The depth of material removal is 1.5-2 times than ordinary abrasive water jet in the range of smaller jet distance, but it is obvious different in the range of larger jet distance (typically greater than 40mm). The surface roughness Ra of the workpiece reaches 0.049μm after it has been polished 45 minuters with #200040CrMnMo7 abrasive jet added polymer. In micro-abrasive slurry jet polishing, micro-abrasive particles can be reused, the suitable recycling is a continuous loop cycle.
引文
[1]C. Y. Wang, M. D. Chen, P. X. Yang, et al.. Hole machining of glass by micro abrasive suspension Jets[J]. Key Eng Mater2009,389-390:381-386.
    [2]D. S. Miller. Micromachining with abrasive waterjets[J]. Journal of Materials Processing Technology,2004,149:37-42.
    [3]T. Nguyen, D. K. Shanmugam and J. Wang. Effect of liquid properties on the stability of an abrasive waterjet[J]. International Journal of Machine Tools & Manufacture, 2008,48:1138-1147.
    [4]Fluid additives for improving high velocity jet cutting[C]. NC Franz. Proceedings 1st Symposium on Jet Cutting Technology, Conventry 1972 93-105.
    [5]朱派龙.高压水射流切割机理与关键技术的研究[D].大连理工大学,1998.
    [6]武利生,李元宗.磨料流加工研究进展[J].金刚石与磨料磨具工程,2001,45(1):69-74.
    [7]阎秋生.微磨料气射流加工的原理和应用[J].新技术新工艺,2004,(4):20-22.
    [8]阎秋生,张自强,唐延辉.磨料喷射微细加工应用基础研究一喷嘴设计加工试验[J].金刚石与磨料磨具工程,2002,(128):19-21.
    [9]M. Aehtsniek, P. F. Geelhoed. A. M. Hoogstrate, et al.. Modelling and evaluation of the micro abrasive biasting process[J]. Wear.2005,259(1-6):84-94.
    [10]L. Zhang, T. Kuriyagawa, Y. Yasutomi, et al.. Investigation into micro abrasive intermittent jet machining [J]. International Journal of Machine Tools & Manufaeture,2005,45:873-879.
    [11]邱燕飞.微磨料空气射流三维微细结构加工研究[D].广东工业大学大学,2009.
    [12]樊晶明.微磨料气射流加工理论研究[D].广东工业大学大学,2009.
    [13]J. Wang. Abrasive Waterjet Machining of Polymer Matrix Composites-Cutting Performance, Erosive Process and Predictive Models[J]. The International Journal of advanced manufacturing technology,1999,15:757-768.
    [14]D. K. Shanmugam, T. Nguyen, J. Wang. A study of delamination on graphite/epoxy composites in abrasive waterjet machining [J].2008, Part A 39:923-929.
    [15]M. A. Azmir and A.K. Ahsan. A study of abrasive waterjet machining process on glass/epoxy composite laminate[J]. Journal of Materials Processing Technology, 2009,209:6168-6173.
    [16]A. Akkurta, M. K. Kulekcib,U.Sekerc, et al.. Effect of feed rate on surface roughness in abrasive waterjet cutting applications [J]. Journal of Materials Processing Technology,2004,147:389-396.
    [17]M. Hashish. Pressure effects in abrasive waterjet(AWJ) machining[J]. Journal of engineering materials and technology,1989,111:221-281.
    [18]J. Rozario Jegaraj and N. Ramesh Babu. A strategy for efficient and quality cutting of materials with abrasive waterjets considering the variation in orifice and focusing nozzle diameter[J]. International Journal of Machine Tools & Manufacture,2005,45:1443-1450.
    [19]M. Nanduri, D. G. Taggart, T. J. Kim. The effects of system and geometric parameters on abrasive water jet nozzle wear[J]. International Journal of Machine Tools & Manufacture,2002,42:615-623.
