用户名: 密码: 验证码:
东北地区玉米主要气象灾害风险评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国主要农区受多种气象灾害的影响,作物产量损失严重。准确、定量地评估农业气象灾害风险对农业可持续发展及防灾减灾对策和措施的制定意义重大。将自然灾害风险评估理论和技术应用于农业领域,从农业气象灾害风险的形成机理出发,对农业气象灾害孕灾环境的危险性、承灾体的暴露性、脆弱性及防灾减灾能力的综合评估是农业气象灾害风险评估的最新方向。目前,国内外研究大多是农业气象灾害危险性和承灾体脆弱性研究,尚未涉及多种气象灾害的风险研究,无法反映真实气象条件下农业面临的综合风险;作物在不同发育期或发育阶段遭受气象灾害对最终产量的影响就会不同,现有研究基本是基于作物整个生育期,没有区分灾害发生在哪个发育期或发育阶段,鲜有贯穿作物发育全过程的风险评估。
     针对目前国内外研究中存在的问题,本文利用东北地区48个气象站1961-2010年气象资料、48个农气站1980-2010年玉米发育期资料、近50年产量面积资料、近10年灾情资料及土壤资料等多元数据,以东北地区玉米播种—七叶、七叶—抽雄、抽雄—乳熟、乳熟—成熟4个发育阶段冷害、干旱、涝害主要气象灾害的分析为基础,以基于自然灾害风险理论和评价技术的风险评价指标体系和模型构建为重点,研究东北地区玉米主要气象灾害风险评价技术。首先,构建冷害指数、水分盈亏指数识别作物不同发育阶段的冷害、干旱和涝害,分析发育阶段主要气象灾害的时空分布及演变规律。其次,根据自然灾害风险理论,从农业气象灾害风险的形成机制出发,建立完备的发育阶段主要气象灾害风险评价指标体系,利用自然灾害风险指数法构建东北玉米发育阶段及整个生育期主要气象灾害风险评价模型。利用系统聚类分析方法对主要气象灾害风险指数进行区划。主要结论如下:
     1.东北地区玉米发育阶段热量及冷害变化
     (1)4个发育阶段的年代际热量指数基本呈带状分布,东南部的长白山地最低,由东南(或东)向西北(或西)方向递增;近50a来,热量指数总体表现为明显的增加趋势,
     21世纪初的热量条件为近50a最好。
     (2)整个生育期全区平均冷害强度呈极显著的减弱趋势,地区间冷害变化趋势呈现差异化的特征,冷害强度减弱趋势由西南向东北方向递增。中熟区冷害强度呈显著的下降趋势,中晚熟区略有下降趋势,晚熟区则略有上升趋势。
     (3)4个发育阶段的冷害频率表现为减小趋势,20世纪80年代起冷害频率有比较明显的下降,21世纪初的冷害程度最低。4个发育阶段冷害强度的突变均发生在90年代中期,突变之后冷害强度明显降低。
     2.东北地区玉米发育阶段水分供需及旱涝分布
     (1)近50a整个生育期需水量没有显著增加。乳熟一成熟,有显著的干旱化趋势,其它3个阶段和整个生育期没有较明显的旱涝变化。
     (2)播种—七叶、七叶—抽雄,东北大部分地区中旱及以上频率在10%以下;抽雄—乳熟、乳熟—成熟,中旱及以上频率由西北向东南方向递减,松嫩平原西部和辽宁西部为高发区,频率在30%-50%。
     (3)播种—七叶,东北大部分地区中涝及以上频率在10%以下;后3个阶段,中涝及以上频率由东南向西北方向递减,辽宁东南部和吉林东南部为高发区,频率在30%-50%。
     (4)发育阶段全域性、区域性中旱及以上、中涝及以上灾害有较明显的年代际变化。80年代起全域、区域干旱和涝害的发生次数明显增加。
     3.东北玉米发育阶段主要气象灾害评价指标选取及模型构建
     (1)采用孕灾环境多指标法,从东北玉米主要气象灾害孕灾环境指标的气象学、生物学意义出发,选取主要气象灾害危险性指标;从承灾体暴露性、脆弱性的内涵出发选取评估指标;鉴于防灾减灾能力相对滞后的研究现状,选用区域农业水平综合反映防灾减灾能力,形成了比较完备的发育阶段主要气象灾害风险评价指标体系。
     (2)利用加权综合评分法和层次分析法,建立作物发育阶段单一灾种危险性评价模型;利用孕灾环境危险性指标及灾害频率综合反映主要气象灾害危险性,采用加权综合评分法构建作物发育阶段主要气象灾害危险性评估模型,根据各主要气象灾害的频率之比确定冷害、干旱、涝害危险性指数的权重系数。
     (3)采用自然灾害风险指数法构建作物发育阶段主要气象灾害风险评估模型。在发育阶段主要气象灾害风险评估的基础上,根据作物减产率与各发育阶段主要气象灾害风险指数的相关程度确定各阶段风险指数的权重系数,利用加权综合评分法建立作物整个生育期主要气象灾害风险评估模型。然后,利用系统聚类分析方法对作物4个发育阶段及整个生育期主要气象灾害风险指数进行区划。
