用户名: 密码: 验证码:
医用超细晶TiNbZrTaFe复合材料的粉末冶金制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti合金由于具有生物相容性好、综合力学性能优异、耐腐蚀能力强等特点,被广泛应用于生物医用植入材料。目前采用铸造法制备的第三代β型Ti合金尽管综合力学性能和生物相容性较好,但还是存在高熔点金属带来的晶粒粗大、成分偏析较大、弹性模量较高、耐磨性较差等缺点。此外,细晶材料由于具有更好的生物相容性也成为目前的研究热点。本论文的研究目标是采用粉末冶金法(机械合金化和放电等离子烧结)制备高强度、低模量的超细晶医用钛合金,为制备生物相容性和综合力学性能优异的生物医用材料提供一种新的方法。因此,本课题的开展具有重要的学术和应用意义。
     首先,在成分设计中,根据元素生物相容性初步筛选合金元素,通过“d电子理论”、“Inoue三原则”进一步筛选合金元素为Nb、Zr、Ta和Fe,选定合金成分为(Ti-35Nb-7Zr-5Ta,简称TNZT)100-xFex(x=0、2、6、10)。然后,采用“Miedema模型”分析计算了合金体系的非晶形成能力,并采用“团簇理论”对设计的合金成分的弹性模量大小进行预测,为后续采用非晶晶化法制备高强低模的医用钛合金提供充分的理论支持和指导。
     在机械合金化过程中,研究了Fe含量对合金体系非晶形成能力、热稳定性和晶化方式的影响。结果表明:合金的非晶形成能力随Fe含量的增加而增强。只有当x=10时,球磨终态粉末为纯非晶结构;当x=0时,球磨终态粉末为纯纳米晶;x=2和6时,球磨终态粉末为非晶/纳米晶复合结构。所有合成的非晶/纳米晶粉末均具有宽的过冷液相区Tx,说明合成的非晶/纳米晶粉末具有较高的热稳定性。Fe含量影响合金体系晶化激活能大小,从而影响其热稳定性。当x=10时,合金的晶化激活能大于x=6的晶化激活能。Fe含量对球磨终态粉末的晶化方式也有显著影响。当x=6时,其Avrami指数n平均值为2.5,对应的晶化生长机制为体扩散控制的三维晶核生长。当x=10时,其Avrami指数n平均值为2.0,对应的晶化生长机制为典型的体扩散控制的二维形核生长。球磨终态粉末晶化生长机制的不同影响着晶化析出相的种类。当x=6时,其晶化析出相为bcc β-Ti和bcc FeTi相;当x=10时,其晶化析出相为α-Ti、bcc β-Ti和bcc FeTi相。
     随后,采用放电等离子烧结法固结球磨粉末,制备了不同Fe含量的医用超细晶钛基复合材料。结果表明:Fe含量对制备的(TNZT)100-xFex(x=0、2、6、10)块体材料的力学性能产生了显著影响。仅当x=6时,块体材料具有显著塑性,当x=0、2、10时,块体材料无塑性。研究发现,力学性能的差异由块体材料的晶化析出相种类和微观结构所决定。当x=6时,合金显微结构为β-Ti基体包围FeTi的两相区,其断裂机理可以用“软硬模型”来解释。当烧结温度为1243K、烧结速率为290K/min、保温时间为5min时,超细晶(TNZT)94Fe6复合材料具有最好的综合力学性能,其屈服强度σy为2292MPa,断裂强度σmax为2531MPa,断裂应变εf为9.16%,其超声弹性模量E为53GPa,为目前文献报道的Ti-Nb-Zr合金体系中的极小值。
     研究了制备的高强低模超细晶(TNZT)94Fe6合金的耐摩擦磨损性能,并与目前市场常用的两种医用钛合金Ti-6Al-4V (TAV)和Ti-13Nb-13Zr (TNZ)进行了比较。三种钛合金中,超细晶(TNZT)94Fe6合金具有最好的耐摩擦磨损性能,TNZ合金最差。并比较了晶粒尺寸对超细晶(TNZT)94Fe6合金耐摩擦磨损性能的影响,结果表明晶粒尺寸越小,(TNZT)94Fe6合金的耐摩擦磨损性能越优异。
     研究了制备的高强低模超细晶(TNZT)94Fe6合金的耐腐蚀性能,并与目前市场常用的两种生物钛合金TAV和TNZ进行了比较。三种钛合金在模拟人体体液中的稳定性分别是(TNZT)94Fe6>TNZ>TAV。此外,晶粒尺寸也影响到超细晶(TNZT)94Fe6合金耐腐蚀性能,晶粒尺寸越大,其腐蚀倾向越大,腐蚀反应速度越慢。另外,对(TNZT)100-xFex(x=0、6、10)三种钛合金进行了细胞毒性实验,结果表明三种钛合金均为生物毒性I级,适合用作生物医用材料。
Because of their good biocompatibility, excellent mechanical properties and corrosionresistance, Ti alloys are widely used as biomedical materials. Though the third generation βtype Ti alloys prepared by casting method have good mechanical properties andbiocompatibility, they also possess shortcomings such as coarse grain, component segregationbrought by refractory metal, higher elastic modulus compared with human bone and poorwear resistance. Moreover, preparation of fine-grained biomaterials also becomes a researchfocus because of their better biocompatibility. The aim of the present study is to prepareultrafine-grained (UFG) biomedical titanium alloys with high strength and low modulus bypowder metallurgy (mechanical alloying (MA) and spark plasma sintering (SPS)). It canprovide a new method for preparation of biomedical materials. Therefore, this project hasimportant academic and application significance.
     As a first step, the alloying elements were selected preliminary according to elementsbiocompatibility. The chemical composition was selected as (Ti-35Nb-7Zr-5Ta)100-xFex(x=0、2、6、10) according to “d electronical theory”and “Inoue’s three principles”. Then,“MiedemaModel” was used to calculate glass forming ability (GFA) of designed alloys and “clustertheory” was used to predict chemical composition in order to find the alloy composition withlowest elastic modulus.
