用户名: 密码: 验证码:
1000MW核电站离心式上充泵水力设计与结构可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系国家杰出青年基金(编号:50825902)、江苏省科技支撑计划(工业部分)(编号:BE2010156)、江苏省高校研究生科研创新计划(编号:CX08B-0632)和镇江市工业科技攻关计划(编号:GY2008002)资助项目部分内容。
     离心式上充泵是核电站一回路的化学和容积控制系统(RCV)的重要组成部分,是最关键的核电动力设备之一,也是难度仅次于主泵的核安全Ⅱ级设备。离心式上充泵是一种卧式、双壳体、筒状多级离心泵,具有流量小、扬程高、转速高、汽蚀要求高、配套电机功率大的特点,核电规范要求该泵必须要高精度地达到5个工况点的性能,同时还要满足热冲击和抗震要求,技术难度大。目前国内1000MW核电站离心式上充泵全部进口,国产化应用业绩仍为空白。业内公认制约上充泵国产化的最大难题是水力模型样机的研发。另外,上充泵的结构设计、抗热冲击性能、抗震性能和转子扭振等结构可靠性研究也是制约上充泵国产化的重要因素。
     本文通过对离心式上充泵水力模型开发、水力性能数值模拟、4级水力模型样机的性能和汽蚀试验、转子动力扭振计算、热固耦合计算以及抗震计算等多方面研究,旨在解决制约上充泵国产化的水力设计和结构可靠性等方面的技术难题,为离心式上充泵国产化提供理论基础。本文主要研究工作和创造性成果有:
     1.全面系统地分析了国内外高温高压双壳体多级离心泵研究进展,介绍了上充泵在1000MW核电站中的重要作用,给出了核电站离心式上充泵在水力性能和结构上的特殊设计要求。在此基础上,针对上充泵水力设计、结构设计、转子系统临界转速计算、热固耦合计算、抗震计算等相关理论发展进行了较全面深入的分析,制定了最终上充泵的结构设计方案。
     2.对上充泵吸水室8种设计方案内部流场进行了定常流动的数值模拟对比研究。采用RANS雷诺时均方程进行数值求解,以RNG k-ε湍流模型来封闭雷诺应力项,应用SIMPLEC算法进行不可压缩流动压力场的求解,实现了对8种设计方案下叶轮内部流场的三维粘性湍流数值模拟。通过对设计流量工况及非设计流量工况下8种方案吸水室内部流动速度、压力、湍动能分布的对比分析,发现:较大的吸水室入口可以有效降低水力损失,但环形空间采用弧形和直形结构对水力损失影响不大,计算结果表明,良好的直形环形空间甚至比弧形结构水力损失小。通过对8种吸水室设计方案的分析和评估,为最终进行上充泵首级叶轮优化水力设计提供理论基础。
     3.首次采用多级离心泵多工况水力设计方法,对上充泵首级叶轮、次级叶轮进行了定常流动和非定常流动的数值模拟对比研究。其中首级叶轮采用8种设计方案,次级叶轮采用8种设计方案。结果表明:首级叶轮的汽蚀性能受叶轮几何结构参数影响较大,另外,导叶进口速度和压力沿周向分布呈明显的周期性波动特征,叶轮出口射流和尾流区的存在与否及所处位置与泵的流量及叶轮结构形式有很大关系,进一步证实了上充泵内从叶轮到导叶整个流场的强非对称流动特征。通过不同设计方案及不同流量工况下的数值模拟对比分析,揭示了叶轮和导叶之间的动静干涉对流场的影响。通过对多个设计方案不同流量工况下的数值模拟,数值预测了离心泵的性能曲线。对上充泵而言,因其要求水力性能满足多个工况点,而常规水力设计方法又不能达到设计要求,因此多工况水力设计方法很好地解决了这一难题,为上充泵水力设计提供了一种新途径。
     4.为验证上充泵的水力设计,制造了4级上充泵样机,通过外特性实验对上充泵的水力性能试验和汽蚀性能试验研究,并与数值计算的结果进行对比,证明了水力设计的正确性,以及数值模拟的准确性和性能预测的可行性。4级样机水力试验结果经相似换算后与所要求性能参数进行对比结果表明:所要求的5个工况点水力性能达到要求,最大流量工况点发生最大偏差,为4.7%。4级样机利用皮带轮将转速增加到4500 r/min,进行了汽蚀性能试验,汽蚀性能达到设计要求。在此基础上,进行了12级实型上充泵水力性能的数值计算。
     5.首次对上充泵进行了转子系统临界转速分析。分析计算了几种不同因素对上充泵转子部件固有频率(可转化为临界转速)的影响,然后综合各种条件计算了转子部件的临界转速。经计算,转子部件在弹性支承下的一阶固有频率为253.405Hz,即15204.3 r/min,而上充泵的实际额定转速为4500 r/min,表明上充泵的结构动力学设计是满足设计要求的。另外,支承刚度对转子部件临界转速的影响比较大,准确地简化支承,合理地确定支承的刚度、阻尼矩阵是计算临界转速必不可少的前提。
     6.首次对上充泵外壳体进行了压力应力分析、瞬态热分析,热应力分析和间接法耦合分析,给出应力叠加法和间接耦合法的应力评定结果与比较。压力应力强度的最大值发生在外壳体端部的内壁节点1849上,总应力强度为42.91 MPa。间接耦合法求解的组合应力强度的最大值也发生在外壳体端部的内壁节点1849上,组合的总应力强度为42.83 MPa。应力叠加法与间接耦合法关于PL+Pb+Q≤3Sm的评定结果基本一致。
     7.首次对上充泵进行了抗震分析。采用ANSYS有限元软件,针对国内压水堆核电站用双层壳体离心式上充泵,建立了三维有限元模型,求出了上充泵固有频率和振型,并对上充泵在OBE和SSE地震荷载作用下进行了抗震性能计算分析,计算结果表明:(1)在模态分析中看到上充泵的基频为655.138 Hz,远大于33 Hz,表明上充泵整体为刚性结构。另外,第一阶振型沿水平方向,显示地震作用下的位移响应以水平方向为主。表明在设计阶段考虑增加上充泵水平方向的强度,可以有效减弱地震作用对上充泵的影响。(2)在OBE地震载荷、自重、温度同时作用下,上充泵最大应力响应发生在外壳体中部,为69.13 MPa,按第三强度理论校核,在许用值内,满足核电厂抗震设计规范二级部件要求;在SSE地震载荷、自重、温度同时作用下,上充泵最大应力响应发生在外壳体中部,为103.47 MPa,按第三强度理论校核,在许用值内,满足核电厂抗震设计规范二级部件要求,因此上充泵在OBE和SSE地震载荷作用下,能够保证结构完整性和可运行性。(3)计算得到位移最大响应发生在外壳体中部,为0.345 mm,远小于静止部件和转动部件之间的间隙1 mm,说明双层壳体离心式上充泵在结构上满足抗震要求。满足核电厂抗震设计规范二级部件要求,能够保证结构完整性和可运行性。
This paper is based on the funded projects of Jiangsu Province Technology Support Program (Industry part) (BE2010156), Jiangsu Province Postgraduate Research and Innovation Program (CX08B-0632) and Zhenjiang City Industrial Research Programs (GY2008002)
     Centrifugal charging pump is an important part of the chemical and volume control system (RCV) of the nuclear power plant primary circuit, it is one of the most crucial nuclear power equipment, with less difficult only than the main pump of the nuclear safety gradeⅡequipments. Centrifugal charging pump is a horizontal, double shell, tube-like multi-stage centrifugal pump with small flow rate, high head, high speed, high cavitation requirements, and large matching characteristics motor power. The nuclear power specifications of the pump must meet five high-precision operating points, with thermal shock and seismic requirements, which makes its technical highly difficulties. The centrifugal charge pumps of 1000MW nuclear power plant currently are all imported, domestic application is still blank. The industry analysis of constraints on the localization of charge pump is hydraulic model which is the biggest challenge. In addition, the charge pump structure design, thermal shock, seismic performance and reliability of rotor torsional vibration of structures are also the crucial factors which constraint the charge pump to be manufactured.
     This paper is based on the centrifugal charging pump hydraulic model development, numerical simulation of hydraulic performance, four-stage hydraulic model and cavitation performance of the prototype testing, rotor dynamic torsional vibration calculation, calculation of thermal coupling, seismic, and many other studies, which aimed at the solution of the constraints on the localization of charge pump hydraulic design and structural reliability of the technical problems and the preparation for centrifugal charging pump theoretical basis for localization. In this paper, the main research and creative achievements are:
     1. Comprehensive and systematic analysis of the domestic and overseas double-shell multi-stage high pressure centrifugal pump research progress, introduction of the charge pump important role of 1000MW nuclear power station, the design of centrifugal charging pump in the hydraulic performance and the special structure design requirements are given. On this basis, thorough analysis of charging pump for the hydraulic design, structural design, rotor system critical speed calculation, calculation of thermal coupling, seismic and other related theoretical development for a more in-depth analysis, and finally a charging pump structure design are given.
     2. The comparative study of the 8 designs internal flow field numerical simulation of steady flow of charging pump suction chamber was carried out. Use RANS Reynolds averaged equations for numerical calculation, the RNG k-s turbulence model to close the Reynolds stress term, the application for incompressible flow SIMPLEC algorithm to solve the pressure field, the 8 designs flow fields three-dimensional viscous turbulent flow in the impeller were numerically simulated. Through eight kinds of internal flow velocity, pressure, turbulent kinetic energy distribution of comparative analysis of the design flow condition and off-design conditions of water flow, we could find that:the larger suction chamber inlet can reduce water loss, but the annular space using arc-shape and structure of straight have little effect on the hydraulic calculation. The results show that a good straight annular space even has smaller losses than the radial structure of hydraulic. The analysis and assessment of eight kinds suction chamber provids a theoretical basis for the charging pump primary impeller optimization design.
     3.The charging pump is designed using multistage centrifugal pump multiple working conditions hydraulic design method, taking numerical simulation and comparative study on steady flows and unsteady flows of first impeller and subprime impeller. First impeller and subprime impeller are designed with eight types of design scheme. Results show that the cavitation performance of the first impeller is affected largely by the geometry parameters of impeller, in addition, inlet velocity and pressure distribution along with circular of diffuser are the cyclical fluctuations, and jet flow and wake flow of impeller outlet existence or not and its position have a close relation with pump flow and impeller structure forms, which further confirmed the charging pump asymmetric flow characteristics of the flow field from impeller to diffuser. Through the different design schemes and different flow conditions of numerical simulation analysis, the rotor-stator interaction influence on fluid field between impeller and diffuser is revealed. Based on numerical simulation of multiple design flow conditions, the centrifugal pump performance curve was predicted. As for the charging pump, hydraulic performance must meet the requirements of multiple working points, while conventional hydraulic design method can't meet the design requirements, so multiple working hydraulic design method is very well solving the problem, which provides a new way for the charging pump hydraulic design.
     4.To validate the charging pump hydraulic design, the four stage prototype of charging pump was manufactured. Through the charging pump prototype experiment, we obtained the characteristics of hydraulic performance and the cavitation performance. By comparision the curves of experiment with the curves of numerical analysis, which verified the correctness of charging pump hydraulic design, the accuracy of numerical simulation and the feasibility of performance prediction. Comparing the test results of four stage prototype of charging pump after similar conversion with required performance parameters, it showed that the requirements of the five working points in hydraulic performance is achieved, and the maximum deviation appears in maximum flow condition, at 4.7%. The speed of the four stage prototype is increased to 4500r/min using the pulley, for the cavitation performance test, and the result showed that the cavitation performance meet the design requirements. On this basis, the numerical calculation of the hydraulic properties of twelve stage charging pump was carried out.
