用户名: 密码: 验证码:
碳/铝复合材料板带铸轧控制成型及力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维增强铝基复合材料轻质高强,在航空、航天、电子、汽车以及先进武器系统等领域得到了广泛应用。目前制备纤维增强铝基复合材料的方法有液态金属浸渍法、加压铸造法、扩散粘接法、粉末冶金法和超声波焊接法等。本论文提出了一种集液态浸渍、凝固和轧制于一体,浸润、凝固的同时承受轧制变形的碳纤维增强铝基复合材料板带铸轧控制成型方法,控制碳纤维与铝的结合状况,提高铝基复合材料板带的力学性能。
     1、碳纤维与铝液间的浸润性及界面结合强度是得到高性能复合材料的前提条件。表面镀镍的碳纤维可以有效提高碳纤维与金属液间的浸润性,而且可以避免高温状态下金属铝与碳纤维发生界面反应,生成脆性相。为此,对碳纤维表面镀镍和镀镍碳纤维在高温下的力学性能进行研究,探究镍层对碳纤维力学性能的影响规律。研究结果表明:表面镀镍处理对碳纤维束的抗拉强度影响很小,镀镍碳纤维束可以保持原有碳纤维束的高拉伸强度;高温状态下镀镍碳纤维与氧发生反应,形成蜂窝状结构,导致抗拉强度减小。因而在碳/铝复合材料制备过程中,采取吹惰性气体进行保护,以避免高温时碳纤维与氧直接接触。利用自行设计的实验装置,制备了碳纤维包覆铝基复合材料,其最大抗拉强度达到1200MPa。
     2、建立连续纤维与液态铝复合成型的多场耦合分析模型,探究铝液流动行为对纤维增强铝基复合材料成型过程的影响规律。首先,对镀镍碳纤维包覆铝基复合材料热型连铸过程进行数值模拟,得到拉坯速度和换热系数对热型连铸成型过程中铝液的温度场、凝固场和速度场的影响规律。结果表明:换热系数为4000W·m-2·K-1时,最大拉速为1.32m/min;当拉速为1.2m/min时,随着换热系数增大,同一点处的温度值逐渐下降,但当换热系数超过6000W·m-2·K-1时,温度下降的幅度变小。其次,对双向纤维增强铝基复合材料板带铸轧成型过程进行数值模拟,得到了拉速和换热系数对铝基复合材料板带铸轧成型过程的影响规律。结果表明:在铸轧区内,铝液温度快速下降,温度值快速达到固相线以下,流动速度变得很小;随着拉速增大,速度变化剧烈程度增大,铝液凝固速度变小,在同一点处的温度值增大,液相率增大;随着换热系数的增大,温度值逐渐减小,凝固速度加快,在同一点处的温度值逐渐减小,液相率逐渐降低。
     3、建立了单向纤维增强和双向纤维增强复合材料的单胞模型,采用均匀化方法分别对单向纤维增强和双向纤维增强复合材料的等效弹性性能进行预测。首先,对玻璃/环氧单向纤维增强复合材料等效弹性性能进行预测,并与现有的计算结果比较,验证了均匀化方法预测单向纤维增强复合材料等效弹性性能的正确性。其次,采用均匀化方法,对不同纤维含量的单向碳纤维增强铝基复合材料的等效弹性性能进行预测,并对NASA经验公式进行修正,得到单向碳纤维增强铝基复合材料等效弹性性能的预测公式。最后,将单向碳纤维增强铝基复合材料的等效弹性常数作为双向碳纤维增强铝基复合材料单胞中纤维束的材料参数,采用均匀化方法预测双向纤维增强铝基复合材料的等效弹性性能。结果表明:随着纤维体积含量的增大,横向拉伸模量逐渐增大,剪切模量逐渐减小。
Carbon fiber reinforced aluminum matrix composite(sCFRAMC), with thecharacteristics of light weight and high strength, have been widely used in thefields of aviation, aerospace, electronics, automobiles and advanced weaponsystems. At present, the preparation methods of fiber reinforced aluminummatrix composites include liquid metal impregnation method, pressure castingmethod, diffusion bonding method, powder metallurgy method and ultrasonicwelding method, etc.. A new controlled forming method is put forward. Itcombines the liquid dipping, solidification and rolling deformation, which canimprove the mechanical properties of aluminum matrix composite plate bycontrolling the binding condition between the carbon fiber and the aluminum.