     During MA, the effect of Fe content on GFA, thermal stability and crystallizationmechanism was investigated. The result shows that the GFA of the alloys increases with theincreasing of Fe content. With the increased Fe content, the synthesized alloy powders afterthe steady state milling transform from full nanocrystalline structure for x=0to fullamorphous structure for x=10. The synthesized amorphous/nanocrystalline alloy powderspossess high thermal stability because they all show wide supercooled liquid region Tx.Moreover, the crystallization activation energy E is affected by Fe content, and thus theirthermal stability is affected. The crystallization activation energy E for x=10is bigger thanthat for x=6. The crystallization mechanism of milled powder is also affected by Fe content.The average Avrami exponent n are2.5and2.0for x=6and10, respectively. Thecrystallization mechanisms are typical volume diffusion-controlled three and two-dimensionalgrowth of nuclei for x=6and10, respectively. The different crystallization mechanisms ofmilled powder affect the species of crystallization precipitation phase. For x=6, thecrystallization precipitation phases are composed of β-Ti and FeTi. For x=10, the crystallization precipitation phase contain α-Ti, β-Ti and FeTi.
     Subsequently, biomedical UFG Ti-based composites with different Fe contents werefabricated by SPS method. The effect of Fe content on microstructure and mechanicalproperties of UFG bulk composites was investigated. The result shows Fe content affectsmechanical properties of consolidated bulk composites obviously. Only for x=6, the UFG bulkcomposites possess obvious plasticity. For x=0,2and10, the UFG bulk composites have noplasticity. The difference in mechanical properties of UFG bulk alloys is decided by species ofcrystallization precipitation phase and their microstructures. The microstructure is atwo-phase region consisting of FeTi phase surrounded by β-Ti matrix for x=6, and the fracturemechanism can be explained by the “soft-hard model”. The biomedical UFG (TNZT)94Fe6composite exhibits high strength and low modulus. The UFG bulk composite possessesexcellent mechanical properties fabricated by heating to1243K at290K/min and holding for5min. Its yield strength σy, fracture strength σmax, fracture strain and ultrasonic elasticmodulus are2292MPa,2531MPa,9.16%and53GPa, respectively. The value of elasticmodulus is relative small in the reported Ti-Nb-Zr alloy system.
     The wear resistance of the fabricated UFG (TNZT)94Fe6composite was investigated bycompared with conventional biomedical Ti-6Al-4V (TAV) and Ti-13Nb-13Zr (TNZ) alloys.The result shows that the UFG (TNZT)94Fe6alloy possess the best wear resistance while theTNZ alloy possesses the worst. Besides, the effect of grain size on wear resistance of the UFG(TNZT)94Fe6composite was that the smaller the grain size, the better of its wear resistance.
     The corrosion resistance of the fabricated UFG (TNZT)94Fe6composite was investigatedby compared with conventional biomedical TAV and TNZ alloys. The result shows that thestability for three kinds of Ti alloys in corrosive media is (TNZT)94Fe6>TNZ>TAV. Moreover,the corrosion resistance of the UFG (TNZT)94Fe6alloy is affected by grain size. The smallerthe grain size, the greater its corrosion tendency, and the slower the speed of the corrosionreaction. The cytotoxicity test for UFG (TNZT)100-xFex(x=0,6and10) alloys shows thatbiological toxicity of three kinds of titanium alloy are all class one and suitable as
引文
[1] Wang K. The use of titanium for medical applications in the USA[J]. Materials Scienceand Engineering: A,1996,213(1-2):134-137
    [2] Niinomi M. Recent metallic materials for biomedical applications[J]. Metallurgical andMaterials Transactions A,2002,33(3):477-486
    [3] Balazic M, Mark J.K, Jackson J, et al. Titanium and Titanium alloy applications inmedicine[J]. International Journal of Nano and Biomaterials,2007,1(1):3-34
    [4] Geetha M, Singh A.K, Asokamani R, et al. Ti based biomaterials, the ultimate choice fororthopaedic implants–A review [J]. Progress in Materials Science,2009,54(3):397-425
    [5] Rack H.J, Qazi J.I. Titanium alloys for biomedical applications[J]. Materials Science andEngineering: C,2006,26(8):1269-1277
    [6] Long M, Rack H.J. Titanium alloys in total joint replacement-a materials scienceperspective[J]. Biomaterials,1998,(19):1621-1639
    [7]王蓉莉,李卫.降低医用钛合金弹性模量的方法[J].材料导报,2010,24(3):128-135
    [8]于思荣.生物医学钛合金的研究现状及发展趋势[J].新材料产业,2001,2:6-8
    [9] Niinomi M. Mechanical properties of biomedical titanium alloys[J]. Materials Science andEngineering:A,1998,243(1-2):231-236
    [10] Song Y, Xu D.S, Yang R, et al. Theoretical study of the effects of alloying elements onthe strength and modulus of β-type bio-titanium alloys[J]. Materials Science andEngineering: A,1999,260(1-2):269-274