     5.For the first time the rotor system of charging pump critical speed was analysed. Several factors are analyzed for the influence of the natural frequency (transformed into critical speed) of charging pump rotor, then summing up the influence of various conditions, and finally the rotor critical speed was calculated. After the calculation, it was found that in the elastic supporting the first-order natural frequency is 253.405 Hz, namely 15204.3 r/min, while the actual rated speed of charging pump is 4,500 r/min, so results showed that the structural dynamics design of charging pump meets the design requirements. Additionally, the supporting stiffness of the rotor affects the rotor system critical speed largely, so accurately simplifing supporting, reasonably determining the supporting stiffness and damping matrix are the essential premise for the calculation of critical speed.
     6. For the first time, through the pressure analysis, transient thermal analysis, thermal stress analysis and the indirect coupling analysis of the shell of charging pump, stress assessment results of the stress superposition method and the indirect coupling method are given. The maximum pressure intensity occurs in the inner wall of the outer shell end node 1849, and the total stress intensity is 42.91 MPa. The total stress intensity of indirect coupling method also occurred outside the inner wall of the shell end node 1849, the total stress intensity is 42.83 MPa. Stress superposition method and the indirect coupling method on the PL+Pb+Q≤3Sm consistent with the assessment results.
     7. For the first time, the seismic analysis of charging pump is studied. Through ANSYS software for the domestic PWR (pressurized-water reactor) nuclear power plant with double-hulled centrifugal charging pump housing, three-dimensional finite element model of charging pump is established, natural frequencies and vibration pattern are obtained, and seismic performance analysis of the charging pump under the OBE and SSE seismic loads were calculated and given, the results show that:(1) In modal analysis, the fundamental frequency of charging pump is the 655.138 Hz, and it is much larger than 33 Hz, which shows that charging pump owns rigid structure. In addition, the first-order vibration mode is in the horizontal direction, indicating that the displacement response under earthquake is mainly in horizontal direction. Then the consideration of increasing the intensity of the horizontal charge pump in the design stage can be a effective way to reduce seismic impact on the charging pump. (2) Under the OBE seismic loads, weight, and high temperature simultaneously, the maximum stress response of the charging pump is in the central positation of the outer shell,and the maximum stress is 69.13 MPa. The stress calculated by the third strength theory, is under the allowable values, which meets the Secondary Parts Requirements of nuclear power plants; Under the SSE seismic loads, weight, and high temperature simultaneously, the maximum stress response of the charging pump is in the central positation of the outer shell, and the maximum stress is 103.47 MPa. The stress calculated by the third strength theory, is under the allowable values, which meets the Secondary Parts Requirements of nuclear power plants; So the charging pump can ensure the integrity of structure and the normal operation. (3) The maximum response displacement calculated occures in the central place of the outer shell, and it is 0.345 mm, much less than that of the gap (1 mm) between rotating parts and static parts, indicating that double-hull centrifugal charging pump in the structure meets seismic requirements. Seismic design of charging pump meets the Secondary Parts Requirements of nuclear power plants, ensuring the integrity and operation of the structure.
引文
[1]International Energy Agency. World energy outlook 2009[R]. Paris:IEA,2009
    [2]李全林.新能源与可再生能源[M].南京:东南大学出版社,2008
    [3]Energy Information Administration. International energy outlook 2009 [R], Washington: EIA,2009
    [4]国家发展和改革委员会.核电中长期发展规划(2005-2020年)[R],北京:发改委,2007
    [5]于华鹏.新兴能源产业发展规划已上报国务院[N].经济观察报(电子版),2010-10-28
    [6]国际能源署.能源技术展望-面向2050年的情景与战略[M].张阿玲,原鲲,石林,等译.北京:清华大学出版社,2009