     4.东北玉米主要气象灾害风险评估与区划
     (1)作物发育阶段主要气象灾害危险性的分布有一定的区域差异和连续性。播种一七叶,中高值区主要分布在黑龙江东南部、吉林东部,低值区主要分布在辽宁中偏北地区;七叶—抽雄,高值区主要分布在辽宁东南部,低值区连片性较差;抽雄一乳熟、乳熟—成熟,中高值区主要分布在松嫩平原西部,低值区主要分布在吉林中东部。
     (2)玉米暴露性从东北到西南呈递增趋势,中高值区主要分布在除辽西以外的辽宁大部分地区、吉林中部地区;中值区呈西北一东南走向分布在松嫩平原和吉林东北部;低值区主要分布在黑龙江中东部和吉林东北部。
     (3)播种—七叶、七叶—抽雄脆弱性指数分布的连续性较差,后2个阶段脆弱性指数有比较连续的分布。防灾减灾能力指数的低值区主要分布在东北地区西部及吉林东北部,中高值区呈东北—西南走向分布在东北地区中部,
     (4)播种—七叶,主要气象灾害风险指数基本呈东北一西南走向的带状分布,中低值区分布在东北地区中部,中高值区主要分布在东北地区西部和东部;七叶—抽雄,主要气象灾害风险指数基本由东北向西南方向递增,低值区主要分布在黑龙江和吉林东北部,中高值区主要分布在东北地区西部、吉林东南部、辽宁的东部和南部;抽雄—乳熟、乳熟—成熟及整个生育期,风险指数基本由东向西递增,松嫩平原和辽宁为风险指数中高值区。
The major agricultural areas of China are affected by a variety of meteorological disasters which bring heavy losses for crop yield. Accurate and quantitative assessment of agro-meteorological disaster risk is very meaningful for sustainable agricultural development and development of disaster prevention and mitigation policies. The current research direction in assessment of agro-meteorological disasters is comprehensive assessment of hazard of disaster-forming environment, exposure and vulnerability of the bearing body, capability of mitigation and prevention according to the theory of natural disaster risk assessment and the formation mechanism of the agro-meteorological disaster risk. At present, researches were mainly focused on agro-meteorological disaster hazard and vulnerability of disaster-affected body, and few researches were related to the risk of several meteorological disasters, not exactly reflecting the comprehensive risk faced by agriculture under real meteorological conditions. Meteorological disasters occurred at different crop growth stages have different influence on final crop yield. Present research mainly based on the whole crop growth season. Crop development stages when disaster happens are not usually specified, and few disaster risk assessment throughout the whole crop development process exists.