    [11] Banerjee R, Nag S, Stechschulte J, et al. Strengthening mechanisms in Ti–Nb–Zr–Ta andTi–Mo–Zr–Fe orthopaedic alloys[J]. Biomaterials,2004,25(17):3413-3419
    [12] Kuroda D, Niinomi M, Morinaga M, et al. Design and mechanical properties of newβ-type titanium alloys for implant materials[J]. Materials Science and Engineering: A,1998,243(1-2):244-249
    [13] Niinomi M, Akahori T, Katsura S, et al. Mechanical characteristics and microstructure ofdrawn wire of Ti-29Nb-13Ta-4.6Zr for biomedical applications[J]. Materials Science andEngineering: C,2007,27(1):154-161
    [14] Kuroda D, H. Kawasaki, A. Yamamoto, et al. Mechanical properties and microstructuresof new Ti-Fe-Ta and Ti-Fe-Ta-Zr system alloys[J]. Materials Science and Engineering: C,2005,25(3):312-320
    [15] Nag S, Banerjee R, Fraser H.L. Microstructural evolution and strengthening mechanismsin Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys[J]. Materials Scienceand Engineering: C,2005,25(3):357-362
    [16] Hao Y.L, Li S.J, Sun S.Y, et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn forbiomedical applications[J]. Acta Biomaterialia,2007,3(2):277-286
    [17]李军,周廉,李佐臣,等.新型医用钛合金Ti-12.5Zr-2.5Nb-2.5Ta的研究[J].稀有金属材料与工程,2003,32(5):398-400
    [18] La P, Ma J, Zhu Y.T, et al. Dry-sliding tribological properties of ultrafine-grained Tiprepared by severe plastic deformation[J]. Acta Materialia,2005,53(19):5167-5173
    [19] Long M,Rack H.J. Ultrasonic in situ continuous wear measurements of orthopaedictitanium alloys[J]. Wear,1997,205(1–2):130-136
    [20] Khang D, Lu J, Yao C, et al. The role of nanometer and sub-micron surface features onvascular and bone cell adhesion on titanium[J]. Biomaterials,2008,29(8):970-983
    [21] Webster T.J, Ejiofor J.U. Increased osteoblast adhesion on nanophase metals: Ti,Ti6Al4V, and CoCrMo[J]. Biomaterials,2004,25(19):4731-4739
    [22]汶建宏,杨冠军,葛鹏,等. β钛合金的研究进展[J].钛工业进展,2008,25(1):33-39
    [23] Morinaga M, Kato M, Kamimura T. Theoretical design of Beta-type titanium alloys, in7th Int.Conf.on Titanium.1992: San Diego,CA,USA.276-283
    [24]马仁涛,郝传璞,王清,等.低弹bcc结构Ti-Mo-Nb-Zr固溶体合金的“团簇+连接原子”模型及其成分设计[J].金属学报,2010,46(9):1034-1040
    [25] Leyens C, Peters M.钛与钛合金[M].陈振华.北京:化学工业出版社,2005:218
    [26] Mitchell A, Melting, casting and forging problems in titanium alloys[J]. MaterialsScience and Engineering: A,1998,243(1-2):257-262
    [27]杨冠军.钛合金研究和加工技术的新进展[J].钛工业进展,2010,15(3):1-5
    [28]吴海峰,张治民,李保成.钛合金及其成形技术在民品中的应用前景[J].锻压技术,2003,28(4):44-46
    [29] Ikeda M, Komatsu S.Y, Sowa I, et al. Aging behavior of the Ti-29Nb-13Ta-4.6Zr newbeta alloy for medical implants[J]. Metallurgical and Materials Transactions A,2002,33(3):487-493
    [30] Ferrandini P.L, Cardoso F.F, Souza S.A, et al. Aging response of the Ti-35Nb-7Zr-5Ta and Ti-35Nb-7Ta alloys[J].Journal of Alloys and Compunds,2007,433(1-2):207-210
    [31]黄培云.粉末冶金原理[M].第二版.北京:冶金工业出版社,2008:1-5
    [32]张启芳,戈晓岚,朱欣庆.热加工工艺基础[M].南京:东南大学出版社,1996:31-34
    [33] Xu W, Wu X, Sadedin D, et al. Ultrafine-grained titanium of high interstitial contentswith a good combination of strength and ductility[J]. Applied Physics Letters,2008,92:011924
    [34]徐鲁杰,程德彬.船用钛合金及钛合金粉末冶金技术[J].材料开发与应用,2009,24(2):68-70
    [35] Henriques V.A.R, Galvani E.T, Petroni S.L.G, et al. Production of Ti–13Nb–13Zr alloyfor surgical implants by powder metallurgy [J]. Journal of materials science,2010,45(21):5844-5850
    [36] Henriques V.A.R, Bellinati C.E, da Silva C.R.M. Production of Ti-6%Al-7%Nb alloy bypowder metallurgy[J]. Journal of materials processing technology,2001,118(1-3):212-215
    [37]庞鹏沙.粉末冶金纳米羟基磷灰石-钛复合材料的制备及生物活性[D].广州:暨南大学,2006
    [38]吴引江,梁永仁.钛粉末及其粉末冶金制品的发展现状[J].中国材料进展,2011,30:44-50
    [39]黄卫东,吕晓卫,林鑫.激光成形制备生物医用材料研究现状与发展趋势[J].中国材料进展,2011,30(4):1-10
    [40] Vandenbroucke B, Kruth J. Selective laser melting of biocompatible metals for rapidmanufacturing of medical parts[J].Rapid Prototyping Journal,2007,13(4):196-203
    [41] Zhang L.C, Klemm D, Eckert J, et al. Manufacture by selective laser melting andmechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy[J]. Scripta Materialia,2011,65(1):21-24
    [42] Sercombe T, Jones N, Day R, et al. Heat treatment of Ti-6Al-7Nb components producedby selective laser melting[J]. Rapid Prototyping Journal,2008,14(5):300-304
    [43] Deepak K, Pattanayak K, Fukuda, et al. Bioactive Ti metal analogous to humancancellousbone: Fabrication by selective laser melting and chemical treatments[J]. ActaBiomaterialia,2011,7(3):1398-1406
    [44]曲选辉.粉末注射成形的研究进展[J].中国材料进展,2010,29(15):42-47
    [45]喻岚,李益民,邓忠勇等.采用氢化-脱氢(HDH)钛粉和氢化钛粉制备MIM Ti-6Al-4V合金[J].稀有金属材料科学与工程,2005,34(10):1622-1626
    [46]李挺,李益民,陈良建等.注射成形制备多孔钛及其性能[J].稀有金属材料科学与工程,2011,40(2):335-338
