用户名: 密码: 验证码:
喹乙醇对中华鳖稚鳖的影响及其促生长机制的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验设计了0、25、50、100、200、400mg/kg六个喹乙醇水平,分别添加到蛋白水平为29.92%的中华鳖(Pelodiscus sinensis)稚鳖基础料中。通过生长实验和生化分析实验研究了喹乙醇对稚鳖(14.55±0.24g)摄食生长、饲料利用、各营养物质的消化吸收、身体营养组成、身体外部形态、内脏解剖特征、氮收支和能量收支的影响,探讨了喹乙醇对中华鳖的影响及其促生长机制,主要研究结果如下:
     1、喹乙醇对中华鳖稚鳖的摄食率、饲料转化率和蛋白质效率产生显著影响,在25-200mg/kg喹乙醇添加剂量范围内,随添加剂量的增大,摄食率显著降低,饲料转化率和蛋白质效率显著升高。
     2、喹乙醇对中华鳖稚鳖特定生长率的影响没有达到显著水平,但在25-200mg/kg喹乙醇添加剂量范围内,随添加剂量的增大,中华鳖稚鳖的特定生长率有升高趋势。
     3、喹乙醇显著影响了中华鳖稚鳖干物质表观消化率和蛋白质表观消化率,随喹乙醇添加剂量的增加,干物质和蛋白质的表观消化率逐步升高,在50mg/kg时达到最大值,此后又缓缓降低。
     4、喹乙醇对中华鳖稚鳖营养组成的影响没有达到显著水平,但有提高鳖体中粗灰分及降低鳖体中粗蛋白的趋势。同时显著影响了中华鳖的外部形态,使鳖体的体型偏扁。此外,喹乙醇对中华鳖稚鳖的胃壁有一定的损伤作用,而且在400mg/kg时胃壁损伤率较高。
     5、未添加喹乙醇的蛋白水平为29.92%试验料的氮收支模式为:
     100 C_N=18.21F_N+41.88U_N+39.91G_N
     加入喹乙醇后显著影响了粪氮和生长氮在摄入氮中的比例,粪氮占摄入氮比例的最小值出现在50mg/kg,而生长氮占摄入氮比例的最大值出现在200mg/kg,200mg/kg时的氮收支模式为:
     100 C_N=14.16F_N+39.90U_N+45.94G_N
     6、未添加喹乙醇的蛋白水平为29.92%试验料的能量收支模式为:
     100 C_e=27.01F_e+3.02U_e+42.95R_e+27.02G_e
     加入喹乙醇后显著影响了粪能和生长能在摄入能中的比例,同氮收支的变化一样,粪能占摄入能比例的最小值出现在50mg/kg,而生长能占摄入能比例的最大值出现在200mg/kg。此外,喹乙醇有降低中华鳖代谢能的趋势,而且喹乙醇添加剂量越大作用
    
    摘要
    越明显。20om留kg时的能量收支模式为:
     100 Ce== 21.88F。+2.88U。+42.78凡+32.46Ge
    通过对以上结果的分析讨论,可以得出如下结论:
     1、本实验条件下,哇乙醇对中华鳖稚鳖生长最明显的作用是提高了饲料的转化率,
    添加20Om叭g喳乙醇的稚鳖比未添加组饲料转化率提高了43.47%。喳乙醇主要是通过
    提高中华鳖稚鳖的消化吸收率来显著提高饲料的转化率。
     2、哇乙醇显著影响了稚鳖的氮收支和能量收支,生长氮和生长能分别在摄入氮和
    摄入能中比例的显著增加主要来自于粪氮和粪能的降低。哇乙醇促生长的能量学机制
    主要在于它显著降低了粪能在摄入能中的比例,其次是降低了中华鳌的代谢能。
    50mg瓜g的哇乙醇提高稚鳖消化吸收率的作用最显著,随哇乙醇添加剂量的加大则对代
    谢能的降低作用加强。
     3、从喳乙醇对稚鳖消化率、氮收支和能量收支的影响变化中可以看出,哇乙醇主
    要是以提高饲料消化吸收效率的机制来提高蛋白质和能量的沉积进而达到促进生长
    的目的。其次,哇乙醇对稚鳖的代谢率也有一定的降低作用。
     4、中华鳖稚鳌的品质并没有因饲料中加入喳乙醇而得到显著改善,相反,鳖体蛋
    白质的含量还有下降的趋势。高剂量哇乙醇对中华鳖稚鳖的胃壁有较重的损伤作用,
    给中华鳖的健康带来隐患。
     5、建议在实际生产中稚鳌阶段喳乙醇的使用量为50mg吨,幼鳖和成鳖要限制使用,
    同时积极开发替代哇乙醇的高效饲料添加剂。但正如抗生素的使用,在没有完全替代
    之前,可能在短期内还不能完全杜绝,因此,喳乙醇在水产动物的养殖中一定要严格
    控制使用量和使用期。此外,在开发替代哇乙醇的新型添加剂时要首先从能改善动物
    肠道菌群的组成与数量、提高消化率的角度去思考。例如开发有利于肠道菌群平衡
    的微生态制剂及能够发挥抗菌活性提高消化率的中草药添加剂。
In this study, Six experimental feed with the same protein level (29.92%) were formulated in different olaquindox levels (0 25 50 100 200 400mg/kg) and were fed to Chinese juvenile soft-shelled turtles (.Pelodiscus sinensis) (14.55+0.24g). The growth trial and the biochemical analysis trial were conducted to investigate the effects of olaquindox on feed consumption, growth, feed utilization, nutrient digestibility, body composition, figure feature, viscera feature, nitrogen budget and energy budget in juvenile turtles. The effects of olaquindox on Chinese juvenile soft-shelled turtle and the mechanism of promoting growth for olaquindox were studied, The main results were shown as the following:
    1. Feeding rate, feed conversion efficiency (FCE) and protein efficiency ratio (PER) were significantly affected by olaquindox. The feeding rate decreased with the increase in olaquindox levels at the range of 25 to 200mg/kg, but the FCE and PER increased with the increase in olaquindox levels.
    2. There was no significant difference observed in Specific growth rate (SGR), but SGR went up with the increasing in olaquindox levels at the range of 25 to 200mg/kg.
    3. The dry matter and protein digestibility increased with olaquindox level up to 50mg/kg respectively, then showed slight decrease. There were marked differences in both digestibilities.
    4. No significant difference was observed in body composition, but the crude ash (CA) content increased and the crude protein (CP) content decreased with increasing in olaquindox levels. Significant difference was shown in figure feature, there was a trend for turtle to be thin. Some hurts were observed in stomach wall, and the rate of harmed turtles became higher at the 200mg/kg olaquindox level.
    5. The nitrogen budget of turtle fed experimental diet (29.92%CP) with no olaquindox was as follow:
    100 CN= 18.21FN + 41.88UN +39.91Gn
    The ratios of faecal nitrogen to nitrogen intake and growth nitrogen to nitrogen intake were significantly affected by olaquindox. The minimum of the ratio of faecal nitrogen to nitrogen intake was at 50mg/kg olaquindox level, the maximum of the ratio of growth nitrogen to nitrogen intake was at 200mg/kg olaquindox level, and the nitrogen budget at
    
    
    200mg/kg olaquindox level was as follow:
    100 Cn= 14.16Fn + 39.90UN +45.94GN
    6. The energy budget of turtle fed experimental diet (29.92%CP) with no olaquindox was as follow:
    100 Ce= 27.01Fe + 3.02Ue + 42.95Re +27.02Ge
    The ratios of faecal energy to energy intake and growth energy to energy intake were significantly affected by olaquindox. The minimum of the ratio of faecal energy to energy intake was at 50mg/kg olaquindox level, the maximum of the ratio of growth energy to energy intake was at 200mg/kg olaquindox level. Furthermore, there was a tendency in metabolism energy to decrease with the increasing of olaquindox levels. The energy budget at 200mg/kg level was as follow.
    100 Ce= 21.88Fe + 2.88Ue + 42.78R* +32.46Ge
    These results were analyzed and argued, some conclusions were drawn as follows:
    1. In this trial, the significant effect of olaquindox on Chinese juvenile soft-shelled turtle was the increasing of FCE, the FCE at 200mg/kg olaquindox level has increased by 43.47% than that at 0mg/kg olaquindox level. Olaquindox has significantly improved the digestibility in Chinese juvenile soft-shelled turtle, so that the FCE increased.