    [7]International Energy Agency. CO2 Emissions from fuel combustion 2009[R]. Paris:IEA, 2009
    [8]世界气候大会.哥本哈根协议文件(中文版)[Rl,哥本哈根:世界气候大会,2009
    [9]中华人民共和国环境保护部.2009中国环境状况公报[R],北京:环保部,2009
    [10]周大地,韩文科.2003年中国能源问题研究[M].北京:中国环境科学出版社,2005
    [11]秦杰,邹声文.我国酸雨污染每年造成损失超过1100亿元[N].中国环境报,2003-10-31
    [12]杨东平.中国环境发展报告2009[M].北京:社会科学文献出版社,2009
    [13]史永谦.核能发电的优点及世界核电发展动向[J].能源工程.2007(1):1-6
    [14]International Atomic Energy Agency. Annual report 2009 [R], Vienna:IAEA,2009
    [15]Council of Europe. External costs:Research results on socio-environmental damages due to electricity and transport[R], Strasbourg:COE,2003
    [16]欧阳予,汪达升.国际核能应用及其前景展望与我国核电的发展[J].华北电力大学学报[J].2007,34(5):1-10
    [17]景继强,栾洪卫.世界核电发展历程与中国核电发展之路[J].东北电力技术,2008(2):48-51
    [18]胡亚蕾.核电先进堆型与我国核电发展[J].中国工程科学,2005,7(11):98-102
    [19]王延合,加快核电用泵国产化进程为核电建设提供优质产品[J].中国核工业,2006(10):24-25
    [20]杨旭红,叶建华,钱虹.我国核电产业的现状及发展[J].上海电力学院学报,2008,24(3):218-221
    [21]穆丽红,张增强,马俊杰.我国核电站核泵现状及国产化前景[J].水泵技术,2009(3):1-3
    [22]徐秀生.浅谈我国核电用泵的技术发展方向与目标[J].通用机械,2009(7):59-63
    [23]杨子春.对AP1000技术消化吸收的几点看法[J].核电通讯,2007(5):15-18
    [24]工业和信息化部.重大技术装备自主创新指导目录(2009年版)[R].北京:工信部,2009
    [25]隋永滨.核电泵阀国产化工作取得重要进展[J].通用机械,2009(5):13-17
    [26]袁寿其,付强,朱荣生.核电站离心式上充泵多工况水力设计[J].排灌机械工程学报,2010,28(4):185-189
    [27]袁寿其,朱荣生,付强.无过载离心泵叶轮的五工况点设计法:中国,2010101514771[P].2010-04-19
    [28]Joseph P Veres. Centrifugal and axial pump design and off-design performance prediction[J]. Prepared for the 1994 Joint Subcommittee and User Group Meetings. Snnuvale, California,1994(10):17~21
    [29]Neumann B. The interaction between geometry and performance of a centrifugal pump[M]. London:Mechanical Enginering Publications Limited,1991
    [30]李世煌.叶片泵的非设计工况及其优化设计[M].北京:机械工业出版社,2006
    [31]袁寿其.低比速离心泵理论与设计[M].北京:机械工业出版社,1997
    [32]Joseph P V. Centrifugal and axial pump design and off-design performance[R]. US: National Aeronautics and Space Administration,1995:17-21
    [33]Sun J, Tsukamoto H. Off-design performance prediction for diffuser pumps [J]. Journal of Power and Energy,2001,215(2):191-201
    [34]Cheah K W, Lee T S, Winoto S H, et al. Numerical flow simulation in a centrifugal pump at design off-design conditions [J]. International Journal of Rotating Machinery,2007:1-8
    [35]Wang Hong, Tsukamoto Hiroshi. Experimental and numerical study of unsteady flow in a diffuser pump at off-design conditions [J]. Journal of Fluids Engineering,2003,125(9): 767-778
    [36]Wuibaut G, Bois G, Dupont P. PIV measurements in the impeller and the vaneless diffuser of a radial flow pump in design and off-design operation conditions [J]. Journal of Fluids Engineering,2002,124(9):791-797
    [37]李春.现代水泵设计方法[M].上海:上海科学技术出版社,2010
    [38]Wu C H. A General theory of three-dimensional flow in subsonic and supersonic turbomachines of axial, Radial and Mixed Flow Types[J]. NACA TN2604,1952
    [39]陈乃祥,吴玉林.离心泵[M].北京:机械工业出版社,2003
    [40]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004
    [41]Pabruker H, Van denbraembussche R A. Inverse design of centrifugal impellers by simultaneous modification of blade shape and meridional contour[C]. Proceedings of the 45th ASME International Gas Turbine & Aeroengine Congress, Munich, Germany, May, 2000
    [42]Sloteman D, Sad A, Cooper P. Designing custom pump hydraulic using traditional method[C]. Proceedings of ASME Fluids Engineering Division Summer Meeting, New Orleans, USA, May,2001, Paper:FEDSM 20001~18067
    [43]Goto A, Nohmi M, Saurai T. Hydrodynamic design system for pumps based on 3-D CAD, CFD, and inverse design method[J]. Trans ASME, J of Fluids Eng,2002,124(2):329-335
    [44]Thum S, Schilling R. Optimization of hydraulic machinery bladings by multilevel CFD techniques[J]. International Journal of Rotating Machinery,2005(2):161-167
    [45]Goto A. Hydrodynamics design system for pumps based on 3-D CAD and inverse design method[J]. Proceedings of the ASME, FDESM2001-18068, May29-June 1,2001
    [46]忻孝康,蒋锦良.计算透平机械三元流动的任定准正交面方法[J].力学学报,1977(2):17-20
    [47]忻孝康,蒋锦良,朱世灿.计算透平机械三元流动的任定准正交面方法Ⅱ-S1流面翘曲的三元流动计算[J].力学学报,1979(1):24-28
    [48]Moore J, Moore J G. Three-dimensional viscous flow calculations for assessing the thermodynamic performance of centrifugal compressors-Study of the eckardt compressor[J]. ASME Journal of Enginnering for Power,1981,103:367-372