    [47] Zhang F.M, Weidmann A, NebeJ. B, et al. Preparation, microstructures, mechanicalproperties, and cytocompatibility of TiMn alloys for biomedical applications[J]. Journalof Biomedical Materials Research Part B: Applied Biomaterials,2010,94(2):406-413
    [48] Zhang F.M, Otterstein E, Burkel E. Spark Plasma Sintering, Microstructures,and Mechanical Properties of Macroporous Titanium Foams[J]. Advanced EngineeringMaterials,2010,12(9):863-872
    [49] Li Y.Y, Yang C, Wei T, et al. Ductile fine-grained Ti–O-based composites with ultrahighcompressive specific strength fabricated by spark plasma sintering[J]. Materials Scienceand Engineering: A,2011,528(3):1897-1900
    [50]李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000:11
    [51] Genfen A. Computational simulations of stress shielding and bone resorption aroundexisting and computer-designed orthopedic screws[J].Medical Biology EngineerComputer,2002,40(3):311-318
    [52] Genfen A. Optimizing the biomechanical compatibility of orthopedic screws for bonefracture fixation [J]. Medical Engineer Physics,2002,24(5):337-347
    [53] López M, Gutiérrez A, Jiménez J.A. Surface characterization of new non-toxic titaniumalloys for use as biomaterials[J]. Surface Science,2001,482:300-305
    [54]赵树萍,吕双坤,郝文杰.钛合金及其表面处理[M].哈尔滨:哈尔滨工业大学出版社,2003:10
    [55] Collings E.W. The physical metallurgy of titanium alloys[M]. Metals Park OH:ASMPress,1984:32
    [56]于振涛,周廉,牛金龙.合金元素、加工与热处理对医用β型钛合金力学性能的影响及微观分析[J].稀有金属,2007,31(4):416
    [57] Song Y, Xu D.S. Theoretical study of the effects of alloying elements on the strength andmodulus of β-type bio-titanium alloys[J]. Materials Science and Engineer: A,1999,260(1-2):269-274
    [58] Kim H.S, Kim W.Y, Lim S.H. Microstructure and elastic modulus of Ti-Nb-Si ternaryalloys for biomedical applications[J]. Scripta Materialia,2006,54(5):887-891
    [59] Silva H.M, Schneider S.G, Moura N.C. Study of nontoxic aluminum and vanadium-freetitanium alloys for biomedical applications[J].Materials Science and Engineer: C,2004,24(5):679-682
    [60] Hao Y.L, Li S.J, Sun S.Y, et al. Effect of Zr and Sn on Young′s modulus andsuperelasticity of Ti-Nb based alloys[J].Materials Science and Engineer: A,2006,441(1-2):112-118
    [61] Schroers J, Kumar G, Hodges T, et al. Bulk metallic glasses for biomedical applications[J]. Journal of the Minerals, Metals and Materials Society,2009,61(9):21-29
    [62] Ryan G, Pandit A, Apatsidis D.P. Fabrication methods of porous metals for use inorthopaedic applications [J]. Biomaterials,2006,27(13):2651-2670
    [63] Bram M, Stiller1C, Buchkremer H. P, et al.High-porosity titanium, stainless steel, andsuper alloy parts[J]. Advanced Engineering Materials,2000,2(4):196-199
    [64] Wen C.E, Mabuchi M,Yamanda Y, et al. Processing of biocompatible porous Ti andMg[J]. Scripta Materialia,2001,45(10):1147-1153
    [65] Tuchinskiy L, Loutfy R. Titanium foams for medical applications[J]. ASM Conferenceon Materials and Processes for Medical Devices, Anaheim, CA,2003
    [66] Thieme M, Wieters K.P, Bergner F, et al. Titanium powder sintering for preparation of aporous functionally graded material destined for orthopaedic implants[J]. Journal ofMaterial Science: Materials in Medicine,2001,12(3):225-231
    [67] Zhang X, Ayers R, Thorne K, et al. Combustion synthesis of porous materials for bonereplacement[J]. Biomedical Science Instrument,2001,37:463-468
    [68] Tosun G, Ozler L, Kaya M,et al. A study on microstructure and porosity of NiTi alloyimplants produced by SHS[J]. Journal of Alloys and Compounds,2009,487(1-2):605-611
    [69] Li B.Y, Rong L.J, Li Y.Y, et al. A recent development in producing porous NiTi shapememory alloys[J]. Intermetallics,2000,8(8):881-884
    [70]刘培生,黄林国.多孔金属材料制备方法[J].功能材料,2002,33(1):5-11
    [71]邹鹑鸣.钛丝烧结制备医用多孔钛及其表面Si-HA生物活化[D].哈尔滨:哈尔滨工业大学,2008
    [72] Choubey A, Basu B, Balasubramaniam R. Tribological behaviour of Ti-based alloys insimulated body fluid solution at fretting contacts[J].Materials Science and Engineering: A,2004,379(1-2):234-239
    [73] Li S.J, Yang R, Li S, et al. Wear characteristics of Ti-Nb-Ta-Zr and Ti-6Al-4V alloys forbiomedical applications[J]. Wear,2004,257(9-10):869-876
    [74] Long M, Rack H.J. Subsurface deformation and microcrack formation inTi-35Nb-8Zr-5Ta-O(x) during reciprocating sliding wear[J].Materials Science andEngineering:C,2005,25(3):382-388
    [75] Yu J, Zhao Z.J, Li L.X. Corrosion fatigue resistances of surgical implant stainless steelsand titanium alloy[J].Corrosion Science,1993,35(1-4):587-597
    [76] Zhou Y.L, Niinomi M, Akahori T, et al. Corrosion resistance and biocompatibility ofTi–Ta alloys for biomedical applications[J]. Materials Science and Engineering: A,2005,398(1-2):28-36
    [77] Nakagawa M, Matsuya S, Udoh K. Corrosion behavior of pure titanium and titaniumalloys in fluoride-containing solutions[J]. Dental Material Journal,2001,20(4):305-314