    2. nitrogen budget and energy budget were significantly affected by olaquindox. the proportion of growth nitrogen to nitrogen intake and the proportion of growth energy to energy intake were mainly resulted from the decreasing of faecal nitrogen and faecal energy. The energetic mechanism of olaquindox promoting growth mainly lied in lowering the proportion of faecal energy to energy intake, the second mechanism was lowering metabolism energy. At 50mg/kg olaquindox level, the effect of increasing digestibility was significant, but the ability of decreasing metabolism energy was strengthened in higher olaquindox level.
    3. Seen from the changing te
引文
川崎义一著(蔡兆贵译).1986.甲鱼的习性和新的养殖法[M].湖南科技技术出版社.
    中华人民共和国农业部.2001.无公害食品 水产品中渔药残留限量(NY 5070-2001).中国标准出版社,北京.
    王风雷,李爱杰,景水才.1996.甲鱼对蛋白质、脂肪、糖及钙磷的适宜需求量[J].中国水产科学,3(2):34-40
    王盛伦,江兴龙,郑中其.1988.促生长剂对鲤鱼和罗非鱼幼鱼生长影响的初步研究[J].厦门水产学院学报,(2):1-5.
    王盛伦,黄永春,魏友海,周燕侠.1994.喹乙醇在草鱼、罗非鱼配合饲料中的应用[J].福建水产,(2):1-4.
    王渊源,刘金标.2001.鳖营养需求与配合饲料研究进展[J].中国饲料,(5):17-19
    王道尊,汤峥嵘,谭玉钧.1997.中华鳖生化组成的分析Ⅰ一般营养成分的含量及肌肉脂肪酸的组成[J].水生生物学报,21(4):299-305
    王道尊,汤峥嵘,谭玉钧.1998.中华鳖生化组成的分析Ⅱ背甲、肌肉中矿物元素的组成[J].水生生物学报,22(2):106-111
    王强,王敏.1996.甲鱼营养需求的研究现状及动向[J].广东饲料,(4):16-18
    王瑁,丘书院.2001.花尾胡椒鲷幼鱼内、外源性氮和总氮排泄率的研究[J].热带海洋学报,20(3):87-92
    戈峰.2002.现代生态学[M].科学出版社,P37-48
    文良印,李义,杨加琼,杨娟,汤承荣.1995.饲料中添加喹乙醇对建鲤的影响[J].淡水渔业,25(1):18-20.
    邓利,谢小军.2000.南方鲇的营养学研究:Ⅰ.人工饲料的消化率[J].水生生物学报,24(4):348-355
    印保林.1999.鳖与维生素E[J].饲料研究,(6):39
    白东清,龙良启,汤保贵,毛学英.1996a.中华鳖脂肪酶的初步研究[J].水利渔业,84(2):14-15
    白东清,龙良启,汤保贵,熊波.中华鳖消化器官组织蛋白酶的初步研究[J].华中农业大学学报,1996b,15(4):362-364
    龙良启,白东清,汤保贵,熊波.1996.中华鳖消化器官淀粉酶的初步研究[J].水利渔业,82(2):28-29
    占秀安,许梓荣,钱利纯.2000.中华鳖肉脂品质的研究[J].浙江大学报报,26(4):457-460
    叶金云,陈月英,沈智华.1992.喹乙醇添加量对一龄草鱼生长和成活率的影响[J].浙江水产学院学报,11(1):25~30.
    
    
    叶继丹,韩友文,卢彤岩,杨雨辉等.2003a.喹乙醇对鱼类毒性作用的研究 饲料中添加不同剂量喹乙醇对鲤鱼的生长及肠道菌群的影响[J].东北农业大学学报,34(2):165-170
    叶继丹,韩友文,杨雨辉,刘红柏等.2003b.喹乙醇对鲤耗氧率、红细胞数、红细胞比积及红细胞微核率的影响[J].大连水产学院学报,18(1):14-18
    艾庆辉.2002.南方鲇的营养学研究:饲料中大豆蛋白水平对消化率及摄食率的影响[J].水生生物学报,26(3):216-220
    包吉墅,刘春.1992.稚鳖的营养素需要量及饲料最适能量蛋白比[J].水产学报,6(4):365-371
    刘家寿,崔奕波,刘建康.1997.网箱养鱼对环境影响的研究进展[J].水生生物学报,21(2):174~184
    刘桂林,聂向庭,张福娥,刘栓桃.2000.甲鱼脂肪酸和微量元素含量的分析及其抗氧化作用研究[J].营养学报,22(4):325-327
    孙儒泳.2001.动物生态学原理(第三版).北京师范大学出版社.P60~62
    齐保中,孙书清,田宝旺,刘波.2000.喹乙醇对彭泽鲫增重及饲料利用的影响[J].水产科学,19(2):36~37.