     The infiltration and interfacial bonding strength between carbon fiber andaluminum liquid are the precondition of gaining high performance composites.Carbon fiber with Ni coating can not only improve effectively the infiltrationbetween carbon fiber and metal fluid, but also avoid producing brittle phase dueto interface reaction between aluminum liquid and carbon fiber. Therefore, thenickel-plated on the surface of carbon fiber and the mechanical properties ofnickel-plated carbon fiber under the condition of high temperature are studied toexplore the effect of Nickel lay on carbon fiber’mechanical properties. Theresults show that the effect of nickel-plated surface treatment on the tensilestrength of the carbon fiber bundle is small, and carbon fiber bundles withNi-coating can maintain their high tensile strength of carbon fiber bundles.Under the high temperature, the carbon fiber reacts with oxygen, and formhoneycomb structure, which gradually decreases the tensile strength. Thus, inthe preparation process of CFRAMC, the way of blowing inert gas is adopted toensure that carbon fiber is isolated from oxygen. Then, the unidirectionalCFRAMC is prepared at the self-designed experimental apparatus, and itsmaximum tensile strength is up to1200MPa.
     The multi-field coupling model of composite forming for continuous fiberand liquid aluminum is established to explore the effect of the flow behavior of liquid aluminum on fiber-reinforced aluminum matrix composites formingprocess. Firstly, the numerical simulations about heated mold continuous castingprocess of plated-nickel’ carbon fibers coated aluminum matrix have beenperformed. The effects of the casting speed and the heat transfer coefficient onthe temperature field, solidification field and velocity field of molten aluminumin the composites forming process are given. The results show when the heattransfer coefficient is4000W m-2K-1, the maximum casting speed is1.32m/min;at the casting speed of1.2m/min, the temperature decreases gradually at thesame point with the increase of the heat transfer coefficient, however, the changeof the temperature becomes smaller when the heat transfer coefficient exceeds6000W m-2K-1. Secondly, the numerical simulations about strip cast-rollingforming process of bi-directional fiber reinforced aluminum matrix compositeshave been performed. The effects of the casting speed and the heat transfercoefficient on strip cast-rolling forming process of aluminum matrix compositesare obtained. The results show that the temperature of the liquid aluminumdecreases rapidly, the temperature reaches quickly below the solid phasetemperature, and the flow velocity becomes small in the cast-rolling zone; withthe increase of the casting speed, the speed changes more violently, the rate ofsolidification of molten aluminum becomes small, and both the temperature andthe liquid phase ratio values increase gradually at the same point; with theincrease of the heat transfer coefficient, the temperature decreases gradually, therate of solidification of molten aluminum becomes faster, while the temperatureand the liquid phase ratio decrease gradually at the same point.
     A unit cell models are set up for unidirectional fiber reinforced(UDFR) andbi-directional fiber reinforced(BDFR) composites. The equivalent elasticproperties of UDFR and BDFR composites are predicted respectively byhomogenization method. Firstly, the equivalent elastic properties of glass/epoxyUDFR composites are predicted. Through comparing with existing calculationresults, the correctness of this homogenization method is verified. Secondly, byhomogenization method, equivalent elastic properties of UDFR aluminummatrix composites are also predicted. Through revising NASA empirical formula, the predicting formula of unidirectional CFRAMC are gained. Finally,taking UDFR aluminum matrix composites equivalent elastic constants as thematerial parameters of the fiber bundles in BDFR aluminum matrix composite,the equivalent elastic properties of BDFR aluminum matrix composites arepredicted by homogenization method. The results show that with the increase ofthe fiber volume content, the transverse tensile modulus increase gradually andthe shear modulus decrease gradually.
引文
[1]陶杰,赵玉涛,潘蕾.金属基复合材料制备新技术导论[M].化学工业出版社,2007
    [2]于化顺.金属基复合材料及其制备技术[M].化学工业出版社,2006
    [3]王玲,赵浩峰,蔚晓嘉.金属基复合材料及其浸渗制备的理论与实践[M].冶金工业出版社,2005
    [4] Libin Z., Jintao H. Metal matrix composites in China[J]. Journal of Materials ProcessingTechnology,1998,75(1):1-5
    [5]张玉龙,化工材料.先进复合材料制造技术手册[M].机械工业出版社,2003
    [6]杨锐,石南林,王玉敏,等. SiC纤维增强钛基复合材料研究进展[J].钛工业进展,2006,22(5):32-36
    [7]武高辉,张云鹤,陈国钦,等.碳纤维增强铝基复合材料及其构件的空间环境特性[J].载人航天,2012,18(1):73-76
    [8]李微微,沈彬,刘磊.短碳纤维表面电沉积球状铜层及其形成机制研究[J].稀有金属,2011,35(1):66-71
    [9]侯静强,张冠,解廷秀.碳纤维复合材料的界面改性技术[J].工程塑料应用,2010,38(4):85-88
    [10]高嵩,张文婷.碳纤维表面化学镀铜工艺研究[J].材料保护,2009,42(10):29-32
    [11]周洪,杨绍利.颗粒增强金属基复合材料铸造法制备技术[J].热加工工艺,2005,(7):58-60.