    [20]M. Hashish. A Modeling Study of Metal Cutting with Abrasive water jets[J]. Journal of Engineering Materials and Technology,1984,106:88-100.
    [21]G. Fowler, I. R. Pashby and P. H. Shipway. The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6A14V[J]. Wear,2009,266: 613-620.
    [22]R. G. Wellmana and C. Allen. The effects of angle of impact and material properties on the erosion rates of ceramics[J]. Wear,1995,18 &187:117-122.
    [23]D. A. Axinte, D. S. Srinivasu, J. Billingham, et al.. Geometrical modelling of abrasive waterjet footprints:A study for 90° jet impact angle[J]. CIRP Annals-Manufacturing Technology,2010,59:341-346.
    [24]M. Kantha Babu, O. V. Krishnaiah Chetty. A study on the use of single mesh size abrasives in abrasive waterjet machining[J]. The International Journal of advanced manufacturing technology,2006,29:532-540.
    [25]M. Hashish and M. P. Du Plessis. Prediction equations relating high velocity jet cutting performance to standoff distance and multipasses[J]. Journal of Engineering for industry,1979,101:311-318.
    [26]A. Hascalik, U.Caydas, H. Giiriin. Effect of traverse speed on abrasive waterjet machining of Ti-6Al-4V alloy[J]. Materials and Design,2007,28:1953-1957.
    [27]D. K. Shanmugam, J. Wang and H. Liu. Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique[J]. International Journal of Machine Tools & Manufacture,2008,48:1527-1534.
    [28]J. Zeng. Mechanisms of brittle material erosion associated with high pressure abrasive waterjet processing—a modeling and application study[D]. University of Rhode Island,1992.
    [29]C. K. Huang, S. Chiovelli, P. Minev, et al.. A comprehensive phenomenological model for erosion of materials in jet flow[J].2008,187:273-279.
    [30]M. A. Azmir, A. K. Ahsan and A. Rahmah. Effect of abrasive water jet machining parameters on aramid fibre reinforced plastics composite[J]. The International Journal of Material Forming,2009,2:37-44.
    [31]M. A. Al-Bukhaiti, S. M. Ahmed, F.M.F. Badran, et al.. Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron[J]. Wear,2007,262:1187-1198.
    [32]R. S. Mohan, R. Kovacevic. Finite element modeling of crack propagation in pcc slabs slotted with abrasive waterjet[C].10th American waterjet conference, Hoston, Texas, USA (1999) 71-86.
    [33]程谟栋.微磨料水射流加工装置设计工艺研究[D].广东工业大学大学,2008.
    [34]Diamond M. Hashish. Film polishing with abrasive-liquid jets[J]. An Exploratory Study,1992,58:29-41.
    [35]Oliver W. Fahnle, Hedser V. Brug, Hans J. Frankena. Fluid jet polishing of optical surfaces[J]. Applied Optics,1998,37(28):6671-6673.
    [36]Y. P. Liao, C. Y. Wang, Y. N. Hu, et al.. The slurry for glass polishing by Micro Abrasive Suspension Jets[J]. Advanced Material Research,2009,69-70:322-327.
    [37]F. H. Zhang, X. Z. Song, Y. Zhang, et al.. Polishing of ultra smooth surface with nanoparticle colloid jet[J]. Key Engineering Materials,2009,404:143-148.
    [38]Y. F. Qiu, C. Y. Wang, J. Wang, et al.. Mask and unmasked machining of glass by micro abrasive jet[J]. Advanced Materials Research,2009,69-70:182-186.
    [39]R. G. H Tobben, S. D. F Kratz.The Use of power spectral density (PSD) to specify optical surfaces.SPIE.1996,2775:240-250。
    [40]G. Fowler. Abrasive water-jet controlled depth milling of Ti6A14V alloy-an investigation of the role of jet-workpiece traverse speed and abrasive grit size on the characteristics of the milled material[J]. Journal of Materials Processing Technology, 2005,161:407-414.