    伍莉,陈鹏飞,罗绍禄,郑国江,刘洋.2002.不同添加剂对斑点叉尾鱼鮰肠道蛋白酶、淀粉酶活力的影响[J].饲料研究,1:4~7.
    农业部《渔业手册》编撰委员会.1998.渔药手册[M].中国科技出版社,北京,P195-196.
    李同洲,藏素敏,李德发.1999.饲用抗生素对仔猪肠道菌群及肠道物质代谢影响的研究[J].饲料研究,(5):3-5
    李同洲,藏素敏,李德发.2000.抗生素对漏管猪回肠菌群及养分消化影响的研究[J].中国畜牧杂志,36(2):21-23
    李祖华.1997.“鳖维康”鳖中药生长添加剂的应用研究[J].鱼类病害研究,19(1-2):63-69.
    李爱杰.1996.水产动物营养与饲料学.[M]中国农业出版社,P8-85
    李军,徐世宏,薛玉平.1998a.日粮水平对黑鲷幼鱼氮收支的影响[J].海洋与湖沼,29(4):369-373
    李军,徐长安,徐世宏,马道远,肖志忠.1998b.真鲷能量收支和氮与碳收支的初步研究[J].海洋科学,2:46-48
    李沫,蔡泽平.2002.不同食物对紫红鲷幼鱼的生长和氮排泄的影响[J].热带海洋学报,21(3):85-89
    汪开毓,耿毅,叶仕根,黄小丽.2003a.鲤慢性喹乙醇中毒的病理学和组织留[J].水产学报,27(1):75-81
    汪开毓,耿毅.2003b.鲤亚急性喹乙醇中毒的血液生化指标研究[J].水生生物学报,27(1):23-26
    
    
    库么梅,温小波,谭北平.1997.甲鱼饲料主要营养物质可消化性研究Ⅰ 0-4 月龄稚鳖饲料的消化率[J].湖北农学院学报,17(3):182-185
    麦康森.1986.对虾(Penaeus orientalis)对饵料蛋白质及氨基酸的消化率[J].山东海洋学院学报,16(4):45-33
    况莉,谢小军.2001.温度对饥饿状态下南方鲇幼鱼氨氮排泄的影响[J].西南师范大学学报(自然科学版),26(1):45~50
    吴遵霖,李蓓,江涛.1991.鳖用配合饲料正交实验[J].水利渔业,(4):7-9
    张乔.1995.饲料添加剂大全[M].北京工业大学出版社,北京,P198~199.
    张梁,周维禄.1998.喹乙醇对斑点叉尾鮰的促长作用[J].内陆水产,23(6):4~5.
    张兆琪,张美昭,李吉清,郑春波.1997,牙鲆鱼耗氧率、氮排泄率与体重及温度的关系[J].青岛海洋大学学报,27(4):483~489
    张阳军.2000.鳖饲料中VE的配伍研究[J].饲料及饲养试验.9:36-38
    张廷军,牛翠娟,孙儒泳.1996.中华鳖幼体能量转换的初步研究[J].生态学报,16(4):202-207
    张硕,董双林,王芳.1999.中国对虾氮收支的初步研究[J].海洋学报,21(6):81~86
    张轩杰,陈平.1997.中华鳖氨基酸组成的反相高效液相色谱分析[J].湖南师范大学自然科学学学报,20(1):72-76
    何瑞国,毛学英,王玉莲,马立保.2000.生长期中华鳖饲料适宜能量、蛋白质水平及必需氨基酸模式的研究[J].水产学报,24(1):46-51
    沈美芳,陈焕铨.1995.甲鱼对配合饲料消化率的研究[J].水产养殖,(5):22~23
    沈维华,张志强,蔡洪东.1995.喹乙醇对团头鲂鱼种生长影响的初步研究[J].粮食与饲料工业,4:23-24.