    [12]车剑飞,黄洁雯,杨娟.复合材料及其工程应用[M].机械工业出版社,2006
    [13]陈素玲,孙学杰.金属基复合材料的分类及制造技术研究进展[J].电焊机,2011,41(7):90-94
    [14]张荻,张国定,李志强.金属基复合材料的现状与发展趋势[J].中国材料进展,2010,29(4):1-6
    [15]王维威,解念锁.金属基复合材料的加工方法及应用[J].科技创新导报,2010,(029):64
    [16] Xiandong S., Chengping L., Zhuoxuan L., Liuzhang O.. The fabrication and properties ofparticle reinforced cast metal matrix composites[J]. Journal of materials processingtechnology,1997,63(1):426-431
    [17]彭超群.喷射成形技术[M].中南大学出版社,2004
    [18] Kong C., Soar R. Fabrication of metal–matrix composites and adaptive composites usingultrasonic consolidation process[J]. Materials Science and Engineering: A,2005,412(1):12-18
    [19]费良军,朱秀荣,童文俊,等.纤维增强铝基复合材料及其应用[J].特种铸造及有色合金,2009,(S1):150-152
    [20]凤仪,许少凡.纤维强化金属基复合材料及其应用[J].机械工程材料,1995,19(1):9-11
    [21]刘连涛,孙勇.纤维增强铝基复合材料研究进展[J].南方金属,2009,(6):1-4.
    [22]钟厉,韩西.纤维增强铝基复合材料研究进展[J].机械工程材料,2002,26(012):12-14
    [23]王祝堂.汽车铝基复合材料的制备与性能[J].轻合金加工技术,2012,40(1):1-11
    [24]王鹏,马乃恒,李险峰,王浩伟.原位合成铝基复合材料中颗粒沉降的研究[J].特种铸造及有色合金,2004,(2):30-32
    [25] Feng Y., Li Z. Preparation of BN contained Al-based alloys by pressureless infiltration[J].Matrials Science and Engineering,2004,22(3):337-340
    [26]朱和国,王恒志,孙强金,吴申庆. Al-TiO2-B系XD合成铝基复合材料的力学性能[J].材料科学与工程学报,2005,23(001):8-11
    [27]赵玉涛,戴起勋,陈刚.金属基复合材料[M].机械工业出版社,2007
    [28]黎阳,许云书.碳化硅纤维增强典型复合材料的制备工艺研究现状[J].材料导报,2007,21(11):434-437
    [29] Hajjari E., Divandari M., Mirhabibi A. The effect of applied pressure on fracture surfaceand tensile properties of nickel coated continuous carbon fiber reinforced aluminumcomposites fabricated by squeeze casting[J]. Materials&Design,2010,31(5):2381-2386
    [30] Daoud A. Microstructure and tensile properties of2014Al alloy reinforced withcontinuous carbon fibers manufactured by gas pressure infiltration[J]. Materials Science andEngineering: A,2005,391(1):114-120
    [31]许久海,徐志锋,王振军,余欢.连续纤维增强铝基复合材料制备技术研究进展[J].铸造技术,2010,31(12):1667-1670
    [32]张江涛.颗粒增强金属基复合材料动态力学性能的实验研究与数值模拟[D].武汉:武汉理工大学,2007
    [33]谭柱华.高体积分数金属基复合材料SiCp/2024Al动态力学性能研究[D].哈尔滨:哈尔滨工业大学2007
    [34]王浩伟,周聪,夏存娟,马乃恒,陈东.三维正交碳纤维增强铝基复合材料及其制备方法[P].中国专利:201110068847.X,2011.7
    [35]王文广.一种连续纤维增强金属基复合材料型材的制备方法[P].中国专利:201110253656.0,2011.12
    [36]陈刚,赵玉涛,邵阳.一种连续纤维增强金属基复合材料的制备方法[P].中国专利:201010588882.X,2011.4
    [37]林金保,崔小朝,马永忠,晋艳娟,张柱,马崇山.一种连续纤维增强金属基复合材料制备设备[P].中国专利:201210072358.6,2012.11
    [38]张贵锋,卿晶晶,徐明志,张建勋.大直径多道无针搅拌摩擦加工制备纤维增强金属基复合材料的方法[P].中国专利:201110237967.8,2011.8
    [39]武高辉,张云鹤,陈国钦,等.一种连续纤维增强金属基复合材料的补强方法[P].中国专利:200810064731.7,2008.12
    [40]王倩,刘桂武,郑开宏,李林,王娟,乔冠军.网络互穿型碳化硅陶瓷/铁基复合材料制备及其耐磨性能[J].硅酸盐学报,2012,40(4):493-497
    [41] Kang C., Kim Y., Lee S.. A coupled solidification analysis of materials and cooling rollerin direct rolling process[J]. Journal of materials processing technology,1997,66(1):277-286.