    [41]F. Boud, C. Carpenter, J. Folkes, et al.. Abrasive waterjet cutting of a titanium alloy: The influence of abrasive morphology and mechanical properties on workpiece grit embedment and cut quality [J]. Journal of Materials Processing Technology,2010, 210:2197-2205.
    [42]C. Burnham. Abrasive waterjets come of age[J]. Machine design,1990,10.
    [43]B. Ekkard, R. Oltmann and G. Alexander. Finishing of structured surfaces by abrasive polishing[J]. Precision Engineering,2006,30:325-336.
    [44]Henk Wensink and Miko C. Elwenspoek. A closer look at the ductile-brittle transition in solid particle erosion[J]. Wear,2002,253:1035-1043.
    [45]M. Hashish and M. P. Du Plessis. Prediction equations relating high velocity jet cutting performance to standoff distance and multipasses[J]. Journal of Engineering for Industry,1979,101,:311-318.
    [46]M. Hashish. An investigation of milling with abrasive water[J]. Journal of Engineering for Industry,1989,111:158-166.
    [47]S. Paul, A. M. Hoogstrate, C. A.van Luttervelt, et al.. Energy partitioning in elasto-plastic impact by sharp abrasive particles in the abrasive waterjet machining of brittle materials[J]. Journal of Materials Processing Technology,1998,73 200-205.
    [48]Oliver W. Fahnle, Hedsers V. Brug. Fluid jet polishing:Removal process analysis[J]. Proceedings of SPIE-The International Society for Optical Engineering,1999, 3739:68-77.
    [49]Silvia M. Booij, Hedsers V. Brug, Joseph J. M. Braat, et al.. Nanometer deep shaping with fluid jet polishing[J]. Optical Engineering,2002,41 (8):1926-1931.
    [50]Silvia M. Booij, Hedsers V. Brug, Singh Mandeep, et al.. Nanometer accurate shaping with Fluid Jet Polishing[J]. Proceedings of SPIE-The International Society for Optical Engineering.2001,4451:220-232.
    [51]Silvia M. Booij, Oliver W. Fanle and Joseph J. M. Braat. Shaping with fluid jet polishing by footprint optimization[J]. Applied Optics,2004,43 (1):67-69.
    [52]方慧,郭培基,余景池.液体喷射抛光材料去除机理的研究[J].光学技术,2004,30(2):248-250.
    [53]H. Fang, P. J. Guo and J. C. Yu. Surface roughness and material removal in fluid jet polishing[J]. Applied Optics,2006,45 (17):4012-4019.
    [54]M. Hashish. Material properties in abrasive waterjet machining[J]. Transaction of ASME,1995,117:578-583.
    [55]方慧,郭培基,余景池.液体喷射抛光技术材料去除机理的有限元分析[J].光学精密工程,2006,14(2):218-223.
    [56]A. C. M. Messelink, R. Waeger and K. C. Heiniger. Pre-polishing and finishing of optical surfaces using Fluid Jet Polishing[J]. Proceedings of SPIE-The International Society for Optical Engineering,2005,5869 1-6.
    [57]E. Lemma, L. Chen, E. Siores, et al.. Optimising the AWJ cutting process of ductile materials using nozzle oscillation technique[J]. International Journal of Machine Tools & Manufacture,2002,42:781-789.
    [58]. H.T Zhu. Study on Erosion Mechanisms and Polishing Technology of Hard-Brittle Materials Machined with Precision AWJ[D]. Shandong University Doctoral Dissertation,2007.
    [59]M. M. Chaudhri and S. M. Walley. A High-Speed Photographic Investigation of the Impact Damage in Soda-Lime and Borosilicate Glasses by Small Glass and Steel Spheres[J]. Symposium on the Fracture Mechanics of Ceramics,1978,349-364.