    [49]Shi Qingping, Ribando R J. Numerical simulations of viscous rotating flows using a new pressure-based method[J]. Computers Fluids,1992,21(4):475-489
    [50]Goede E, Sebestyen A, Schachenmann A. Navier-Stokes flow analysis for a pump impeller[C]. Proc of the 16th IAHR Sypm, Sao Paulo,1992:513-523
    [51]戴江.离心泵叶轮内固液两相紊流流动规律的研究[D].[博士学位论文],清华大学,1994
    [52]Wu Yulin, Oba R, Ikohagi T. Compuation on turbulent dilute liquid-particle flow in a centrifugal impeller[J]. Japanese J Multiphase Flow,1994(8):118-125
    [53]孙自祥.离心泵叶轮内部粘性/紊流流动分块隐式计算和实验测量研究[D].[博士学位论文],清华大学,1994
    [54]胡春波,姜培正,魏进家.离心泵叶轮内宾汉流体湍流流场的数值计算[J].应用力学学报,1999,16(2):104-107
    [55]袁寿其,陈池,郑铭,等.无过载离心泵叶轮内三维不可压湍流场计算[J].机械工程学报,2000,36(5):31-34
    [56]袁寿其,李昳,何朝辉.无堵塞离心泵内部三维固液两相湍流场数值模拟[J].机械工 程学报,2003,39(7):18-22
    [57]Jose Gonzales, Carlos Santolaria. Unsteady flow structure and global variables in a centrifugal pump[J]. Journal of Fluids Engineering,2006,128:937-945
    [58]Feng J, Benra F K, Dohmen H J. Unsteady flow visualization at part load conditions of radial diffuser pump:by PIV and CFD[J]. J of visualization,2009,12:65-72
    [59]Young-Do Choi, Junichi Kurokawa, Jun Matsui. Performance and internal flow characteristics of a very low specific speed centrifugal pump[J]. Journal of Fluids Engineering,2006,128(3):791-797
    [60]Shilong Chu. Relationship between unsteady flow, pressure fluctuations and noise in a centrifugal pump[D], Johns Hopkins University,1995
    [61]Daniel O Baun. Hydrodynamic forces in centrifugal pump and compressor impellers in volute casings:Measurements using magnetic bearings and CFD simulations[D], University of Virginia,2002
    [62]David Thiepxuan Cao. Design of a centrifugal pump for liquid fuel pumping application[D], Michigan State University,2002
    [63]李新宏,何慧伟,宫武旗,等.离心通风机整机定常流动数值模拟[J].工程热物理学报,2002,23(4):341-349
    [64]王企鲲,戴韧,陈康民.离心风机梯形截面蜗壳内旋涡流动的数值分析[J].工程热物理学报,2004,25(1):68-70
    [65]席光,党政,王尚锦.离心式动/静相干叶排内部非定常流动的数值计算[J].西安交通大学学报,2002,36(1):12-15
    [66]Dawes W N. A simulation of the unsteady interaction of a centrifugal impeller with its vaned diffuser:flow analysis[J]. Transactions of the ASME Journal of Turbomachinery, 1995,117(4):213-222
    [67]Baoshan Zhu, Kyoji Kamemoto. Simulation of unsteady interaction of centrifugal impeller with its diffuser using advanced vortex method[J]. JSME International Journal,2000,43(3) Serie B
    [68]Guleren K M, Pinarbasi A. Numerical simulation of the stalled flow within a vaned centrifugal pump[J]. Proc Instn Mech Engrs,2004,218:425-436
    [69]Gonzalez J, Fernandez J, Blanco E. Numerical simulation of the dynamic effects due to impeller-volute interaction in a centrifugal pump[J]. Trans ASME, J of Fluids Eng,2002, 124:348-355
    [70]Marigorta E B, Fernez-Francos J, Parrondo-Gayo J L. Numerical simulation of centrifugal pumps with impeller-volute interaction[C]. Proc ASME Fluids Engineering Summer Conference, Boston, USA, June 2000, FEDSM00-11162
    [71]耿少娟,聂超群,黄伟光,等.不同叶轮形式下离心泵整机非定常流场的数值研究[J].机械工程学报,2006,42(5):27-31
    [72]赵斌娟.双流道泵内非定常三维湍流数值模拟及PIV测试[D].[博士学位论文],江苏大学,2007
    [73]张金凤.带分流叶片离心泵全流场数值预报和设计方法研究[D].[博士学位论文],江苏大学,2008
    [74]袁建平.离心泵多设计方案下内流PIV测试及其非定常全流场数值模拟[D].[博士学位论文],江苏大学,2008
    [75]倪永燕.离心泵非定常湍流场计算及流体诱导振动研究[D].[博士学位论文],江苏大学,2008
    [76]谈明高.离心泵能量性能预测的研究[D].[博士学位论文],江苏大学,2008
    [77]朱荣生,付强,李维斌.低比速离心泵叶轮内汽蚀两相流三维数值模拟[J].农业机械学报.2006,35(5):123-128
    [78]Fu Qiang, Yuan Shouqi, Zhu Rongsheng. Pressure fluctuation and radial force in centrifugal pump with low specific speed[J]. The 2010 International Conference on Computer Application and System Modeling, Shanxi, Taiyuan,2010:276-280
    [79]Parkus H. Thermoelasticity[M]. Springer Verlag,1976
    [80]梅兰,H·帕尔库斯.由于定常温度场而产生的热应力[M].何善育译,科学出版社,1955
    [81]H帕尔库斯.非定常热应力[M].何善育,王同生译,北京:科学出版社,1965
    [82]Ian N Sneddon. The liner theory of thermo-elasticity[M]. Springer-Verlag.1974
    [83]Nowinski J L. Theory of thermoelasticity with applications[M]. Sijthoff&Noordhoff International Publishers B.V.1978
    [84]竹内洋一朗[日].热应力[M].郭廷玮,译.北京:科学出版社,1977
    [85]平修二[日].热应力与热疲劳[M].郭廷玮,李定安,译.国防工业出版社.1984
    [86]杨凤汽.轮机转子的热应力分析和疲劳寿命研究[D].[硕士学位论文].沈阳工业大学,2007
    [87]贠英伟.厚壁圆筒热冲击作用下应力分布研究[D].[硕士学位论文].哈尔滨工程大学,2004
    [88]张忠平.板在瞬态热冲击作用下的应力分析[D].[硕士学位论文].哈尔滨工程大学,2007