    沈晓民,刘永发,唐瑞英.1995.异育银鲫的蛋白质消化率研究[J].水产学报,19(1):52-57
    陈少莲,刘肖芳,苏泽古.1993.我国淡水优质革食性鱼类的营养和能量学研究Ⅱ.草鱼、团头鲂对七种水生高等植物的最大摄食量和消化率的测定[J].水生生物学报,17(1):1-12
    杨汝德,李明武,许燕滨.动物和人类的肠道菌群的形成及其意义[J].微生物学杂志,1998,18(1):52-55.
    杨振才,牛翠娟,孙儒泳.1999.中华鳖生物学研究进展[J].动物学杂志,34(6):41-44
    杨振才,李双安,安瑞永等.2003.中华鳖标准化生产技术.中国农业大学出版社[M],北京.
    杨国华,王继东,陈迪虎,张思华.1998.稚、幼鳖饲料3配方的研究[J].水产科技情报,25(2):50-56
    林仕梅,罗莉,叶元土等.1997.喹乙醇对草鱼耗氧率及组织转氨酶活力的影响[J].中国饲料,22:31~34。
    林鸿荣.1992.鳖用人工配合饲料实验研究[J].福建农学院学报,21(2):448-451
    
    
    周嗣泉.1999.鳖的营养与饲料[M].科学技术文献出版社.北京.
    周显青,牛翠娟,李庆芬,孙儒泳.1998.光照度对中华鳖稚鳖能量转换的影响[J].北京师范大学学报(自然科学版).34(2):248-251
    周显青,牛翠娟,李庆芬.1999.光周期对中华鳖稚鳖摄食生长和能量转换的影响[J].生态学报,19(3):383-387
    周洪琪,潘兆龙,李世钦,覃志彪.1999.摄食和温度对草鱼氮排泄影响的初步研究[J].上海水产大学,8(4):293-297
    线薇薇,朱鑫华.梭鱼标准代谢、内源氮排泄与体重和温度的关系[J].青岛海洋大学学报,32(3):368-374
    胡先勤,雷思佳,陈孝煊.2002.摄食水平对中华鳖幼鳖氮收支的影响[J].华中农业大学学报,21(5):462~465
    俞秀霞.2001.鱼类的氨氮排泄率及其毒害[J].中国水产,10:46-47
    俞峻云.1995.生长促进剂喹乙醇的药理作用及其复合制剂“牧乐素”实用价值[J].上海饲料,3(6):9-10
    郝玉江.2001.密度对中华鳖能量收支的影响.河北师范大学硕士学位论文.
    高永利,郝玉江,杨振才,杜利强,刘海热,贾艳菊.2002.低蛋白饲料添加肉毒碱养殖中华鳖试验研究[J].淡水渔业,32(2):38-40.
    徐士新,郑定.1992.喹乙醇蓄积毒性试验[J].中国兽药杂志,26(2):22-24.
    徐树宽.1991.喹乙醇[J].浙江畜牧兽医.(4):27
    徐家敏,李爱杰,楼伟风,吕道铮.1988.几种促生长剂对中国对虾生长效果的研究[J].海洋科学,(5):35-39.
    徐旭阳,曾训江.1991.甲鱼对蛋白质的最适需要量[J].饲料研究,114(5):7-9
    涂涝,黄勇军.1995.甲鱼配合饲料中蛋白质、脂肪以及醣类适宜含量初探[J].水产科技情报,22(1):17-20
    贾艳菊.2002.动植物蛋白比对中华鳖稚鳖能量和氮收支的影响.河北师范大学硕士研究生学位论文.
    耿毅,汪开毓.1999.喹乙醇在水产养殖上应慎用[J].水利渔业,19(6):25-26.
    耿毅,汪开毓.2000.动物喹乙醇中毒研究进展[J].畜禽业,121:30-32.
    耿毅,汪开毓.2002.鲤鱼喹乙醇亚急性中毒的病理学研究[J].水利渔业,22(1):44-46.