    [60]J. E. Ritter, P. Strzepa, K. Jakus, et al.. Erosion damage in glass and alumina[J]. Journal of the American ceramic society,67(11):769-774.
    [61]F. P. Bowden and J. E. Field. The Brittle Fracture of Solids by Liquid Impact, by Solid Impact, and by Shock[J]. Proceeding of the Royal Society of London,1964, 282,:331-352.
    [62]M. C. Konga. Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide[J]. Journal of Materials Processing Technology,2010, 210:573-584.
    [63]G. L. Sheldon and I. Finnie The mechanism of material removal in the erosive cutting brittle materials[J]. Journal of engineering for industry,1966,393-400.
    [64]F. C. Tsai, B. H. Yan, C. Y. Kuan, et al.. A Taguchi and experiment investigation into the optimal processing conditions for the abrasive jet polish of SKD61 mold steel [J]. International Journal of Machine Tools and Manufacture,2008,48 (7) 932-945.
    [65]B. H.Yan, F. C.Tsai, L. W. Sun, et al.. Abrasive jet polishing on SKD61 mold steel using SiC coated with Wax[J]. Journal of Materials Processing Tech.,2008,208 (1):318-329.
    [66]杨佩旋.微磨料浆体射流加工工艺研究[D].广东工业大学大学,2008.
    [67]廖艳培.微磨料浆体射流抛光加工工艺研究[D].广西大学,2009.
    [68]G. P. Tilly. Erosion caused by airborne particles[J]. Wear,1969,14:63-79.
    [69]D. J. O Flynn, M. S. Bingley, M. S. A Bradley, et al.. A Model to Predict the Solid Particle Erosion Rate of Metals and its Assessment Using Heat-Treated Steels[J]. Wear,2001,248:162-177.
    [70]G. P. Tilly. Erosion caused by airborne particles[J]. Wear,1969,23:87-96.
    [71]C. E. Smeltzer, M. E. Gulden and W. A. Compton. Mechanisms of Metal Removal by Impacting Dust Particles[J]. Journal of Basic Engineering,1970,639-654.
    [72]I. K. Ives and A. W. Ruff. Electron Microscopy Study of Erosion Damage by copper Erosion:Prevention and Useful Application[J]. American Society for Testing and Materials,1979,5-35.
    [73]I. Finnie. Erosion of surface by solid particles[J]. Wear,1960,3:87-103.
    [74]J. Bitter. A study of erosion phenomena[J]. Wear,1963,6:5-21.
    [75]I. M. Hutchings. Particle erosion of ductile metals:a mechanism of material removal[J]. Wear,1974,27:121.
    [76]A. A. Abdel-Rahman and A. A. El-Domiaty. Maximum depth of cut for ceramics using abrasive waterjet technique[J]. Wear,1998,218 (2):216-222.
    [77]S. Paul, A. M. Hoogstrate, C. A. V Luttervelt, et al.. Analytical and experimental modelling of the abrasive water jet cutting of ductile materials[J]. Journal of Materials Processing Technology,1998,73 (1-3):189-199.
    [78]I. Finnie. Tthe mechanism of erosion of ducyile metals[C]. Proceedings of the third national congress on applied mechanics, New York, USA, American society of mechanical engineers,958,527-532.
    [79]I. Finnie, D. H. McFadden. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence[J]. Wear,1978,48:181-190.
    [80]J. Bitter. A study of erosion phenomena[J]. Wear,1963,8:161-190.
    [81]M. Hashish. Modified model for erosion[C]. Seventh international conference on erosion by liquid and solid impact, Cambridge, England (1987) 461-480.
    [82]G. Sundararajan. A Comprehensive model for the particle erosion of ductile materials[J]. Wear,1991,149:111-127.
    [83]H. H. Shi, K. Takayama and N. Nagayasu. The measurement of impact pressure and solid surface response in liquidsolid impact up to hypersonic range[J]. Wear,1995, 186-187:352-359.