     Aimed at the current problems, multivariate data including meteorological data of48meteorological stations across the Northeast China from1961to2010, the maize development record (from1980to2010), sowing areas and yield (from1961to2010), and soil moisture and agriculture disaster data (from1992-2010) collected by48agro-meteorological observation stations, were used. Based on the analysis of meteorological disasters such as chilling, drought and flood during the stages of sowing to seven-leaf, seven-leaf to tasseling, tasseling to milky ripening, and milky ripening to maturation of maize in Northeast China, the risk assessment technology of the main meteorological disasters for maize in Northeast China was studied mainly focused on the index system and model establishment of the main meteorological disasters risk assessment based on natural disaster risk theory and assessment technique. The chilling damage index and the crop water surplus deficit index were first established to identify chilling damage, drought and flood disaster during different growth stages of crop, and the temporal-spatial distribution and the variation rules for different growth stages of the main meteorological disasters were analyzed. According to the theory of natural disaster risk, starting from the formation mechanism of agricultural meteorological disaster risk, a fairly complete index system of the main meteorological disasters risk assessment was then built, and the main meteorological disaster risk assessment models of growth stages and the whole growth period of crop were established using natural disasters risk index method. The values of risk indices of growth stages and the whole growth period were finally regionalized using the method of system cluster. The main conclusions are as following:
     1. Thermal resource and chilling damage changes during the maize growth stages in northeast China
     (1) Interdecadal variability of heat index for the four growth stages generally exhibited band distribution rule, the lowest value lay in the Changbai Mountains of the southeast, and the value increased gradually from southeast(or east) to northwest(or west). In recent50yrs, the heat index had an obvious increase, which showed the best thermal condition in the early21st century.
     (2) The average chilling damage of the whole growth period in all areas experienced a significant decreasing trend, but the intensity varied between areas, basically presenting a stepped rise from southwest to northeast. The chilling damage intensity significantly decreased for areas with maize ripening in the middle of the season. In contrast, the chilling damage intensity increased over the areas with maize ripening late of the season. An in-the-middle situation occurred in the areas with middle-late-season ripening maize.
     (3) The frequency of chilling damage of the four growing stages showed an overall decreasing trend, and a significant reduction of frequency appeared in the1980s. The frequency of chilling damage reached the lowest degree in the early21st century. The abrupt change of chilling damage intensity during the four growing stages occurred in the middle of1990s, and then decreased obviously.
     2. Distribution of water demand and supply, drought and flood during the maize growth stages in northeast China
     (1) The water demand during the whole growing period didn't have an appreciable increase trend in the recent50years. There was an obvious increase trend of drought during the stage from milky ripening to maturation, while during the other three stages and the whole growth period, there was no obvious change of drought or flood.
     (2) From sowing to seven-leaf and seven-leaf to heading, the frequency of middle drought or above in the most parts of Northeast China was less than10%; while from heading to milky ripening and milky ripening to maturation, the frequency of middle drought or above decreased from northwest to southeast, and the west of Songnen Plain and western part of Liaoning Province were the high-incidence areas, the frequency was between30%and50%.
     (3) From sowing to seven-leaf, the frequency of middle flood or above was less than10%; while during the followed three stages, it decreased from southeast to northwest, and the southeast part of Liaoning Province and Jilin Province were the high-incidence areas, the frequency was between30%and50%.
     (4) Widespread and regional middle drought or above and flood or above of growth stages had an obvious interdecadal change. From1980s, the number of widespread and regional middle drought or above and flood or above increased significantly.
     3. Selection of index and establishment of model of the main meteorological disasters risk assessment during growth stages of maize in northeast China
     (1) Hazard indices of the main meteorological disasters were selected using multi-index method for environment causing the disaster according to meteorological and biological significance of the main meteorological disaster-pregnant environment index. According to the connotation of exposure and vulnerability for the hazard bearing body, indices were selected for risk assessment. Based on the relative lag situation of disaster prevention and mitigation, the regional agricultural level was used to comprehensively reveal the preventing and mitigating capability, and a fairly complete index system of the main meteorological disasters risk assessment was developed.
     (2) Using synthetic weighted mark method and analytic hierarchy process (AHP), the model of hazard assessment of growth stages of crop for a single disaster was built. Combining the hazard index of disaster-pregnant environment index and occurrence frequency of the main meteorological disasters, the main meteorological disasters hazard assessment model was built by adopting AHP, and the weight coefficients were determined by the ratio of the frequency of the main meteorological disasters.