    钱国英.甲鱼对蛋白质的需求量及其消化利用[J].浙江大学学报,1995,21(5):547-550
    钱国英,朱秋华.2000.肉碱对幼鳖生长和酮体组成的影响[J].饲料研究,(1):7-10
    郭小权,胡国良,刘明生.2001.喹乙醇在养殖业中的应用及其应注意的问题[J].动物保健品信息,5:3~5.
    
    
    郭庆,任泽林,曾虹.1997.喹乙醇在水产养殖中的应用[J].中国饲料,5:27~28.
    曹随忠,张力,梁剑平,刘宗平.2001.喹噁啉-1,4-二氧化物类抗菌促生长剂特殊毒理学研究进展[J],动物医学进展,22(114):17~20.
    崔奕波.1989.鱼类生物能量学的理论与方法[J].水生生物学报,13(4):363-383
    崔奕波,王少梅,陈少莲.1993.饥饿状态下草鱼的代谢率和氨排泄率及其与体重的关系[J].水生生物学报,17(4):375-376
    崔奕波.1991a.摄食动物性饵料与摄食植物性饵料的草鱼幼鱼氮收支的比较[J].自然科学进展-国家重点实验室通讯.5:449-451
    崔奕波,刘健康,华俐.1991b.摄食水平和食物种类对金鱼生长及氮、磷排泄的影响[J].水生生物学报,15(3):200-206
    崔奕波,解绶启.1998.鱼类生长变异的生物能量学机制[J].中国科学院院刊,6:453-455.
    黄志梅,郦智佩.1999.肉碱对中华鳖饲养效果的影响[J].浙江畜牧兽医(3):39
    曾子建,李逐波,吴绪田,李兴斌.1993.喹乙醇在鲤鱼体内的药代动力学研究[J].四川农业大学学报,11(1):109-112.
    舒新华,肖克宇,金理等.1997.中华鳖消化器官数量形状发育研究[J].湖南农业大学学报,23(4):371-373
    董漓波,曾振灵,陈杖榴.1993.喹乙醇对鸡的毒性及组织药物浓度的研究[J].华南农业大学学报,14(4):53~58.
    谢小军,孙儒泳.1993.南方鲇的排粪量及消化率同日粮、体重和温度的关系[J].海洋与湖沼,24(6):627~632
    蔡春芳,宋学宏,潘兴法等.2002.几种抗病促生长剂对银鲫生长和免疫的影响[J].水利渔业,22(2):20~22.
    谭北平.中华鳖蛋白酶活性的初步研究[J].水利渔业,1997,89(2):18—19
    谭洪新,施正峰,朱学宝.1998.水生龟鳖类能量生态学研究进展[J].上海水产大学学报,7(3):238-244
    谭洪新,施正峰,朱学宝.1999.中华鳖幼鳖摄食能量收支及利用效率[J].水产学报,23(增刊):58-63
    Beamish F. W.H., Thomas E.. 1984. Effects of dietary protein and lipid on nitrogen losses in rainbow trout, Salmo gairdneri[J]. Aquaculture, (41): 359-371
    Becket K., Focken U.. 1995. Effect of feed supplementation with L-carnitine on growth,metabolism and body composition of carp(Cyprinus carpio L.)[J]. Aquaculture, 129(1-4): 341
    Birkett L.. 1969. The nitrogen balance in plaice, sole and perch[J]. J. Exp. Biol., 50: 375-386
    Boyce S. J.. 1999. Nitrogen excretion in the Antarctic plunderfish [J]. J. Fish Biol., 54: 72-81
    Brett J.R., Zala C.A.. 1975. Daily pattern of nitrogen excretion and oxygen consumption of sockeye
    
    salmon(Oncorhynchus nerka)under controlled conditions[J]. J. Fish Res. Board Can., 32:2479-2486
    Brett J.R., Groves T.D.D.. 1979. Physiological Energetics. In: Hoarws, Randal D L, Brett J Red.Fish Physiology, Vol. Ⅷ. New York. Academic Press, 279-352.