    [89]韩宇.多层组合圆筒体的传热和热应力分析[D].[硕士学位论文].东北大学,2006
    [90]张振伟,朱艳敏,李学兵.旋转闪蒸干燥机叶片的瞬态热分析[J],机械设计与制造, 2007(6):63-64
    [91]Takeuti Y, Furukawa T. Some considerations on thermal shock problems in a plate[J]. Journal of Applied Mechanics.1981,48(3):113-118
    [92]Shiptitsina E M. Dynamic behavior of a hollow sphere in thermomechanical shock[J]. Soy. Appl, Mech,1980,15(5):663-666
    [93]Misra J C, Samanta S C. Thermal shock in a viscoelastic half-space[J]. J Thermal Stresses, 1982,3(3-4):365-376
    [94]Chih Horng Ho. Stress-focusing effect in a uniformly heated cylindrical rod[J]. ASME J, 1976,43(5):464-468
    [95]王熙.在热冲击作用下圆柱体的动应力集中效应的解析解[J].振动与冲击,1996,15(3):28-33
    [96]洪纲.热弹性力学概论[M].北京:清华大学出版社,1989
    [97]H·帕尔内库斯.非定常热应力[M].何善育[译].北京:科学出版社,1965
    [98]曹清,吴益敏,张直明.核电水泵在热冲击下瞬态热效应的研究和分析[J].上海大学学报(自然科学版),1995,1(6):633-639
    [99]Biot, M A. Thermoelasticity and irreversible thermo-dynamics[J]. Journal of Applied Physics,1956(27):240-247
    [100]Boley B A, Weiner J H. Theory of thermal stress[M]. John Wiley & Sons Inc,1960
    [101]范绪箕,陈国光.关于热弹性力学的耦合理论[J].力学进展,1982,12(4):339-345
    [102]Shinozuka M, Hwang H, Reich M. Reliability assessment of reinforced concrete containment structures[J]. Nuclear Engineering and Design,1984,80(2):257-267
    [103]Karasudhi P, Wijeyewickrema A C, Lai T. Seismic response to a prescribed seismogram of a body embedded in a multilaered half space[J]. Comptational Mechanics,2003, (22):70-76
    [104]Chin-Hsiung Loh, Tsu-Chiu Wu. System identification of fei-tsui arch dam from forced vibration and seismic response data[J]. Journal of Earthquake Engineering,2000,4(4): 511-537
    [105]Mahendra P.Singh, Sarbjeet Singh, Enrique E Matheu. A response spectrum approach for seismic performance evaluation of actively controlled structures[J]. Earthquake Engineering & Structural Dynamics,2000,29(7):1029-1051
    [106]张征明,王金海,何树延.1OMW高温气冷堆蓄电池防震架的抗震计算[J].核动力工程,2001,22(5):429-432
    [107]李忠诚,李忠献.大亚湾核电厂反应堆厂房地震响应分析评估[J].核动力工程,2005,26(6):614-617
    [108]孙柏涛,刘殿魁,丰彪.巴基斯坦恰希玛核电站用P300工程核级冷冻机组抗震力学性能计算分析[J].地震工程与工程振动,2000,20(2):61-67
    [109]朱林剑,孙守林.130/10t核级专用桥式起重机抗震分析[J].起重运输机械,1997(7):7-11
    [110]阮善发XKL-W1型动力箱样机核级(1E)抗震试验研究[J].地震工程与工程振动,2005,25(3):172-176
    [111]盛选禹,雒晓卫,傅激扬.反应堆主泵抗震强度的三维实体模型计算[J].核动力工程,2005,26(5):471-474
    [112]周文建,陈宏,闻邦椿.核电站反应堆冷却剂泵的地震响应分析[J].振动与冲击,2006,25(1):32-35
    [113]杨晓丰,张勇,孙柏涛,等.核电站用屏蔽泵的抗震力学性能计算分析[J].世界地震工程,2007,23(3):47-53
    [114]李宝良,吴海鹏,江亲瑜.高压离心水泵系统抗震性能的研究[J].大连铁道学院学报,2006,27(4):22-25
    [115]戚承志,钱七虎.核电站抗震研究综述[J].地震工程与工程振动,2000,20(3):76-86
    [116]马成松,苏原.结构抗震设计[M].北京:北京大学出版社,2006
    [117]Der Kirueghian. A Response spectrum method for random vibration analysis of MDF systems[J]. Earthquake Engineering and Structural Dynamics,1981,9:419-435
    [118]Yamamura N, Tanaka H. Response analysis of flexible MDOF systems for multiple-support seismic excitation[J]. Earthquake Engineering and Structural Dynamics, 1992,19:345-357
    [119]Berrah M, Kausel E. Response spectrum analysis of structures subjected to spatially varying motions[J]. Earthquake Engineering and Structural Dynamics,1992,21:461-470
    [120]Berrah M, Kausel E. A modal combination rule for spatially varying seismic motions[J]. Earthquake Engineering and Structural Dynamics,1993,22:791-800
    [121]Kiureghian A D, Neuenhofer A. Response spectrum method of multi-support seismic excitations[J]. Earthquake Engineering and Structural Dynamics,1992,21:713-740
    [122]Loh C H, Ku B D. An efficient analysis of structural response for multiple-support seismic excitations[J]. Engineering Structures,1995,17(1):15-25
    [123]Kahan M, Gibert R. Influence of seismic waves spatial variability on bridges:a sensitivity analysis[J]. Earthquake Engineering and Structural Dynamics,1996,25:795-814
    [124]王君杰.多点多维地震动随机模型及结构的反应谱分析[D].[博士学位论文],国家地震局工程力学研究所,1992
    [125]王淑波.大型桥梁抗震反应谱分析理论及应用研究[D].[博士学位论文],同济大学, 1998
    [126]夏友柏,王年桥.多点地震激励下基于改进振型位移法的反应谱方法[J].世界地震工程,2003,19(1):164-169
    [127]李杰,李建华.多点激励下结构随机地震反应分析的反应谱方法[J].地震工程与工程振动,2004,24(3):21-29
    [128]刘先明,叶继红,李爱群.多点输入反应谱法的理论研究[J].土木工程学报,2005,38(3):17-22
    [129]Allam S M, Datta T K. Analysis of cable-stayed bridges under multi-component random ground motion by response spectrum method [J]. Engineering Structures,2000, 22:1367-1377