     (3) Using natural disaster risk index method, the model of the main meteorological disasters risk assessment of the growth stages of crop was established. Based on the values of risk index of the main meteorological disasters of the growth stages, according to correlation relationship between yield reduction rate and the values of the main meteorological disasters risk, the weight coefficients were determined, and the model of the main meteorological disasters risk assessment of the whole growth period of crop was established using synthetic weighted mark method. Then, using the system cluster analysis, the risk of the four growth stages and the whole growth period of crop were identified.
     4. The main meteorological disasters risk assessment and identification of maize in northeast China
     (1) The distribution of hazard of the main meteorological disasters of the growth stages of crop revealed regional differences and continuity. From sowing to seven-leaf, high values mainly distributed in the southeast of Heilongjiang Province and East of Jilin Province, low values in the middle northern part of Liaoning Province. From seven-leaf to tasseling, the high value areas mainly distributed in the southeast of Liaoning Province, and the low values with poor contiguous. For both growth stages from tasseling to milky ripening and from milky ripening to maturation, the middle-high range lay in the west of Songnen Plain while the low value range lay in the middle-east of Jilin Province.
     (2) Exposure of maize showed an increase trend from the northeast to the southwest, high value mainly distributed in most part of Liaoning province except the western part and the middle area of Jilin Province; Middle values were located in the Songnen Plain and the northeast of Jilin Province from southeast to northwest, and the low value in the middle-east of Heilongjiang and the northeast of Jilin Province.
     (3) Continuity of the vulnerability index from sowing to seven-leaf and from seven-leaf to tasseling stages was not obvious. During the next two stages of crop the vulnerability index distributed continuously. And the low values of preventing and mitigating capability were mainly located in the west of northeast China and northeast of Jilin Province, while the high values distributed in the middle of northeast China from northeast to southwest.
     (4) During the stage from sowing to seven-leaf, the value of the main meteorological disasters risk presented a band distribution from northeast to southwest, with low value areas mainly distributed in the middle of northeast China, while high value areas mainly distributed in the west and east of northeast China. During the stage from seven-leaf to heading, the value of risk mainly increased from northeast to southwest, with low value areas distributed in Heilongjiang Province and the northeast of Jilin Province, and the high value areas mainly situated in the west of the northeast China, southeast of Jilin Province and eastern and southern of Liaoning Province. From heading to milky ripening, milky ripening to maturation and the whole growing period, the value of risk increased from east to west, and the middle-high value areas were mainly located in Songnen Plain and Liaoning Province.
引文
1. Adger WN. Vulnerability[J]. Glob Environ Change,2006,16:268-281.
    2. Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration:guidelines for computing crop water requirements[R]. FAO Irrigation and Drainage paper 56, Rome,1998.
    3. Ammann W J. Coping with Risk due to Natural Hazards in the 21st Century. Monte Verita/Ascona ISDR, United Nations.2004. Living with Risk:A Global review of disaster reduction initiatives.2004
    4. Ashcroft R, Dawson A, Draper H, McMillan J. Principles of Health Care Ethics[M]. Chichester:John Wiley and Son,2007.
    5. Beck U. Risk Society:Towards a New Modernity[M]. London:Sage Publications,1992.
    6. Berger W H, Labeyrie L D. Abrupt climatic change, evidence and implications[J]. Mathematical and Physical Sciences,1987,216:173-183.
    7. Birkmann J. Measuring Vulnerability to Hazards of National Origin [M]. Tokyo:UNU Press,2006.
    8. Blaikei P, Cannon T, Davis I, et al. Risk:Natural hazard, people's vulnerability and Disasters [M]. London:Routledge,1994:147-167.
    9. Brabb E E, Pampeyan E H, Bonilla M G. Landslide Susceptibility in San Mateo County, California. US Geological Survey Miscellaneous Field Studies Map MF-360,scale 1:62500,1972.