    [78] Thair L, Kamachi M. U, Asokamani R. Influence of microstructural changes oncorrosion behaviour of thermally aged Ti-6Al-7Nb alloy[J].Materials and Corrosion,2004,55(5):358-366
    [79] Akihisa I. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J].Acta Materialia,2000,48(1):279-306
    [80] Wang W.H, Dong C, Shek C.H. Bulk metallic glasses[J]. Materials Science andEngineering: R: Reports,2004,44(2-3):45-89
    [81] Salimon A.I, Ashby M.F, Bréchet Y, et al. Bulk metallic glasses: what are they goodfor[J]. Materials Science and Engineering: A,2004,375-377(0):385-388
    [82] Mark T. The case for bulk metallic glass[J]. Materials Today,2004,7(3):36-43
    [83] L ffler J.F. Bulk metallic glasses[J]. Intermetallics,2003,11(6):529-540
    [84] Bruck H, Rosakis A, Johnson W. The dynamic compressive behavior of berylliumbearing bulk metallic glasses[J]. Journal of Materials Research,1996,11(02):503-511
    [85] Inoue A, Nishiyama N. New bulk metallic glasses for applications as magnetic-sensing,chemical, and structural materials[J]. MRS Bulletin,2007,32(08):651-658
    [86] Lewandowski L.L, Greer A.L. Temperature rise at shear bands in metallic glasses[J].Nature Materials,2006,5:15-18
    [87] Donovan P, Stobbs W. The structure of shear bands in metallic glasses[J]. ActaMetallurgica,1981,29(8):1419-1436
    [88] Zhang Y, Greer A. Thickness of shear bands in metallic glasses[J]. Applied PhysicsLetters,2006,89(7):071907
    [89] Kühn U, Eckert J, Mattern N. ZrNbCuNiAl bulk metallic glass matrix compositescontaining dendritics bcc phase precipitates[J]. Applied Physics Letters,2002,80(14):2478-2480
    [90] Ma H, Xu J, Ma E. Mg-based bulk metallic glass composites with plasticity and highstrength[J]. Applied Physics Letters,2003,83(14):2793-2795
    [91] Eckert J, Kühn U, Mattern N, et al. Structural bulk metallic glasses with differentlength-scale of constituent phases[J]. Intermetallics,2002,10(11-12):1183-1190
    [92] Choi-Yim H, Johnson W. Bulk metallic glass matrix composites[J]. Applied PhysicsLetters,1997,71(26):3808-3810.
    [93] Liu Y.H, Wang G, Wang R.J, et al. Super plastic bulk metallic glasses at roomtemperature[J]. Science,2007,315:1385-1388
    [94] Yao K.F, Ruan F, Yang Y.Q, et al. Superductile bulk metallic glass[J]. Applied PhysicsLetters,2006,88(12):122106
    [95] Chen L.Y, Fu Z.D, G.Q. Zhang,et al. New class of plastic bulk metallic glass[J]. PhysicsReview Letters,2008,100(7):075501
    [96] Guo F.Q, Wang H.J, Poon S.J, et al. Ductile titanium based glassy alloy ingots[J].Applied Physics Letters,2005,86(9):091907
    [97] Kim Y.C, Kim W.T, Kim D.H. A development of Ti-based bulk metallic glass[J].Materials Science and Engineering: A,2004,375-377(0):127-135
    [98] Wei Q, Jia.D, Ramesh K.T, et al. Evolution and microstruture of shear bands innanostrutured Fe[J]. Applied Physics Letters,2002,81(7):1240-1243
    [99] Eckert J, Jia.D, Pauly S, et al. Mechanical properties of bulk metallic glasses andcomposites (Review)[J]. Journal of Materials Research,2007,22(2):285-301
    [100] Zhang Z.F, Wu F.F, He G, et al. Mechanical properties, damage and fracturemechanisms of bulk metallic glass materials (Invited review)[J]. Journal of MaterialsScience Technology,2007,23:747-767
    [101] Hirano T, Kato H, Matsuo A, et al. Synthesis and mechanical properties of bulkamorphous Zr-Al-Ni-Cu alloys containing ZrC particles[J]. Materials Transactions,1997,38(9):793-800
    [102] Hidemi T, Kato H, Matsuo A. Synthesis and mechanical properties of Zr55Al10Ni5Cu30bulk glass composites containing ZrC particles formed by the in-situ reaction[J].Materials Transactions,2000,1(11):1454-1459
    [103] Wang W.H, Bai H.Y. Carbon-addition-induced bulk ZrTiCuNiBe amorphous matrixcomposite containing ZrC particles[J]. Materials Letters,2000,44(1):59-63
    [104] Schultz. Novel Ti-base nanostructure–dendrite composite with enhanced plasticity.Nature Material[J],2003,2:33-37
    [105] Kühn U, Geber t A, Kusy M, et al.Nanostructured Zr-and Ti-based composite materialswith high strength and enhanced plasticity[J]. Journal of Applied Physics,2005,98(5):054307
    [106] Hofmann D.C, Suh J.Y, Wiest A, et al. Development of tough, low-densitytitanium-based bulk metallic glass matrix composites with tensile ductility[J].Proceedings of the National Academy of Sciences,2008,105(51):20136-20140
    [107] Szuecs F, Kim C.P, Johnson W.L, Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5ductile phase reinforced bulk metallic glass composite[J]. Acta Materialia,2001,49(9):1507-1513
    [108] Sun Y.F, Wei B.C, Wang Y.R.Plasticity-improved Zr-Cu-Al bulk metallic glass matrixcomposites containing martensite phase[J]. Applied Physics Letters,2005,87(5):051905