    [130]Heredia-Zavoni E, Vammarake E H. Seismic random vibration analysis of multi-support structural systems[J]. Journal of Engineering Mechanics,1994,120(5):1107-1128
    [131]刘洪兵.大跨度桥梁考虑多点激励及地形效应的地震响应分析[D].[博士学位论文],北方交通大学,2000
    [132]孙建梅.多点输入下大跨空间结构抗震性能和分析方法的研究[D].[博士学位论文],南京:东南大学,2005
    [133]苏亮.大跨空间结构的多点反应谱法和多点地震反应性状的研究[R].[博士后研究工作报告],浙江大学,2007
    [134]全伟.大跨桥梁多维多点地震反应分析研究[D].[博士学位论文],大连理工大学,2008
    [135]Zembaty Z, Krenk S. Spatial seismic excitations and response spectra[J]. Journal of Engineering Mechanics,1993,119(12):2449-2460
    [136]Jeng V, Kasai K. Spectral relative motion of two structures due to seismic travel waves[J]. Journal of Structural Engineering,122(10):1128-1135
    [137]Trifunac M D, Todorovska M I. Response spectra for differential motion of columns[J]. Earthquake Engineering and Structural Dynamics,1997,26:251-268
    [138]Trifunac M D, Gicev V. Response spectra for differential motion of columns paper Ⅱ:Out of plane response[J]. Soil Dynamics and Earthquake Engineering,2006,26:1149-1160
    [139]Su L, Dong S L, Kato S. A new average response spectrum method for linear response analysis of structures to spatial earthquake ground motions[J]. Engineering Structures, 2006,28(13):1835-1842
    [140]吴迪忠,赵新运.能动断层对核电厂选址的影响[J].核动力工程,1989,10(4):298-301
    [141]方庆贤.核电厂设备抗震鉴定的评审[J].核动力工程,1995,16(5):394-400
    [142]刘永昌,孙柏涛.核电站机电设备抗震性能试验鉴定若干问题[J].地震工程与工程振动,1999,19(3):68-73
    [143]孙凌,王俊,王莉,等.核电站用冷热交换器抗震性能研究[J].世界地震工程,2002,18(2):137-142
    [144]张明,罗学军,姚伟达.核电厂设备抗震鉴定的评审[J].核动力工程(增刊),2002,23(2):148-156
    [145]胡少卿,孙柏涛.核电站用三相异步电动机的抗震力学性能计算分析[J].地震工程与工程振动,2006,26(6):133-137
    [146]刘玉民,孙开明,张帆.核电站鼓型滤网设备抗地震设计研究[J].机械强度,1998,20(3):223-226
    [147]付强,袁寿其,朱荣生.核电站燃料厂房辅助吊车抗震计算[J].机械设计与研究,2010(6):129-134
    [148]付强,袁寿其,朱荣生.1000MW核电站SEC系统鼓型滤网抗震计算[J].核动力工程,2010(6)
    [149]Hollander H. Double casing pump:United States,1984643[P].1933-05-06
    [150]Nelson A J. Double case pump:United States,2374122[P].1942-11-05
    [151]Edward Hart. Double-casing high-pressure pump:United States,2374122[P].1944-06-31
    [152]Ross H L. Double casing pump:United States,2668503[P].1949-10-26
    [153]Hasan F Onal. Centrifugal pump with integral seal pressure balance:United States, 3718406 [P].1973-02-28
    [154]Scott James Shuey, Wallace Leland Smith, Harold G Wilk. Multi-stage centrifugal pump with means for pulse cancellation:United States,3788764[P].1974-01-29
    [155]Richard M Nelson. Case construction for multi-stage pump:United States,4277223[P]. 1981-07-07
    [156]Johannes A Mulders. Hydrostatic bearing for pumps and the like:United States, 4684318[P].1987-08-04
    [157]Shinichirou Kameda. High pressure multistage pump:United States,5846052[P]. 1998-12-08
    [158]Bao Wang, Bernhard Brecht, Juergen Schill. Balancer for multistage centrifugal pumps: United States,6568901 [P].2003-05-27
    [159]袁寿其,朱荣生,付强.一种核电站用离心式上充泵:中国,2010101514786[P].2010-04-19
    [160]Stefania Della Gatta, Simone Salvadori, Paolo Adami, et al. CFD study for assessment of axial thrust balance in centrifugal multistage pumps[C]. The 13th International Conference on Fluid Flow Technologies. Budapest, Hungary, September 6-9,2006
    [161]Gantar M, Florjancic D, Sirok B. Hydraulic axial thrust in multistage pumps-origins and solutions[J], ASME J Fluids Engineering,2002,124:336-341
    [162]Raghu Kumar B, Ramana K V, Mallikharjuna Rao K. Condition monitoring and fault diagnosis of a boiler feed pump unit[J]. Journal of Scientific.2009,68(9):789-793
    [163]Shirong Zhang, Changxi Li. Diagnosis and control system for cavitation in boiler feed pump [J]. Advances in Systems Science and Applications,2006,6(2):269-275
    [164]Marjan Gantar, Dusan Florjancic, Brane Sirok. Hydraulic axial thrust in multistage pumps[C].2001 ASME Fluids Engineering Division Summer Meeting, New Orleans, Louisiana,2001
    [165]Harald Roclawski, Hellmann D H. Numerical simulation of a radial multistage centrifugal pump[C].44th AIAAAerospace Sciences Meeting and Exhibit, Reno, Nevada,2006
    [166]Roclawski H, Hellmann D H. Rotor-stator interaction of radial centrifugal pump stage with minimum stage diameter[C]. Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Elounda, Greece,2006,21-23(8):301-308