    10. Burton I, Kates R W, White G F. The Environment as Hazard, second Edition[M]. New York:The Guilford Press,1993.
    11. Dalezios N R, Papazafiriou Z G, Papamichail D M. Drought assessment for the potential of precipitation enhancement in northern Greece[J]. Theoretical and Applied Climatology,1991,44(2): 75-88.
    12. Cardona O D, Hurtado J E, Chardon A C, et al. Indicators of disaster risk and risk management Main technical report [R]. Program for Latin America and the Caribbean IADB-UNC/IDEA, World Bank, 2005:1-216.
    13. Dilley M, Chen R S, Deichmann U, et al. Natural Disaster Hotspots:a global risk analysis-synthesis report. http://publication.worldbank.org/ecommerce/catalog/product? item_id=4302005,2005.
    14. Eakin H, Luers AL. Assessing the vulnerability of social-environmental systems[J]. Ann Rev Environ Resour,2006,31:365-394.
    15. Elisabeth Simelton, Evan D G Fraser, Mette Termansen. Typologies of crop-drought vulnerability:an empirical analysis of the socio-economic factors that influence the sensitivity and resilience to drought of three major food crops in China(1961-2001)[J]. Environmental Science & Policy,2009,12: 438-452.
    16. Evan D G, Fraser, Mette T, et al. Quantifying socioeconomic characteristics of drought-sensitive regions:Evidence from Chinese provincial agricultural data[J]. C R Geoscience,2008,340:679-688.
    17. Fabiano T, Evandro H J. The effects of land tenure on vulnerability to droughts in Northeastern Brazil[J]. Global Environmental Change,2008,18:575-582.
    18. FEMA. Using HAZUS-MH for Risk Assessment. http://www.fema.gov/plan/prevent/hazus/dl fema433.shtm.2004.
    19. FEMA. HAZUS-MH:Earthquake Event Report.http://www.cusec.org/hazus/centralus/rt_golbal.pdf. 2005.
    20. Fussel HM, Klein RJT. Climate change vulnerability assessments:an evolution of conceptual thinking[J]. Clim Change,2006,75:301-329.
    21.GB/T 20481—2006,气象干旱等级[S].
    22.GB/T xxx—2009,农业干旱等级[S](审定稿).
    23. Greving. Multi-risk assessment of Europes region. In:Birkmann J.ed. Measuring Vulnerability to Hazards of National Origin. Tokyo:UNU Press,2006.210-226.
    24. Hardy C C. Wildland fire hazard and risk:problems, definitions, and context[J]. Forest Ecology and Management,2005,211(1-2):73-82.
    25. Hong Wu, Wilhite D A. An operational agricultural drought risk assessment model for Nebraska [J]. Natural Hazards,2004,33:1-21.
    26. IPCC. Climate change 2007:the physical science basis, summary for policy makers[R]. IPCC WGI Fourth Report, Paris,2007a.195-199.
    27. IPCC. Summary for policy makers[R]. IPCC Working Group Ⅱ, Geneva,2007b.
    28. ISDR. Living with Risk:A Global Review of Disaster Reduction Initiatives, http://www.unisdr.org. 2004.
    29. Kenji Jinno. Risk Assessment of a water supply system during drought[J]. Water Resources Development,1995,11(2):185-204.
    30. Liu Xingpeng, Zhang Jiquan, Cai Weiying, et al. Hazard Assessment of the Grassland Fire Disaster in Western Hulunbeier, Inner Mongolia. Theory and Peactice of Risk Ananlysis and Crisi Response-Proceedings of the 3rd Annual Meeting of Risk Analysis Council of China Association for Disaster Prevention, Atlantis press,2008a:333-338(ISTP).
    31. Liu Xingpeng, Zhang Jiquan, Cai Wei-ying, et al. Study on Severe Grassland Fire Disaster Risk in Northern China Based on Information Diffusion Theory. Computational Intelligence in Decision and Control-Proceedings of the 8th International FLINS Conference. World Scientific Press, 2008b:659-664(EI/ISTP).
