用户名: 密码: 验证码:
激光熔覆钴基金属陶瓷复合层组织与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化装置的滑阀一般工作在700℃左右的高温环境下,受到高速的含催化剂固态颗粒气流的冲刷,由于工作环境恶劣,导轨、阀板等内部构件极易腐蚀磨损失效。通常采用热喷涂和堆焊技术强化和修复滑阀内部构件,存在着很大的局限性。
     本文采用5kW横流CO2激光器,在1Cr18Ni9Ti不锈钢表面分别制备了Stellite6钴基合金以及含有不同比例WC和适量Al的Stellite6/WC钴基金属陶瓷复合层。利用OM、SEM、XRD等手段分析了熔覆层的显微组织结构、相组成,观察了高温冲蚀后的表面形貌;采用电子探针线扫描技术,研究了结合区和熔覆层各合金元素的分布情况;对熔覆层的硬度、抗高温氧化和抗高温冲蚀性能进行了测试,并对高温氧化和冲蚀磨损机理进行了探讨。
     试验结果表明,激光熔覆层致密均匀,实现了与基体良好的冶金结合,无裂纹、气孔等缺陷。熔覆层的主要组成为γ-Co(面心立方)过饱和固溶体以及碳化物CoCx、Co6W6C、Cr23C6和WC1-x;显微组织为大体上垂直于界面生长的平面晶和胞状晶,向熔池中部过渡为多方向生长的树枝晶区,近表面为平行于激光扫描速度方向生长的细小枝晶区。熔覆层具有很高的硬度,约为基体的2-3倍,而且随WC加入量的增加表面硬度逐渐提高。
     在700℃高温条件下,钴基合金和添加10%WC(2%Al)钴基合金熔覆层的抗高温氧化性能均比基体优异,其氧化增重约为基体的一半。钴基合金熔覆层具有良好的抗高温氧化性能,在于Co能有效地促进Cr2O3、CoO?Cr2O3的形成,而这一氧化膜致密稳定,并且CoO与Cr2O3间较强的结合键增强了膜的致密性。添加10%WC(2%Al)使熔覆层中Co和Cr元素的含量在一定程度上有所降低,但为消除气孔而加入的Al可以形成一定数量的Al2O3膜,因此其氧化增重速度与钴基合金熔覆层大体相当。
     700℃、90°攻角下,钴基合金和添加10%WC(2%Al)的钴基合金熔覆层的抗高温冲蚀磨损性能均比基体优异,添加10%WC(2%Al)的熔覆层性能最好,钴基合金熔覆层次之。钴基合金熔覆层的冲蚀机制以犁削脱落为主,伴随挤压后的片屑剥落;添加10%WC(2%Al)的激光熔覆层以挤压后的片屑剥落为主。分析认为,对于钴基合金和添加10%WC(2%Al)熔覆层,由于致密保护膜的存在,有效地降低了底材金属受到的冲击力,使试样具有较低的冲蚀率。添加20%WC(2%Al)熔覆层,由于疏松的氧化膜在磨粒的冲蚀下大面积剥落,保护作用失效,故冲蚀率很高。
     在Stellite6钴基合金中添加10%WC(2%Al),采用适宜的激光加工工艺参数制备的钴基金属陶瓷复合层具有比Stellite6钴基合金熔覆层更为优异的性能,而且可以减少钴基合金的使用量,具有很大的工业应用价值,为激光熔覆钴基金属陶瓷在滑阀内部构件上的应用提供了理论依据。
Slide valves of catalysis fitting were worked in high temperature (about 700℃) flue gas with catalyst particles. Guides and valve plate of which were usually failure in the severe enviroment. The internals were often strengthened or repaired by hot spraying or surfacing technology, which had a lot of advantags and some insurmountable disadvantages.
     5kW laser with CO2 flow transverse was used for cladding Stellite6/WC powder on 1Cr18Ni9Ti stainless steel surface. The appropriate selection of the process parameters can obtain defect-free fine micro-structures. By means of SEM, TEM and EDAX, the effect of cladding technology on the microstructures of the laser cladding coatings were studied.
     The result indicated that the microstructures of the laser cladding layers were fine and defect-free and good metallurgical bonding between the coating and the substrate was obtained. The results showed that microstructures of the coating consisted of plane, cellular and dendrite, and the coating has higher hardness which was about 2-3 times of the matrix. When adding appropriate amount of Al with low melting point into the Stellite6/WC powder, the porosities disappeared in argon protecting. The microstructure at the cladding layer bottom was the typical extension growth on plane basis, the morphology of grains changed from planar and cell to dendritic which was coarser. The microstructure at the top and middle was the regular pine-tree crystal and the microstructure at the top was the small pine-tree crystal, respectively. In the guarantee of the forming of the metallurgical combination between coating and substrate, increasing scanning speed or decreasing power density properly would profit the refinement of the coating structure. So the laser cladding process of Co-based composite metal ceramic can improve the performance of stainless steel.