    [42] Miyazawa K., Szekely J.. A mathematical model of the splat cooling process using thetwin-roll technique[J]. Metallurgical and Materials Transactions A,1981,12(6):1047-1057.
    [43] Guthrie R., Tavares R.. Mathematical and physical modelling of steel flow andsolidification in twin-roll/horizontal belt thin-strip casting machines[J]. Applied MathematicalModelling,1998,22(11):851-872
    [44] Tavares R., Guthrie R.. Computational fluid dynamics applied to twin-roll casting[J].Canadian metallurgical quarterly,1998,37(3):241-250
    [45] Saxena A., Sahai Y. Modeling of fluid flow and heat transfer in twin-roll casting ofaluminum alloys[J]. Materials Transactions-JIM,2002,43(2):206-213
    [46]湛利华.铝合金连续铸轧过程流变行为研究及热-力耦合分析[D].长沙:中南大学,2005
    [47]崔小朝,史荣.变形体凝固传热焓式有限元数学模型与过程仿真[J].系统仿真学报,1997,9(4):29-34
    [48]崔小朝,刘才.拟流函数法分析铝板铸轧过程的流动状态[J].中国有色金属学报,2001,11(1):10-14
    [49] Kim W.S., Kim D.S., Kuznetsov A.. Simulation of coupled turbulent flow and heattransfer in the wedge-shaped pool of a twin-roll strip casting process[J]. International journalof heat and mass transfer,2000,43(20):3811-3822
    [50]金珠梅,郝冀成.双辊式薄带连续铸轧凝固终结点位置控制数学模型[J].中国有色金属学报,1998,8(2):694-695
    [51]金珠梅,赫冀成.广义流体的概念在金属流动凝固传热分析模型中的应用[J].计算物理,1999,16(4):409-413
    [52]杜艳平,杨建伟,梁爱生,孙斌煜.铸轧熔池内三维流场与温度场耦合数值模拟[J].特种铸造及有色合金,2004,(1):41-43
    [53]苗雨川,邸洪双.不锈钢薄带液态铸轧过程的数值模拟[J].塑性工程学报,2000,7(4):36-39
    [54]湛利华,钟掘,李晓谦,黄明辉.连续铸轧流变行为的物理模拟及其应力-应变关系的演变[J].中国有色金属学报,2005,14(12):1995-2002
    [55]莫亚武.连续铸轧过程中铝的凝固过程数值模拟[D].武汉:武汉大学2004
    [56]周英.连续铸轧熔体流场的物理与几何耦合规律与设计[D].长沙:中南大学2007
    [57]王新峰.机织复合材料多尺度渐进损伤研究[D].南京:南京航空航天大学,2007
    [58]郑晓霞,郑锡涛,缑林虎.多尺度方法在复合材料力学分析中的研究进展[J].力学进展,2010,40(1):41-56
    [59]杨庆生.复合材料细观结构力学与设计[M].中国铁道出版社,2000
    [60] Hershey A. The elasticity of an isotropic aggregate of anisotropic cubic crystals[J].Journal of applied mechanics,1954,21(3):226-240
    [61] Kerner E.. The elastic and thermo-elastic properties of composite media[J]. Proceedingsof the physical society. Section B,2002,69(8):808
    [62] Hill R.. A self-consistent mechanics of composite materials[J]. Journal of the Mechanicsand Physics of Solids,1965,13(4):213-222
    [63] Hashin Z., Shtrikman S. A variational approach to the theory of the elastic behaviour ofmultiphase materials[J]. Journal of the Mechanics and Physics of Solids,1963,11(2):127-140
    [64] Budiansky B. On the elastic moduli of some heterogeneous materials[J]. Journal of theMechanics and Physics of Solids,1965,13(4):223-227
    [65] Chou T.W., Nomura, S., Taya M.. A self-consistent approach to the elastic stiffness ofshort-fiber composites[J]. Journal of Composite Materials,1980,14(3):178-188
    [66] Christensen R.M.. A critical evaluation for a class of micro-mechanics models[J]. Journalof the Mechanics and Physics of Solids,1990,38(3):379-404