    32. Lu Hao, Xiaoyu Zhang, Shoudong Liu. Risk assessment to China's agricultural drought disaster in county unit[J]. Nat Hazards,2011/12/24(Published online).
    33. Ngigi SN, Savenije HHG, Rockstrom J, Gachen CK. Hydro-economic evaluation of rainwater harvesting and management technologies:farmers investment options and risks in semi-arid Laikipia district of Kenya[J]. Phys Chem Earth,2005,30:772-782.
    34. Olga V W, Donald A W. Assessing vulnerability to agricultural drought:A Nebraska case study [J]. Natural Hazards,2002,25(1):37-58.
    35. Part A, Gwata C. Effects of seasonal climate forecasts and participatory workshops among subsistence farmers in Zimbabwe[J]. Proceeding of the National Academy of Science,2004,102(35): 12623-12628.
    36. Paulo A A, Pereira L S. Prediction of SPI drought class transitions using Markov chains[J]. Water Resour Manag,2007,21:1813-1827.
    37. Shamsuddin Shahid, Houshang Behrawan. Drought risk assessment in the western part of Bangladesh[J]. Nat Hazards,2008,46:391-413.
    38. Siri E, Julie A S. The vulnerability context of a savanna area in Mozambique:household drought coping strategies and responses to economic change[J]. Environmental Science & Policy,2009,12: 33-52.
    39. Smit B, Wandel J. Adaptation, adaptive capacity and vulnerability [J]. Glob Environ Change Hum Policy Dimens,2006,16:282-292.
    40. Sonmez F K, Komuscu A U, Erkan A, et al. An Analysis of Spatial and Temporal Dimension of Drought Vulnerability in Turkey Using the Standardized Precipitation Index[J]. Natural Hazards, 2005,35:243-264.
    41. Swiss Re. Sigma[R]. No.2, Zurich:Swiss Reinsurance Company,2000.
    42. UNDP. Reducing disaster risk:a challenge for development. John S. Swift Co., USA. www.undp.org/bcpr.2004.
    43. UNEP. Global Environment Outlook 3:Past, Present and Future Perspectives[M]. London:Earthscan Publications Ltd,2002
    44. Wilhelmi O V, Wilhite D A. Assessing vulnerability to agricultural drought:A Nebraska case study[J]. Natural Hazards,2002,25(1):37-58.
    45. Wilhite D A. Drought as a natural hazard:concepts and definitions. In:Wilhite DA (ed) Drought:a global assessment, hazards and disasters:a series of definitive major works. Routledge Publishers, London,2000.
    46. William J P, Arthur A A. Natural hazard risk assessment and public policy[M]. New York: Springer-Verlag New York Inc,1982:27-29.
    47. Yamoaha CF, Walters DT, Shapiro CA, Francis CA, Hayesc MJ. Standardized precipitation index and nitrogen rate effects on crop yields and risk distribution in maize[J]. Agric Ecosyst Environ 2000,80: 113-120.
    48. Zhang Dan, Wang Guoli, Zhou Huicheng. Assessment on Agricultural Drought Risk Based on Variable Fuzzy Sets Model[J]. Chin. Geogra. Sci.2011,21(2):167-175.
    49. Zhang J Q. Risk assessment of drought disaster in the maize-growing region of Songliao Plain, China [J]. Agriculture, Ecosystems & Environment,2004,102(2):133-153.
    50. Zhang Jiquan, Dong Fanglei. The hazard identification and analysis of grassland snow disaster in Xilinguole League of Inner Mongolia.133-138. Theory and Peactice of Risk Ananlysis and Crisi Response- Proceedings of the 3rd Annual Meeting of Risk Analysis Council of China Association for Disaster Prevention, Atlantis press,2008:133-137(ISTP).
    51.陈莉,朱锦红.东北亚冷夏的年代际变化[J].大气科学,2004,28(2):241-253.
    52.陈晓艺,马晓群,孙秀邦.安徽省冬小麦发育期农业干旱发生风险分析[J].中国农业气象,2008,29(4):472-476.