    [84]T. Decker. A model for the surface finish in abrasive-waterjet cutting[C]. In:Proc. 8th Int. Symp. on Jet Cutting Technology, Cranfield, UK,1986, pp.309-313.
    [85]R. Kovacevic. Monitoring the depth of abrasive waterjet penetration[J]. International Journal of Machine Tools and Manufactureint,1992,32:725-736.
    [86]A. W. Momber. The kinetic energy of wear particles generated by abrasive waterjet erosion[J]. Journal of Materials Processing Technology,1998,83:121-126.
    [87]A. W. Momber and R. Kovacevic. An energy balance of high-speed abrasive water jet erosion[J]. Proceedings of the Institution of Mechanical Engineers, Tribune, 1999,213:463-472.
    [88]A. I. Hassan, C. Chen and R. Kovacevic. On-line monitoring of depth of cut in AWJ cutting[J]. International Journal of Machine Tools & Manufacture,2004,44: 595-605.
    [89]R. Kovcevic, R. Mohan and Y. M. Zhang. Cutting force dynamics as a tool for surface profile monitoring in AWJ[J]. ASMJ J. Eng.Ind.,1995,117:340-350.
    [90]Z. H. Guo. Experimental and numerical analysis of abrasive waterjet drilling of brittle materials[D]. University of Washington,1998.
    [91]H. S. Saad. On the energy dissipation in abrasive waterjet cutting[D]. Washington state university,2004.
    [92]G. K. Sheldon, I. G. A Kanhere. An investigation of impingement erosion using single particles[J]. Wear,1972,21:195-209.
    [93]G. P. Tilly. A two stage mechanism of ductile erosion[J]. Wear,1973,23:87-96.
    [94]I. M. Hutching. A model for the erosion of metals by spherical particles at normal incidence [J]. Wear,1981,70:269-281.
    [95]A. Momber. A generalized abrasive waterjet cutting model[C]. Proceedings of the 8th American waterjet conference, Houstion, Texas,USA, (1995) 359-371.
    [96]J. Wang and W. C. K. Wong. A study of abrasive waterjet cutting of metallic coated sheet steels[J]. International Journal of Machine Tools & Manufacture,1999,39 855-870.
    [97]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2010.
    [98]韩占忠,王敬,兰小平.Fluent流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [99]周俊杰,徐国权,张华俊.Fluent工程技术与实例分析[M].北京:中国水利水电出版社,2010.
    [100]石亦平,周玉蓉.Abaqus有限元分析实例详解[M].北京:机械工业出版社,2010.
    [101]Fluent Inc.. Fluent 6.3 User's Guide[M]. Fluent Inc.,2003.
    [102]刘展,祖景平.Abaqus 6.6基础教程与实例详解[M].北京:中国水利水电出版社,2008.
    [103]Abaqus Analysis User's Manual Volume I Version 6.7[M]
    [104]刘广文.干燥设备设计手册[M].北京:机械工业出版社出版,2009.
    [105]M. Rahimi and A. Parvareh. Experimental and CFD investigation on mixing by a jet in a semi-industrial stirred tank[J]. Chem Eng J,2005,115:85-92.
    [106]S. Jayanti. Hydrodynamics of jet mixing in vessels[J]. Chem Eng Sci,2001,56: 193-210.
    [107]L. W. Adams and M. Barigou. CFD analysis of caverns and pseudo-caverns developed during mixing of non-newtonian fluids[J]. Trans IChemE, Part A, Chem Eng Res Des,2007,85 (A5):598-604.
    [108]R. Panneerselvam, S. Savithri, G. D. Surender. CFD based investigations on hydrodynamics and energy dissipation due to solid motion in liquid fluidised bed[J]. Chem Eng J,2007,132:159-171.
    [109]G. Micale, F. Grisafi, L. Rizzuti, et al.. CFD simulation of particle suspension height in stirred vessels[J]. Trans IChemE, Part A, Chem Eng Res Des,2004,82 (A9):1204-1213.