    [67] Mori T., Tanaka. K.. Average stress in matrix and average elastic energy of materials withmisfitting inclusions[J]. Acta metallurgica,1973,21(5):571-574
    [68] Benveniste Y.. A new approach to the application of Mori-Tanaka's theory in compositematerials[J]. Mechanics of materials,1987,6(2):147-157
    [69] Zhao Y., Weng G.. Effective elastic moduli of ribbon-reinforced composites[J]. Journal ofapplied mechanics,1990,57(1):158-167
    [70]赵秀阳.复合材料三维重构及力学性能的有限元数值分析[D].济南:山东大学2006
    [71]袁辉.碳/碳复合材料刚度与强度预测模型研究[D].南京:南京航空航天大学,2009
    [72] Piat R., Reznik B., Schnack E., Gerthsen, D. Modeling of effective material properties ofpyrolytic carbon with different texture degrees by homogenization method[J]. Compositesscience and technology,2004,64(13):2015-2020
    [73] Piat R., Schnack E.. Hierarchical material modeling of carbon/carbon composites[J].Carbon,2003,41(11):2121-2129
    [74]王新峰,周光明,周储伟,王鑫伟.基于周期性边界条件的机织复合材料多尺度分析[J].南京航空航天大学学报,2005,37(6):730-735
    [75]周储伟,张音旋.三维机织复合材料多尺度黏弹性分析[J].复合材料学报,2007,24(5):125-129
    [76] Paley M., Aboudi J.. Micromechanical analysis of composites by the generalized cellsmodel[J]. Mechanics of Materials,1992,14(2):127-139
    [77] Ghosh S., Lee K., Moorthy S.. Multiple scale analysis of heterogeneous elastic structuresusing homogenization theory and Voronoi cell finite element method[J]. International Journalof Solids and Structures,1995,32(1):27-62
    [78] Fish J., Shek K., Pandheeradi M., Shephard M.S.. Computational plasticity for compositestructures based on mathematical homogenization: theory and practice[J]. Computer Methodsin Applied Mechanics and Engineering,1997,148(1):53-73.
    [79] Papanicolau G., Bensoussan A., Lions J.L.. Asymptotic analysis for periodicstructures[M]. North Holland,1978
    [80] Sánchez-Palencia E.. Non-homogeneous media and vibration theory[A]. InNon-homogeneous media and vibration theory[C],1980
    [81] Guedes J., Kikuchi N. Preprocessing and postprocessing for materials based on thehomogenization method with adaptive finite element methods[J]. Computer methods inapplied mechanics and engineering,1990,83(2):143-198
    [82] Hassani B., Hinton E.. A review of homogenization and topology optimizationI—homogenization theory for media with periodic structure[J]. Computers&Structures,1998,69(6):707-717
    [83] Hassani B., Hinton E.. A review of homogenization and topology opimizationII—analytical and numerical solution of homogenization equations[J]. Computers&structures,1998,69(6):719-738
    [84] Hassani B., Hinton E.. A review of homogenization and topology optimizationIII—topology optimization using optimality criteria[J]. Computers&structures,1998,69(6):739-756
    [85] Wojnar R.. Homogenization in viscoelasticity and thermal effects[J]. Reports onMathematical Physics,1993,33(1):283-294
    [86] Maghous S., Creus G.. Periodic homogenization in thermoviscoelasticity: case ofmultilayered media with ageing[J]. International journal of solids and structures,2003,40(4):851-870