    [167]Wolfram Lienau, Paul Meuter. Transient behaviour of a large barrel type boiler feed pump[C]. The 4th International Conference on pumps and fans, China,2002:273-277
    [168]Bachschmid N, Pennacchi P, Tanzi E. Crack detectability in vertical axis cooling pumps during operation[J]. International Journal of Rotating Machinery,2004(10):121-133
    [169]Yasuhiro Sasaki, Kazuyuki Obata, Osamu Hisai, et al. Improved shaft seal for 93A type reactor coolant pump[J]. Mitsubishi Heavy Industries, Ltd.Technical Review,2005,42(1): 1-2
    [170]Lin Jier Young, Lifetime evaluation of cracked shaft sleeve of reactor coolant pump under thermal striping[J]. International Journal of Solids and Structures,2001,(38):8345-8358
    [171]Nasir M Mirza, Muhammad Rafique, Muhammad Javed Hyder, et al. Computer simulation of corrosion product activity in primary coolant of a typical PWR under flow rate transients and Linearly accelerating corrosion[J]. Annals of Nuclear Energy,2003, (30): 831-851
    [172]Pavlin Groudev, Antoaneta Stefanova. Validation of RELAP/MOD3.2 model on trip off one coolant pump for VVER 440/V230[J]. Nuclear Engineering and Design,2006, (236): 1275-1281
    [173]Jae Cheon Jung, Poong Hyun Seong. An improved method for reactor coolant pump abnormality monitoring using power line signal analysis[J]. Nuclear Engineering and Design,2006, (236):57-62
    [174]黄经国.压水堆核电厂冷却剂主循环泵的技术历程和发展(Ⅰ)[J].水泵技术,2009(4):1-8
    [175]黄经国.压水堆核电厂冷却剂主循环泵的技术历程和发展(Ⅱ)[J].水泵技术,2009(5):1-7
    [176]李颖,周文霞,张继革,等.核反应堆冷却剂循环泵全流道三维数值模拟及性能预估[J].原子能科学技术,2009,43(10):898-902
    [177]孙启国.核泵推力轴承弹性支承的强度和刚度分析[J].兰州铁道学院学报(自然科学版),2000,19(1):14-17
    [178]Tom Pearson, Peter Douglas, Don Gurley. Centrifugal and positive displacement charging pump maintenance guide [R]. EPRI,1997
    [179]JNES. Break of charging pump main shaft:Ikata power station Unit-3[R]. Currentstatus of Nuclear Facilities in Japan.2004:25-26
    [180]顾全生.上充泵/高压安注泵的启动问题[J].核电工程与技术,2003(1):20-22
    [181]雷合成.上充泵零流量管线安全阀波纹管破裂原因分析及处理[J].阀门,2009(4):42-44
    [182]王延合,于水.300MW核电站上充泵的设计[J].水泵技术,1999(2):6-9
    [183]邬强,王川.压水堆核电站上充泵的去污实践及其理论探讨[J].原子能科学技术,2009,43(2):174-179
    [184]许德忠,孔令杰,林冲CPR1000MW核电站上充泵介绍[J].水泵技术,2007,(6):9-14
    [185]欧阳予.秦山核电工程[M].北京:原子能出版社,2002
    [186]核工业第二研究设计院.上充泵技术规格书[内部资料].2003
    [187]关醒凡.现代泵设计手册[M].北京:宇航出版社,1995
    [188]郭自杰,任俭,景思睿.离心泵蜗壳结构参数对泵性能的影响[J].水泵技术,1993(1):19-21
    [189]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,2002
    [190]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001
    [191]Saeed Moaveni有限元分析-ANSYS理论与应用(第三版)[M].王崧,刘丽娟,董春敏,译.北京:电子工业出版社,2008
    [192]唐兴伦ANSYS工程应用教程热与电磁学篇[M].北京:中国铁道出版社,2003
    [193]胡聿贤.地震工程学[M].北京:地震出版社,1990
    [194]谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2006
    [195]沈聚敏,周锡元,高小旺,等.抗震工程学[M].北京:中国建筑工业出版社,2000
    [196]R.克拉夫,J.彭津.结构动力学(第二版)[M].王光远译.北京:高等教育出版社,2006
    [197]Anil K Chopra结构动力学理论及其在地震工程中的应用(第二版)[M].谢礼立译.北京:高等教育出版社,2006
    [198]彭俊生,罗永坤,彭地.结构动力学、抗震计算与SPA2000应用[M].成都:西安交通 大学出版社,2007
    [199]陈惠发,段炼.桥梁工程抗震设计[M].蔡中民,武军,译.北京:机械工业出版社,2008
    [200]国家标准局.GB/T 16702压水堆核电厂核岛机械设备设计规范[S].北京:中国标准出版社,1994
    [201]刘胜柱,郭鹏程,罗兴锜.离心泵叶轮内的网格生成与计算流体动力学分析[J].农业工程学报.2004(9):78-81
    [202]朱自强.应用计算流体力学[M].北京:北京航空航天大学出版社,1999
    [203]成晓伟.离心泵转子部件临界转速的分析与计算[D].[硕士学位论文],兰州理工大学,2009
    [204]闻邦椿.高等转子动力学,理论,技术与应用[M].北京:机械工业出版社,2000
    [205]钟一谔,何衍宗,王正,等.转子动力学[M].北京:清华大学出版社,1987
    [206]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007
    [207]何洪庆,张小龙,沈达宽,等.涡轮泵转子的临界转速研究(Ⅲ)计入液体作用力时涡轮泵转子的临界转速[J].推进技术,1999,20(2):42-44
    [208]胡敬宁,江伟,叶晓琰,等.万吨反渗透海水淡化高压泵级数的优化选择[J].排灌机械工程学报,2010,28(1):31-34
    [209]国家标准局.GB50267-97核电厂抗震设计规范[S].北京:中国计划出版社,1998
    [210]鞠红慧,潘立斌,史运贞.核电泵的抗震指标[J].通用机械,2007(8):86-89
    [211]包世华.结构动力学[M].武汉:武汉理工大学出版社,2005
    [212]ASME ND-3400. Boiler and pressure vessel code Ⅲ:Rules for construction of nuclear facility vomponents, ND-3400:pump design[S], ASME,2010
    [213]Shibata H. Recent development of aseismic design practice of equipment and piping system in japan[J], Transactions of the ASME, Journal of Pressure Vessel Technology, 1993,115
    [214]IEEE Std 344-2004. Recommended practice for seismic qualification of class 1E equipment for nuclear power generating stations [S], IEEE, New York,2004
    [215]李忠诚,赵风新.不同法规关于核电厂设计地震动合成的技术要求比较[J].核动力工程,2006,27(2):17-21
    [216]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700