     High-temperature oxidation tests were researched at 700℃. Oxidation test results at high temperature showed that the high-temperature oxidation resistances of the Stellite6 and the Stellite6 with 10%WC(2%Al) layers were better than the matrix.
     The erosion-corrosion wastage of coatings and the matrix at 700℃was researched with 90°impact angle. As compared with the matrix, the erosion-corrosion resistances at elevated temperature of Stellite6 and Stellite6 with 10%WC(2%Al) coatings were higher. Especially, the Stellite6 with 10%WC(2%Al) coating presents the best erosion-corrosion resistance.
引文
[1] C. L. Sexton. Alloy development by laser cladding[J]. Journal of Laser Applications, 2001, 13(2): 64-72
    [2] Y. S. Tian, C. Z. Chen, S. T. Li, Q. H. Huo. Research progress on laser surface modification of titanium alloys[J]. Applied Surface Science, 2005, 242: 177-184
    [3]周笑薇,王小珍.激光加工技术一激光熔覆[J].现代物理知识, 2005, (4): 45-48
    [4] S. C. Zhang, J. Q. Yao. Study on the principle of laser cladding alloy design[J]. Laser & Optronics Progress, 2001, (11): 49-53
    [5]闰毓禾等.高功率激光加工及其应用[M].天津:天津科学技术出版社, 1992
    [6]李春彦,张松,康熠平等.综述激光熔覆材料的若干问题[J].激光杂志, 2002, 23(3): 5-9
    [7]朱润生.自熔合金粉末的研究[M].粉末冶金工业, 2000, 10(2): 7-14
    [8]戴华.气门密封面激光熔覆钴基合金层凝固组织特征及残余应力研究[D].武汉:武汉理工大学, 2002, 5
    [9] W. Cerr. Laser deposition of carbide-reinforced coatings[J]. Surface and Coatings, 1991, 49: 41-45
    [10] R. A. MCPHERSON. Review of microstructure and properties of plasma sprayed ceramic coationgs[J]. Surface and Coatings Technology, 1999, 39(40): 173-182
    [11]吴伟新,曾晓雁,朱蓓蒂.激光熔覆金属陶瓷技术概况[J].金属热处理, 1996, (4): 40-44
    [12]裴宇韬,欧阳家虎,雷廷权.激光熔覆金属陶瓷复合涂层中陶瓷相的行为[J].材料导报, 1995, (4): 60-66
    [13]魏仑,陈庆华,龙晋明,等.激光熔覆原位自生复相陶瓷颗粒增强涂层[J].激光技术, 2002, 4(26): 246-249
    [14]张维平,刘硕,邹龙江. TiB2-TiB/Fe金属陶瓷复合涂层原位合成及显微分析[J].大连理工大学学报, 2004, 44(6): 798-801
    [15]陈艳霞,钟敏霖,刘文今,等.激光送粉熔覆WC/Co硬质合金的气孔问题[J].材料热处理学报, 2002, 23(2): 49-54
    [16]李强,付涛,杨坤,等.激光熔覆镍基碳化钨金属陶瓷气孔问题研究[J].激光杂志, 2006, 27(3): 61-62
    [17]王忠珂,叶和清,许德胜,等.激光熔覆硬质合金涂层的组织结构与性能[J].激光技术, 2001, 25(4): 302-304
    [18]李安敏,许伯藩.激光熔覆碳化物/金属基复合涂层裂纹的产生与控制[J].材料导报, 2002, 8, 16(8): 27-29
    [19]许伯藩,史华忠,张细菊,等.双层预涂覆熔覆对激光熔覆层开裂性的研究[J].中国激光, 1998, 25(8): 763-767
    [20]傅戈雁,刘义伦,石世宏,等.激光熔覆层开裂行为的影响因素及控制方法[J].光学技术, 2000, 26(1): 84
    [21]吴萍,周昌炽,唐西南,等.激光合金化熔覆制备耐磨陶瓷梯度涂层[J].金属学报, 1994, 30(11): 508-512
    [22]祝柏林,胡木林,陈俐,等.激光熔覆层开裂问题的研究现状[J].金属热处理, 2000, (7): 1-4
    [23]郭伟,徐庆鸿,田锡唐.激光熔覆的研究发展状况[J].宇航材料工艺, 2003, (1): 1-8
    [24]钟敏霖,刘文今,陈艳霞.斯太立合金加WC激光熔覆[J].材料热处理学报, 2001, 22(2): 27-31
    [25]钟敏霖,刘文今. Stellite6+WC激光熔覆层微观组织的演变[J].金属学报, 2002, 5(38): 495-500
    [26]黄德群. 20号钢表面激光熔覆层的电子显微分析[J].中国激光, 1987, 14(7): 123-126
    [27]石世宏. 2Cr13不锈钢高压阀零件的激光涂敷[J].机械工艺师, 1999, (4):16-17
    [28]王存山,夏元良,李刚,等.宽带激光熔覆Ni基合金涂层结合区组织结构[J].应用激光, 2001, 21 (2 ): 88-90