    [110]H. D. Zughbi and M. A. Rakib. Mixing in a fluid jet agitated tank:effects of jet angle and elevation and number of jets[J]. Chem Eng Sci,2004,59:829-842.
    [111]J. M. Fan, C. Y. Wang, J. Wang. Modeling the erosion rate in micro abrasive jet machining of glasses[J]. Wear,2009,266:968-974
    [112]H. T. Liu. Hole drilling with abrasive fluidjets[J]. The International Journal of advanced manufacturing technolog,2007,32:942-957.
    [113]M. Zaki, C. Corre, P. Kuszla, et al.. Numerical Simulation of the Abrasive WaterJet (AWJ) Machining:Multi-Fluid Solver Validation and Material Removal Model Presentation[J]. International Journal of Material Forming,2008,1403-1406.
    [114]王明波,工瑞和.喷嘴内液固两相射流流场的数值模拟[J].石油大学学报(自然科学版),29(5).
    [115]R. H. Wang and M. B. Wang. A two-fluid model of abrasive waterjet[J]. Journal of Materials Processing Technology,2010,210:190-196.
    [116]H. Liu, J. Wang, N. A. Kelson, et al.. A study of abrasive waterjet characteristics by CFD simulation[J]. Journal of Materials Processing Technology,2004, 153-154:488-493.
    [117]I. M. Hutchings, Tribology. Friction and Wear of Engineering Materials[M]. Edward Arnold, London,1992.
    [118]R. Brown, E. Jun and J. Edington. Mechanisms of solid particle erosive wear for 90° impact on copper and iron[J]. Wear,1982,74:143-156.
    [119]M. E. Gulden. Solid particle erosion of Si3N4 materials[J]. Wear,1981,69 115-129.
    [120]G. Sundararajan. The solid particle erosion of metals and alloys[J]. Trans. Indian Inst. Met.,1983,36 (6):474-495.
    [121]K. Shimizu, T. Noguchi, H. Seitoh, et al.. FEM analysis of the dependency on impact angle during erosive wear[J]. Wear,1999,233-235:157-159.
    [122]Y. Gachon, A. B. Vannes, G. Farges. Study of sand particle erosion of magnetron sputtered multilayer coatings[C]. In:Proceedings of the International Conference on Erosive and Abrasive Wear (ICEAW) and Ninth International Conference on Erosion by Liquid and Solid Impact (ELSIIX), Cambridge, UK,1998.
    [123]K. Schimizu, T. Noguchi and Y. Matubara. FEM analysis of erosive wear[J]. International Journal of Cast Metals Research,1999, (11) (6):515-520.
    [124]P. Gumbsch and R. M. Cannon. Atomic aspects of brittle fracture[J]. MRS Bull, 2000,25(5):15-20.
    [125]Q. Chen and D. Y. Li. Computer simulation of solid particle erosion[J]. Wear, 2003,254:203-210.
    [126]K. Maniadaki, T. Kestis, N. Bilalis, et al.. A finite element-based model for pure waterjet process simulation[J]. The International Journal of advanced manufacturing technology,2007,31:933-940.
    [127]T. Mabrouki, K. Raissi, A. Cornier. Numerical simulation and experimental study of the interaction between a pure high-velocity waterjet and targets:contribution to investigate the decoating process[J]. Wear,2000,239:260-273.
    [128]J. D. Kim and C. H. Moon. A Study on the Cutting Mechanism of Microcutting using Molecular Dynamics[J]. The International Journal of advanced manufacturing technology,1996,11:319-324.
    [129]K. Elalem and D. Y. Li. Dynamical simulation of an abrasive wear process[J]. Journal of Computer-Aided Materials Design,6:185-193.
    [130]D. Aquaro and E. Fontani, Erosion of ductile and brittle materials[J]. Meccanica, 2001,36:651-661.