    Burel C., Person J., Gaumet F., et al. 1996. Effect of temperature on growth and metabolism in Juvenile turbot [J]. J. Fish Biol., 49: 678-692
    Calow P., Townsend C.R.. 1981. Ecology, energetics and evolution. In: Physiological Ecology: An evolutionary approach to resource use(Towsend C. R. and P. Calow, eds) Oxford, Blackwell: 3-19
    Carter G., Brafield A.E.. 1992.The bioenergetics of grass carp Ctenopharyngodon idella(Val.): the influence of body weight, ration, and dietary composition on nitrogenous excretion[J]. J. Fish Biol., (41): 533-543
    Cheng Zongjia J., Hardy Ronald W., Usry James L.. 2003. Plant protein ingredients with Lysine supplementation reduce dietary protein level in rainbow trout(Oncorhynchus mykiss) diets, and reduce ammonia nitrogen and soluble phosphorus excretion[J]. Aquaculture, 218(1-4): 553-565
    Corpet D.E.. 2000. Mechanism of antimicrobial growth promoters used in animal feed[J]. Revue de Medicine Veterinaire, 151(2): 99-104
    Cui Y., Wootton R. J. 1988. Bioenergetics of growth of a cyprind, Phoxinus phoxinus: the effect of ration, temperature and body size on food consumption, faecal production and nitrogenous excretion [J]. J. Fish Biol., 33:431-443
    De Silva S.S., Perera M.K.. 1984. Digestibility in Sarotheroodon niloticus fry: effects of dietary protein level and salinity with further observations on variability in diary digestibility[J]. Aquaculture, 38:293~306.
    Du Preez H.H., Cochroft A.C.. 1988. Nonfaecal losses of marine teleost, Lichia amia(Linnaeus, 1958), feeding on live southern mulletm, Niza richardsonii(Smith, 1846)[J]. Comp. Biochem. physiol. 90A: 63~70
    Durbin E.G., Durbin A.G., 1983, Energy and nitrogen budgets for Atlantic meanbaden, Brevoortia tyrannus, a filter-feeding panktivore[J]. Fish Bull NOAA, 8: 177-199
    Elliott J.M.. 1976. Energy losses in the waste products of brown trout(Salmon trutta L.) [J]. J. Anin .Ecol., 45: 561~580
    Engin K., Carter C.G. 2001. Ammonia and urea excretion rates of juvenile Australian short-finned eel(Anguilla australis australis)as influenced by dietary protein level[J]. Aquaculture, 94(1~2):23~136
    Food and Agriculture Organization of the United nations. 1991. Residues of some veterinary drugs in animals and foods[J]. FAO food and nutrition paper. 41(3):85-96
    Fournier V., Gouillou-Coustans M.F.,Métailler R., et. al.. 2003. Excess dietary arginine affects urea excretion but does not improve N utilization in rainbow trout Oncorhynchus mykiss and turbot Psetta
    
    maxima[J]. Aquaculture, 217(1-4): 559-576
    Hoar D.J.. 1979. Fish physiology, vol.8. New York: Academic Press: 279~352
    Gerking S. D.. 1971. Influence of rate of feeding and body weight on protein metabolism of bluegill sunfish [J]. Physiol Zool, 44:9-19
    Iwata K. 1970. Relationship between food and growth in young crucian carps, Carassius auratus cuvieri, as determined by the nitrogen balance[J]. Japanese Journal of Limnology, (31): 129-151
    James A F, Robert C S. 1992, Effect of temperature on diel ammonia excretion of fingerling walleye[J]. J. Fish Biol, 102: 115~126
    Jobling M.. 1981. Some effects of temperature, feeding and body weight on nitrogenous excretion in young plaice pleuronectes platessa L[J]. J. Fish Biol, 18: 87~96
    Jobling M.. 1993. Fish Ecophysiology. Bioenergetics: Feed Intake and Energy Partitioning. [M] London: Chapman and Hall, 1-44
    Chen J.C. & Kou C.T. 1996. Nitrogenous excretion in Macrobrachium rosenbergii at different pH levels[J]. Aquaculture, 144(1-3): 155-164
    Klumpp D. W., Von Westemhagen H.. 1986. Nitrogen balance in marine fish larvae: influence of developmental stage and prey density[J]. Mar. Biol., 93: 189-199
    Leung K.M.Y., Chu J.C.W., Wu R.S.S.. 1999. Effects of body weight, water temperature and ration size on ammonia excretion by the areolated gouper(Epinephelus areolatus)and mangrove snapper (Lutjanus argentimaculatus)[J]. Aquaculture, 170(3-4): 215-227
    Li D. F., Zang S.M., Li T.Z.,et.al. 2000. Effect of feed antibiotics on the performance and intestinal microflora of weanling pigs in China[J]. Asian-Australasian-Journal-of-Animal-Sciences. 13(11):1554-1560.