    [29]张松,张春华,孙泰礼,等.激光熔覆钴基合金组织及其抗腐蚀性能[J].中国激光, 2001, 28(9): 860- 864
    [30] A. F. A. Hoadley, M. Rappaz. A thermal model of laser cladding by powder injection[J]. Metal, 1992, 10 (23B): 631-642
    [31]周尧和,胡壮麒,乔万奇.凝固技术[M].北京:机械工业出版社, 1998
    [32]李明喜,何宜柱,孙国雄. Ni基高温合金表面激光熔覆Co基合金的组织[J].焊接学报, 2002, 23(6): 17-21
    [33]曾大文,王毛球,谢长生. Co基合金激光熔敷层的局部组织特征[J].稀有金属材料与工程, 1998, 27(2): 87-91
    [34]黄卫东,毛志英,周尧和.改变热流方向对定向凝固条件下晶体生长方向的影响[J].金属学报, 1986, 5(22B): 240-241
    [35]杨森,黄卫东,刘文今.晶体取向对激光快凝重熔区组织形态的影响[J].金属学报, 2001, 37(6): 571-574
    [36]王家忻,黄积荣,林建生.金属的凝固及其控制[M].北京:机械工业出版社, 1983
    [37]陈伯蠡.焊接冶金原理[M].北京:清华大学出版社, 1991
    [38]于熙泓,佟百运,张恒华,等.快速熔凝过程中MC型碳化物的依附生长[J].机械工程材料, 1994, 18(4): 10-12
    [39] M. Suckling, C. Allen. Critical variables in high temperature erosive wear[J]. Wear, 1997, 203(4): 528-536
    [40]刘秀晨,安成强.金属腐蚀学[M].北京:国防工业出版社, 2002
    [41] S. Gustafsson. Thermal coatings as corrosion protection in boilers[J]. The Welding Institute of Canada, 1986: 19-28
    [42]张松,张春华,文効忠,等. 2Cr13钢表面激光熔覆Co基合金组织及其性能[J].稀有金属材料与工程, 2001, 30(3): 220-223
    [43]杨永强,田乃良.激光熔覆高温合金及其应用[J].中国激光, 1995, 22(8): 632-636
    [44]朱蓓蒂,彭英姿,陶曾毅,等. H13磨具钢表面激光熔覆钴基合金的研究[J].特殊钢, 1994, 15(5): 38-40
    [45]田洪志.耐高温、煤粉冲刷腐蚀材料研究[J].上海钢研, 2003, 9(2): 22-25
    [46]张清.金属磨损和金属耐磨材料手册[M].北京:冶金工业出版社, 1991
    [47]李诗卓,董祥林.材料的冲蚀磨损与微动磨损[M].北京:机械工业出版社, 1984
    [48] G. Sundararajan and Manish Roy. Solid particle erosion behaviour of metallic materials at room and elected temperatures[J]. Tribology International, 1997, 5(30): 339-359
    [49]马颖,任峻,李元东,等.冲蚀磨损研究的进展[J].兰州理工大学学报, 2005, 2, 31(1): 21-25
    [50]汤光平,黄文荣,杨家林.模具钢的激光熔覆组织和性能[J].四川大学学报(工程科学版), 2001, 33(5): 69-74
    [51] I. Finnie. Erosion of Surface by Solid Particles[J]. Wear, 1960, (3): 87
    [52] W. Guo, A. Kar. Interfacial instability and microstructure growth due to rapid solidification in laser processing[J]. Actamater, 1998, 46(10): 348-351
    [53] D. L′opez, J. P. Congote, J. R. Cano, A. Toro, A. P. Tschiptschin. Effect of particle velocity and impact angle on the corrosion–erosion of AISI 304 and AISI 420 stainless steels[J]. Wear, 2005, 2 (59): 118-124
    [54]陶锡麟,潘邻,夏春怀,等.激光熔覆用钴基合金粉末的研究[J].材料保护, 2002, 35(10): 28-29
    [55]王爱华,朱蓓蒂,陶曾毅,等.激光熔覆钴基合金提高小口径深孔阀门密封面高温磨损性能的研究[J].机械工程材料, 1994, 10, 18(5): 40-44
    [56]李有军.几种电厂用钢抗高温冲蚀性能研究[D].武汉:武汉水利电力大学, 2006, 1
    [57]田保红.高速电弧喷涂Fe3Al/WC复合涂层高温冲蚀行为研究[D].北京:中国科学院金属研究所, 2000
    [58] S. Chinnadurai and S. Bahadur. High-temperature erosion of Haynes and Waspaloy: effect of temperature and erosion mechanisms wear[J]. wear, 1995, 186: 299-305
    [59] D. J. Stephenson, J. R. Nicholls. Modeling the influence of surface oxidation on high temperature erosion[J]. Wear, 1995, 186: 11-27
    [60]邵荷生,曲敬信.摩擦与磨损[M].北京:煤炭工业出版社, 1992
    [61]姜晓霞,李诗卓,李曙.金属的腐蚀磨损[M].北京:化学工业出版社, 2003, 5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700