    [87] Fish J., Shek K.. Computational plasticity and viscoplasticity for composite materials andstructures[J]. Composites Part B: Engineering,1998,29(5):613-619
    [88] Wu X., Ohno N.. A homogenization theory for time-dependent nonlinear composites withperiodic internal structures[J]. International journal of solids and structures,1999,36(33):4991-5012
    [89] Ohno N., Matsuda T., Wu, X. A homogenization theory for elastic–viscoplasticcomposites with point symmetry of internal distributions[J]. International journal of solidsand structures,2001,38(16):2867-2878
    [90] Okada H., Fukui Y., Kumazawa N.. Homogenization method for heterogeneous materialbased on boundary element method[J]. Computers&Structures,2001,79(20):1987-2007
    [91] Souza F., Allen D., Kim, Y.R.. Multiscale model for predicting damage evolution incomposites due to impact loading[J]. Composites science and technology,2008,68(13):2624-2634
    [92]潘燕环,嵇醒.复合材料中的渐近均匀化方法[J].上海力学,1997,8(4):290-297
    [93]潘燕环,嵇醒.单向复合材料损伤刚度的双重均匀化方法[J].同济大学学报:自然科学版,1997,25(6):623-628
    [94]曹礼群,崔俊芝.复合材料拟周期结构的均匀化方法[J].计算数学,1999,21(3):331-334
    [95]崔俊芝,曹礼群.具有小周期孔隙复合材料弹性结构的双尺度有限元分析[J].系统科学与工程,2000,20(2):217-223
    [96]王飞,庄守兵,虞吉林.用均匀化理论分析蜂窝结构的等效弹性参数[J].力学学报,2002,34(6):914-923
    [97]张洪武,王鲲鹏.弹塑性复合材料多尺度计算的模型与算法研究[J].复合材料学报,2003,20(1)
    [98]张洪武,王鲲鹏.材料非线性微-宏观分析的多尺度方法研究[J].力学学报,2004,36(3):359-363
    [99]张洪武,张盛,郭旭,毕金英.周期性材料非经典热传导时空间多尺度分析方法[J].复合材料学报,2004,21(6):143-148
    [100]马宁,刘书田.复合材料粘弹性本构关系与热应力松弛规律研究Ⅱ:数值分析[J].复合材料学报,2005,22(1):158-163
    [101]刘书田,马宁.复合材料粘弹性本构关系与热应力松弛规律研究Ⅰ:理论分析[J].复合材料学报,2005,22(1):152-157
    [102]刘涛,邓子辰.材料弹塑性性能数值模拟的多尺度方法[J].固体力学学报,2007,28(1):97-101
    [103]宋士仓,崔俊芝.小周期型复合材料稳态热传导问题的一种双尺度渐近展开收敛性分析[J].数学物理学报:A辑,2007,27(4):682-687
    [104]陈秉智,顾元宪,刘书田.松质骨弹性模量计算的均匀化方法[J].应用力学学报,2002,19(2):70-75
    [105]常崇义.复合材料粘弹性性能预测的多尺度算法与数值模拟[D].大连:大连理工大学2003
    [106]刘书田,陈晓霞,常崇义.复合材料弹性性能尺度效应[J].大连理工大学学报,2004,44(2):200-205
    [107]侯善芹,刘书田.颗粒增强复合材料弹性性能的统计特征分析[J].科学技术与工程,2008,8(15):4078-4082
    [108]侯善芹.复合材料宏观性能的统计特征分析[D].大连:大连理工大学2006
    [109]谢桂兰,张平,曹尉南,安小军.基于均匀化方法的颗粒增韧增强聚合物基复合材料有效性能预测[J].湘潭大学自然科学学报,2005,27(1):55-60
    [110]刘文辉,张新明,张淳源.微观结构对复合材料弹性有效性能的影响[J].工程力学,2005,22(1):16-19
    [111]阎军,程耿东,刘书田,刘岭.周期性点阵类桁架材料等效弹性性能预测及尺度效应[J].固体力学学报,2005,26(4):421-428
    [112]刘岭,阎军,程耿东.二维类桁架材料结构弹塑性分析[J].力学学报,2007,39(1):54-62
    [113]庄守兵,吴长春,冯淼林,袁振.基于均匀化方法的多孔材料细观力学特性数值研究[J].材料科学与工程,2001,19(4):9-13
    [114]王志华,曹晓卿,马宏伟,赵隆茂,杨桂通.基于均匀化理论的多孔材料细观力学特性数值研究[J].兵器材料科学与工程,2006,29(5):4-8
    [115] Kamiński M.. Multiscale homogenization of non-component composites withsemi-elliptical random interface defects[J]. International Journal of Solids and Structures,2005,42(11):3571-3590
    [116] Benseddiq N., Belayachi N., Na t Abdelaziz M.. Multiscale approach to the behaviourand damage of the heterogeneous elastic–viscoplastic materials[J]. Theoretical and appliedfracture mechanics,2006,46(1):15-25