    [109] Sun G.Y, Chen G, Liu C.T. Innovative processing and property improvement of metallicglass based composites[J]. Scripta Materialia,2006,55(4):375-378
    [110] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J].Acta Materialia,2000,48(1):279-306
    [111] Yamasaki T, Maeda S, Yokoyama Y. Viscosity measurements of Zr55Cu30Al10Ni5supercooled liquid alloys by using penetration viscometer under high-speed heatingconditions[J]. Intermetallics,2006,14(8-9):1102-1106
    [112] Saotome Y, Roppongi K, Zhang T.Characteristic behavior of La55Al25Ni20amorphousalloy under rapid heating[J].Materials Science and Engineering:A,2001,743(6):304-306
    [113][113] Saotome Y, Noguchi Y, Zhang T,et al. Characteristic behavior of Pt-based metallicglass under rapid heating and its application to microforming[J]. Materials Science andEngineering: A,2004,375-377:389-393
    [114]唐翠勇,肖志瑜,陈进,等.粉末冶金制备大块非晶合金研究进展[J].材料导报,2010,24(1):93-97
    [115] Benjamin J.S. Dispersion strengthened superalloys by mechanical alloying[J].Metallurgical and Materials Transactions B,1970,1(10):2943-2951
    [116] Perepezko J, Hebert R.J, Tong W. Amorphization and nanostructure synthesis in Alalloys[J]. Intermetallics,2002,10(11):1079-1088
    [117] Orimoi S, Fujii H. Materials science of Mg-Ni-based new hydrides[J].Applied PhysicsA,2001,72:167-186
    [118] Lopez J.M, Alonso J.A, Gallego L.J. Determination of the glass-forming concentrationrange in binary alloys from a semi-empirical theory: application to Zr-based alloys[J].Physical Review B,1987,36(7):3716-3722
    [119] Pekala M, Jachimowicz M, Fadeeva V I, et al. Magnetic and structural studies of ballmilled Fe78B13Si9[J]. Journal of Non-Crystalline Solids,2001,287(1-3):380-384
    [120] Ivchenko V.A, Uimin M.A, Yermakov A.Y, et al. Atomic structure and magneticproperties of Cu80Co20nanocrystalline compound produced by mechanical alloying[J].Surface Science,1999,440(3):420-428
    [121] Koch C.C. Preparation of amorphous Ni60Nb40by mechanical alloying[J]. AppliedPhysics Letters,1983,43(11):1017-1019
    [122] Kobayashi K.F, Tachibana N, Shinqu P.H. Formation of amorphous Al-Cr alloys bymechanical alloying of elemental aluminium and chromium powders [J]. Journal ofMaterials Science,1990,25(7):3149-3154
    [123]柳林.正混合热体系的机械驱动非晶化[J].中国有色金属学报,1994,4(1):50-53
    [124] Johnson W.L, Schwarz R.B. Formation of an amorphous alloy by solid-state reaction ofthe pure polycrystalline metals [J]. Physical Review Letters,1983,51:415-418
    [125] Mukhopadhyay D.K, Suryanarayana C, Froes F.H, et al. Advances in PowderMetallurgy and Particulate Materials[M]. Princeton:Metal Powder Industries Federation,1995:123-133
    [126]遂婷婷,傅正义,张东明.放电等离子烧结(SPS)技术[J].材料导报,2002,16(2):31-33
    [127] Omori M. Sintering, consolidation, reaction and crystal growth by the spark plasmasystem (SPS)[J]. Materials Science and Engineering: A,2000,287(2):183-188
    [128] Mamedov V. Spark plasma sintering as advanced PM sintering method[J].PowderMetallurgy,2002,45(4):322-328
    [129] Munir Z.A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressureon the synthesis and consolidation of materials: A review of the spark plasma sinteringmethod[J]. Journal of Materials Science,2006,41(3):763
    [130]王秀芬,周曦亚.放电等离子烧结技术[J].中国陶瓷,2006,42(7):14-16
    [131]张东明,傅正义.放电等离子加压烧结(SPS)技术特点及应用[J].武汉工业大学学报,1999,21(6):15-19
    [132]张久兴,刘科高.放电等离子烧结技术的发展和应用[J].粉末冶金技术,2002,20(3):129-134
    [133] Shen B, Kimura H, Inoue A. Fabrication of Fe-based glassy cores with high saturationmagnetization and good soft magnetic properties by spark plasma sintering[J]. MaterialsScience Forum,2005,475-479:3397-3400
    [134] Shen B, Inoue A. Fabrication of large-size Fe-based glassy cores with good softmagnetic properties by spark plasma sintering[J]. Journal of Materials Research,2003,18(9):2215-2121
    [135] Shefif M, Eskandarany E, Omori M, et al. Solid-state synthesis of new glassyCo65Ti20W15alloy powders and subsequent densification into a fully dense bulk glass[J].Journal of Materials Research,2005,20(10):2845-2853
    [136] Kim C.K, Lee H.S, Shin S.Y, et al. Microstructure and mechanical properties ofCu-based bulk amorphous alloy billets fabricated by spark plasma sintering[J]. MaterialsScience and Engineering: A,2005,406(1-2):293-299
    [137] Kim C.K, Lee S, Shin S.Y, et al. Microstructure and mechanical properties of Cu-baseamorphous alloy matrix composites consolidated by spark plasma sintering[J]. MaterialsScience and Engineering: A,2007,449-451(0):924-928
    [138] Saito T, Takeuchi T, Kageyama H. Magnetic properties of Nd-Fe-Co-Ga-B magnetsproduced by spark plasma sintering method[J]. Journal of Applied Physics,2005,97:10H103
    [139] Li Y.Y, Yang C, Qu S.G, et al. Nucleation and growth mechanism of crystalline phasefor fabrication of ultrafine-grained Ti66Nb13Cu8Ni6.8Al6.2composites by spark plasmasintering and crystallization of amorphous phase[J]. Materials Science and Engineering:A,2010,528(1):486-493