    [131]B. E. Launder and D. B. Spalding. Lectures in Mathematical Models of Turbulence[C]. London, England:Academic Press,1972.
    [132]D. Gidaspow. Multiphase Flow and Fluidisation[M]. San Diego:Academic Press, 1994.
    [133]Y. Sato, M. Sadatomi and K. Sekoguchi. Momentum and heat transfer in twophase bubble flow [J]. International Journal of Multiphase Flow,1981,7:167-177.
    [134]R. Di Felice. The voidage functions for fluid-particle interaction system[J]. International Journal of Multiphase Flow,1994,20:153-159.
    [135]M. Syamlal and T. J. O'Brien. Simulation of granular layer inversion in liquid fluidised beds[J]. International Journal of Multiphase Flow,1988,14:473-481.
    [136]S. Limtrakul, J. Chen, P. Ramachandran, et al.. Solids motion and holdup profiles in liquid fluidised beds[J]. Chemical Engineering Science,2005,60:1909-1920.
    [137]徐寿昌.有机化学[M].北京:高等教育出版社,1981.
    [138]杨永印,工瑞和,周卫东.PAM对磨料浆体射流速度的影响规律研究[J].石油钻探技术,2001,29(1):4-6.
    [139]M. Hashish. Pressure effects in abrasive waterjet (AWJ) machining[J]. Journal of engineering materials and technology,1989,111:221-228.
    [140]T. Mabrouki, K. Raissi and A. Cornier. Numerical simulation and experimental study of the interaction between a pure high-velocity waterjet and targets: contribution to investigate the decoating process[J]. Wear,2000,239:260-273.
    [141]S. A. Morsi and A. J. Alexander. An Investigation of Particle Trajectories in Two-Phase Flow Systems[J]. The Journal of Fluid Mechanics,1972,55 (2):193-208.
    [142]T. Belytschko, W. K. Liu, B. Moran. Nonlinear finite elements for continua and structures[M]. John Wiley,2001.
    [143]Andreas W. Momber. Measurements of the velocity of abrasive waterjet by the use of laser transit anemometer [J]. Experimental Thermal and Fluid Science,2001,25 (1-2):31-41.
    [144]G. R. Johnson and W. H. Cook. Fracture characteristics of three metals subjected to various strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics,1985,21 (1):31-48.
    [145]M. Meo and R. Vignevic. Finite element analysis of residual stress induced by shot peening process[J]. Advances in Engineering software,2003,34:569-575.
    [146]D. Tabor. The Hardness of Metals [M]. Clarendon press,1951.
    [147]M. Junkar, B. Jurisevic, M. Fajdiga, et al. Finite element analysis of single-particle impact in abrasive water jet machining[J]. International Journal of Impact Engineering,2006,32:1095-1112.
    [148]S. Yerramareddy and S. Bahadur. Effect of operational variables, microstructure and mechanical properties on the erosion of Ti-6A1-4V[J]. Wear,1991,142 253-263.
    [149]K. Shimizu, T. Noguchi, H. Seitoh, et al.. FEM analysis of erosive wear[J]. Wear, 2001,250:779-784.
    [150]D. Griffin, A. Daadbin, S. Datta. The development of a three-dimensional finite element model for solid particle erosion on an alumina scale/MA956 substrate[J]. Wear,2004,256:900-906.
    [151]Y. F. Wang and Z. G. Yang. Finite element model of erosive wear on ductile and brittle materials[J]. Wear,2008,265:871-878.
    [152]M. Takaffoli and M. Papini. Finite element analysis of single impacts of angular particles on ductile targets [J]. Wear,2009,267:144-151.
    [153]刘小健,俞涛.磨料浆体射流切割中添加剂的性能及试验研究[M].现代制造工程,2005.
    [154]M. Kantha Babu and O.V. Krishnaiah Chetty. A study on recycling of abrasives in abrasive water jet machining[J]. Wear,2003,254:763-773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700