    [117] Kamiński M., Kleiber M.. Perturbation based stochastic finite element method forhomogenization of two-phase elastic composites[J]. Computers&Structures,2000,78(6):811-826
    [118] Sakata S., Ashida F., Kojima T., Zako M.. Three-dimensional stochastic analysis using aperturbation-based homogenization method for elastic properties of composite materialconsidering microscopic uncertainty[J]. International Journal of Solids and Structures,2008,45(3):894-907
    [119] Sakata S., Ashida F., Kojima T.. Stochastic homogenization analysis on elasticproperties of fiber reinforced composites using the equivalent inclusion method andperturbation method[J]. International Journal of Solids and Structures,2008,45(25):6553-6565
    [120]冯淼林,吴长春.三维均匀化方法预测编织复合材料等效弹性模量[J].材料科学与工程,2001,19(3):34-37
    [121]冯淼林,吴长春.基于三维均匀化方法的复合材料本构数值模拟[J].中国科学技术大学学报,2000,30(6):693-699
    [122]董纪伟.基于均匀化理论的三维编织复合材料宏细观力学性能的数值模拟[J].南京:南京航空航天大学,2007
    [123]董其伍,王哲,刘敏珊.渐进均匀化理论研究复合材料有效力学性能[J].材料科学与工程学报,2008,26(1):72-75
    [124]雷友锋,宋迎东,高德平.纤维增强金属基复合材料弹塑性行为分析[J].机械科学与技术,2003,22(6):982-986
    [125]雷友锋,宋迎东,高德平.纤维增强金属基复合材料细观几何结构对宏观弹性性能的影响[J].宇航材料工艺,2003,33(1):43-48
    [126]雷友锋.纤维增强金属基复合材料宏-细观统一本构模型及应用研究[D].南京:南京航空航天大学,2002
    [127]黄富华.周期性复合材料有效性能的均匀化计算[D].哈尔滨:哈尔滨工业大学,2010
    [128]黄富华,梁军,杜善义.均匀化方法的ABAQUS实现[J].哈尔滨工业大学学报,2010,42(3):389-392
    [129]张俊婷.双辊冷却低过热度浇铸结晶器内钢水流场温度场耦合数值模拟[D].太原:太原科技大学,2008
    [130]吴子牛.计算流体力学基本原理[M].科学出版社,2001
    [131]荆涛,铸造.凝固过程数值模拟[M].电子工业出版社,2002
    [132] Beck, J. Combined parameter and function estimation in heat transfer with applicationto contact conductance[J]. ASME Transactions Journal of Heat Transfer,1988,110:1046-1058
    [133] Snaith B., Probert S., O'Callaghan P.. Thermal resistances of pressed contacts[J].Applied energy,1986,22(1):31-84
    [134] Jarry P., Toitot D., Menet P.Y.. Thermo-mechanical modeling of3C roll casting ofalloys[J]. Light metals,1996:905-911
    [135] Bagshaw M.J., Hunt J.D., Jordan R.M. A steady state model for roll casting[A].Proceedings of the Third Conference on Modeling of Casting and Welding Processes,Engineering Foundation of AIME[C],1986;135-147
    [136] Xia Z., Zhou C., Yong Q., Wang X.. On selection of repeated unit cell model andapplication of unified periodic boundary conditions in micro-mechanical analysis ofcomposites[J]. International journal of solids and structures,2006,43(2):266-278
    [137] Xia Z., Zhang Y., Ellyin F.. A unified periodical boundary conditions for representativevolume elements of composites and applications[J]. International Journal of Solids andStructures,2003,40(8):1907-1921
    [138]宋广兴.基于均匀化理论非编织碳/碳复合材料力学性能数值研究[D].西安:西北工业大学2007
    [139]孙银银.基于力学模型的平纹织物结构研究[D].中原工学院,2010
    [140]董伟锋,肖军,李勇.维编织复合材料力学性能的有限元分析[J].材料科学与工程学报,2008,(5):657-661

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700