    [140] Li Y.Y, Yang C, Chen W.P, et al. Effect of WC content on glass formation, thermalstability and phase evolution of a TiNbCuNiAl alloy synthesized by mechanicalalloying[J]. Journal of Materials Research,2008,23(3):745-754
    [141] Li Y.Y, Yang C, Chen W.P, et al. Ultrafine-grained Ti66Nb13Cu8Ni6.8Al6.2compositesfabricated by spark plasma sintering and crystallization of amorphous phase[J]. Journal ofMaterials Research,2009,24(6):2118-2122
    [142] Li X.Q, Yang C, Chen W.P, et al. Microstructure and Mechanical Properties of SPSed(Spark Plasma Sintered) Ti66Nb13Cu8Ni6.8Al6.2Bulk Alloys with and without WCAddition. Materials transactions,2009,50(7):1720-1724
    [143]伍雪梅. SPS合成晶化相β-Ti(V)增强的TiVCuNiAl非晶/超细晶复合材料[D].广州:华南理工大学,2012
    [144] Chen Y, Yang C, L. M. Zou, et al. Ti-based bulk metallic glass matrix composites within situ precipitated β-Ti phase fabricated by spark plasma sintering[J]. Journal ofNon-crystalline Solids,2013,359:15-20
    [145] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J].Acta Materialia,2000,48(1):279-306
    [146] Zhang R.F, Sheng S.H, Liu B.X. Predicting the formation enthalpies of binaryintermetallic compounds[J]. Chemical Physics Letters,2007,442(4-6):511-514
    [147]刘江龙.环境材料导论[M].北京:冶金工业出版社,1999:39
    [148]于思荣.金属系牙科材料的应用现状及部分元素的毒副作用[J].金属功能材料,2000,7(1):1-6
    [149] Takeuchi A, Inoue A. Calculations of mixing enthalpy and mismatch entropy forternary amorphous alloys[J].Materials Transaction,2000,41(11):1372-1378
    [150] Xia M.X, Zhang S.G, Ma C.L, et al. Evaluation of glass-forming ability for metallicglasses based on order-disorder competition[J].Applied Physics Letters,2006,89(9):091917
    [151] Takeuchi A, Inoue A. Quantitative evaluation of critical cooling rate for metallicgalsses[J]. Materials Science and Engineering: A,2001,304-306(1-2):446-451
    [152] Dong C, Wang Q, Qiang J.B, et al. From clusters to phase diagrams: composition rulesof quasicrystals and bulk metallic glasses[J]. Journal of Physics D: Applied Physics,2007,40(15):273-291
    [153] Wang Q, Wang Y.M, Qiang J.B, et al. Composition optimization of the Cu alloys [J].Intermetallics,2004,12(10-11):1229-1232
    [154] Azaroff L, Buerger M.J. The Powder Method in X-Ray Crystallography[M]. New York,1958
    [155]陈以方,张家俊.超声检测工件弹性模量的研究[J].无损检测,1997,19(9):241-244
    [156] Nagasaki S, Hirabayashi M. Binary Alloy Phase Diagrams, Metallurgical Industry Press,Beijing,2004
    [157] Suryanarayana C. Mechanical alloying and milling [J]. Progress in Materials Science,2001,46(1-2):1-184
    [158] Turnbull D. Under what conditions can a glass be formed[J]? Contemporary Physics,1969,10(5):473-488
    [159] Zhang L.C, Xu J, Ma E. Mechanically alloyed amorphous Ti50(Cu0.45Ni0.55)44-xAlxSi4B2alloys with supercooled liquid region[J]. Journal of Materials Research,2002,17(7):1743-1749
    [160] Wang Y.L, Xu J, Yang R. Glass formation in high-energy ball milled Tix(Cu0.45Ni0.55)94xSi4B2alloys[J]. Materials Science and Engineering: A,2003,352(1-2):112-117
    [161] Zhang L.C, Shen Z.Q, Xu J. Thermal stability of mechanically alloyed boride/Ti50Cu18Ni22Al4Sn6glassy alloy composites[J]. Journal of Non-Crystalline Solids,2005,351(27-29):2277-2286
    [162] Movahedi B, Enayati M.H, Wong C.C. On the crystallization behavior of amorphousFe-Cr-Mo-B-P-Si-C powder prepared by mechanical alloying[J]. Materials Letters,2010,64(9):1055-1058
    [163] Sharma S, Vaidyanathan R, Suryanarayanaa C. Criterion for predicting theglass-forming ability of alloys[J]. Applied Physics Letters,2007,90(11):111915
    [164] Cho Y.S, Koch C.C. Mechanical milling of ordered intermetallic compounds: The roleof defects in amorphization[J], Journal of Alloys and Compounds,1993,194(2):287-294
    [165] Koch C.C, Whittenberger J.D. Mechanical milling/alloying of intermetallics[J],Intermetallics,1996,4(5):339-355
    [166] Zhao Y.H. Thermodynamic model for solid-state amorphization of pure elements bymechanical milling[J], Journal of Non-Crystalline Solids,2006,352(52-54):5578-5585
    [167] Criado J.M, Ortega A. Non-isothermal crystallization kinetics of metal glasses:simultaneous determination of both the activation energy and the exponent n of the JMAkinetic law[J].Acta Metallurgy,1987,35(7):1715-1721
    [168] Zhang Y.H, Liu Y.C, Gao Z.M, et al. Study on crystallization of nanocrystalline/amorphous Al-based alloy[J]. Journal of Alloys and Compounds,2009,469(1-2):565-570
    [169] Matusita K, Komatsu T, Yokota R. Kinetics of non-isothermal crystallization processand activation energy for crystal growth in amorphous materials[J]. Journal of MaterialsScience,1984,19(1):291-296
    [170] Christian J.W. The Theory of Transformation in Metals and Alloys[M]. Oxford:Pergamon Press,1975