    Lyytiktinen T., Jobling M.. 1999. Effects of thermal regime on energy and nitrogen budgets of an early juvenile Arctic charr, Salvelinus alpinus, from Lake Inari[J]. Environmental Biology of Fishes, 54: 219-227
    Mathis N., Feidt C., Brun-Bellut J..2003. Influence of protein/energy ratio on carcass quality during the growing period of Eurasian perch(Perca fluviatilis)[J]. Aquaculture, 217(1-4):453-464
    Nuangsaeng B. & Boonyaratapalin M.. 2001. Protein requirement of juvenile soft-shelled turtle Trionyx sinensis Wiegmann[J]. Aquacuture Research, 32(suppl, 1): 106-111
    Ogino C., Chen M. S.. 1973. Protein nutrition in fish. 3. Apparent and truedigestibility of dietary protein by young carp[J]. Bull. Jpn. Soc. Sci. Fish. 39:649-651
    Rajamani M., Job S. V.. 1976. Food utilization by Tilipia mossambica(Peters): function on size[J].Hydobiologia, 50:71-74
    Rychly J.. 1980. Nitrogen balance in trout Ⅱ. Nitrogen excretion and retention after feeding diets
    
    with varying protein and carbonhydrate levels[J]. Aquaculture, 20: 343-350
    Saivitz J.. 1969. Effect of temperature and body weight on endogenous nitrogen excretion in the bluegill sunfish(Lepomis macrochirus)[J]. J. Fish Res. Board Can., 26:1813-1821
    Savitz J.. 1971. Nitrogen excretion and protein consumption of bluegill sunfish(Lepomis macrochirus). J. Fish Res. Board Can., 28: 449-451
    Savitz J., Albanese E., Evinger M. J., et. al. 1977. Effect of ration level on nitrogen excretion, nitrogen retention and efficiency of nitrogen urilization for growth in large mouth bass(Micropterus samonides)[J]. J. Fish Biol., 11: 185-192
    Schmitt André S.C., Uglow Roger E. 1996. Effects of temperature change rate on nitrogen effiuxes of Macrobrachium rosenbergii[J]. Aquaculture, 140(4): 373-381
    Truchlinski J.. 1980. Cytastatic and cytopathogenic effects of 1,4-dihydroxyquindoxaline and its devivatioxes on human fibroblast cell culture in vireo, Med Bows[J]. Mikrobid. 32(3): 221-227.
    Verbeeten B.E., Carter C.G., Purser G.J..1999. The combined effect of feeding time and ration on growth performance and nitrogen metabolism of greenback flounder[J]. Journal of Fish Biology. 55(6): 1328-1343
    Watanabe T.. 2002. Strategies for further development of aquatic feeds[J]. Fisheries science, 68(2): 0919-9268
    Whittaker R. S.. 1999. enengetics and diversity[J]. Nature, 401: 865-866
    Winberg G. G. 1960. Fisheries Research Board of Canada Translation Series 94. Ottawa: Byelorussian State University
    William H.D., Bodil S.N.. 1966. Excretion in fresh-water turtle(Pseudemys scripta)and desert tortoise(Gopherus agassizii)[J]. Am. J. Physiol. 210(1): 198-210
    Zhou X.Q., Niu C.J., Sun R.Y. et.al.. 2002. The effect of Vitamin C on the non-specific immune response of the juvenile soft-shelled turtle(Trionyx sinensis)[J]. Comparative Biochemistry and Physiology Part A 131: 917-922
    Yigit M., Yardim O., Koshio S.. 2002. The protein sparing effects of high lipid levels in diets for rainbow trout(Oncorhynchus mykiss, W. 1792)with special reference to reduction of total nitrogen excretion[J]. The Israeli Journal of Aquaculture, Banidgeh, 54(2): 79~88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700