    [171] Oak J.J, Louzguine-Luzgin D.V, Inoue A. Investigation of glass-forming ability,deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed forapplication as dental implants[J]. Materials Science and Engineering: C,2009,29(1):322-327
    [172] Leyens C, Peters M. Titanium and Titanium Alloys: fundamentals and applications
    [M].Wiley-VCH, Weinheim,2003
    [173] Conrad H. Effect of interstitial solutes on the strength and ductility of titanium[J].Progress in Materials Science,1981,26(2):123-403
    [174] Tabor D. The Hardness of Metals [M]. New York: Oxford University Press,1951
    [175] Zhang L.C, Lu H.B, Mickel C, et al. Ductile ultrafine-grained Ti-based alloys with highyield strength[J]. Applied Physics Letters,2007,91(5):051906
    [176] Zhang T, Inoue A. Ti-based amorphous alloys with a large supercooled liquid region[J].Materials Science and Engineering: A,2001,304-306:771-774
    [177] He G, Eckert J, L ser W, et al. Novel Ti-base nanostructure–dendrite composite withenhanced plasticity[J]. Nature Material,2003,2:33-37
    [178] Das J, Kim K.B, Baier F, et al. High-strength Ti-base ultrafine eutectic with enhancedductility[J]. Applied Physics Letters,2005,87(16):161907
    [179] Qazi J.I, Marquardt B, Allard L.F, et al. Phase transformations in Ti-35Nb-7Zr-5Ta-(0.06-0.68)O alloys[J]. Materials Science and Engineering: C,2005,25(3):389-397
    [180] Hao Y.L, Li S.J, Sun S.Y, et al. Super-elastic titanium alloy with unstable plasticdeformation[J]. Applied Physics Letters,2005,87(9):091906
    [181] Rodriguez D, Gil F.J, Planell J.A.Wear resistance of the nitrogen diffusion hardening ofthe Ti-6Al-4V alloy[J]. in11th Conference of the ESB.1998:Suppl.31, France,Toulouse,49
    [182] Sathish S, Geetha M, Pandey N.D, et al. Studies on the corrosion and wear behavior ofthe laser nitrided biomedical titanium and its alloys[J]. Materials Science andEngineering: C,2010,30(3):376-382
    [183] Choubey A, Basu B, Balasubramaniam R. Tribological behaviour of Ti-based alloysin simulated body fluid solution at fretting contacts[J]. Materials Science and Engineering:A,2004,379(1-2):234-239
    [184] Molinari A, Straffelini G, Tesi B, et al. Dry sliding wear mechanisms of the Ti-6Al-4Valloy[J]. Wear,1997,208(1-2):105-112
    [185] Cvijovi-Alagi I, Cvijovicet Z, Mitrovical S, et al. Wear and corrosion behaviour ofTi-13Nb-13Zr and Ti-6Al-4V alloys in simulated physiological solution[J]. CorrosionScience,2011,53(2):796-808
    [186] Cvijovi-Alagi I, Cvijovicet Z, Mitrovical S, et al. Tribological behaviour oforthopaedic Ti-13Nb-13Zr and Ti-6Al-4V alloys[J].Tribology Letters,2010,40(1):59-70
    [187] Quach D.V, Avila-Paredes H, Kim S, et al. Pressure effects and grain growth kinetics inthe consolidation of nanostructured fully stabilized zirconia by pulsed electric currentsintering[J]. Acta Materialia,2010,58(15):5022-5030
    [188] Archard J.F. Contact and Rubbing of Flat Surfaces[J]. Journal of Applied Physics,1953,24(8):981-988
    [189] Straffelini G, Molinari A. Dry sliding wear of Ti-6Al-4V alloy as influenced by thecounterface and sliding conditions. Wear,1999,236(1-2):328-338
    [190] John T, Burwell J. Survey of possible wear mechanisms[J]. Wear,1957,1(2):119-141.
    [191] Okazaki Y. A New Ti-15Zr-4Nb-4Ta alloy for medical applications[J].Current Opinionin Solid State and Materials Science,2001,5(1):45-53
    [192] Yu S.Y, Scully J.R. Corrosion and passivity of Ti-13%Nb-13%Zr in comparison toother biomedical implant alloys[J].Corrosion,1997,53(12):965-972
    [193] Szklarska-Smialowska Z. Pitting corrosion of aluminum[J].Corrosion Science,1999,41(9):1743-1767
    [194] Boddy P.J. Oxygen evolution on semiconducting TiO2[J]. Journal of TheElectrochemical Society,1968,115(2):199-203
    [195] Aziz-Kerrzo M, Conroy K.G, Fenelon A.M. Electrochemical studies on the stability andcorrosion resistance of titanium-based implant materials[J]. Biomaterials,2001,22(12):1531-1539
    [196]宁聪琴,周玉.医用钛合金的发展及研究现状[J].材料科学与工艺,2002,10(1):100-111
    [197] Metikos-Hukovi M, Kwokal A, Piljac J. The influence of niobium and vanadium onpassivity of titanium-based implants in physiological solution[J]. Biomaterials,2003,24(21):3765-3775
    [198] Souza K.A, Robin A. Preparation and characterization of Ti-Ta alloys for application incorrosive media[J].Materials Letters,2003,57(20):3010-3016
    [199] Khan M.A, Williams R.L, Williams D.F. The corrosion behavior of Ti-6Al-4V,Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions[J].Biomaterials,1999,20(7):631-637
    [200] Zhou Y.L, Niinomi M, Akahori T, et al. Corrosion resistance and biocompatibility ofTi-Ta alloy for biomedical applications[J]. Materials Science and Engineering: A,2005,398(1-2):28-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700