    53.丁一汇,任国玉,石广玉,等.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J].气候变化研究进展,2006,2(1):3-8.
    54.杜鹏,李世奎.农业气象灾害风险评价模型及应用[J].气象学报,1997,55(1):95-102.
    55.杜尧东,李春梅,唐力生,等.广东地区冬季寒害风险辨识[J].自然灾害学报,2008,17(5):82-86.
    56.杜尧东,毛慧勤,刘锦銮.华南地区寒害概率分布模型研究[J].自然灾害学报,2003,12(2): 103-107.
    57.符淙斌,王强.气候突变的定义和检测方法[J].大气科学,1992,16(4):482-493.
    58.高素华.玉米延迟型低温冷害的动态监测[J].自然灾害学报,2003,12(2):117-121.
    59.葛全胜,邹铭,郑景云等.中国自然灾害风险综合评估初步研究[M].北京:科学出版社.2008.
    60.龚荚,陆维松,陶丽.东北春夏季降水气温异常的时空分布以及与旱涝的关系[J].南京气象学院学报,2003,26(3):349-357.
    61.谷德军,纪忠萍.2008年广东强龙舟水与准10天振荡[J].热带气象学报,2011,27(1):11-21.
    62.郭建平,高素华.东北地区农作物热量年型的划分及指标的确定[C]//王春乙,郭建平.农作物低温冷害综合防御技术研究.北京:气象出版社,1999.158-164.
    63.郭建平,马树庆,等.农作物低温冷害监测预测理论和实践[M].北京:气象出版社,2009.
    64.郭建平,庄立伟,陈玥熤.东北玉米热量指数预测方法研究(Ⅰ)—热量指数与玉米产量[J].灾害学,2009,24(4):6-10.
    65.黄崇福.自然灾害风险评价理论与实践[M].北京:科学出版社,2005.
    66.黄崇福.自然灾害基本定义的探讨[J].自然灾害学报,2009,18(5):41-50.
    67.黄崇福,刘安林,王野.灾害风险基本定义的探讨[J].自然灾害学报,2010,19(6):7-15.
    68.黄崇福.风险分析基本方法探讨[J].自然灾害学报,2011,20(5):1-10.
    69.黄蕙,温家洪,司瑞洁,等.自然灾害风险评估国际计划述评Ⅰ—指标体系[J].灾害学,2008,23(2):112-116.
    70.黄晚华,杨晓光,曲辉辉.基于作物水分亏缺指数的春玉米季节性干旱时空特征分析[J].农业工程学报,2009,25(8):28-34.
    71.胡雪琼,吉文娟,张茂松,等.云南省冬小麦干旱灾损风险区划[J].大气科学学报,2011,34(3):356-362.
    72.纪忠萍,谷德军,吴乃庚,等.广东省前汛期暴雨与500hPa关键区准双周振荡[J].应用气象学报,2010,21(6):671-684.
    73.康绍忠,蔡焕杰.农业水管理学[M].北京:中国农业出版社,1996.101-117.
    74.李彩霞,陈晓飞,韩国松,等.沈阳地区作物需水量的预测研究[J].中国农村水利水电,2007(5):61—67.
    75.李娜,霍治国,贺楠,等.华南地区香蕉、荔枝寒害的气候风险区划[J].应用生态学报,2010,21(5):1244-1251.
    76.李取生,李晓军,李秀军.松嫩平原西部典型农田需水规律研究[J].地理科学,2004,24(1): 109-114.
    77.李世奎.中国农业灾害风险评价与对策[M].北京:气象出版社,1999.
    78.李神君,王春乙.东北地区玉米低温冷害综合指标研究[J].自然灾害学报,2007,16(6):15-20.
    79.梁丽乔,闫敏华,邓伟,等.松嫩平原西部参考作物蒸散量变化过程[J].地理科学进展,2006,25(3):22-31.
    80.梁书民.中国雨养农业区旱灾风险综合评价研究[J].干旱区资源与环境,2011,25(7):39-44.
    81.刘布春,王石立,庄立伟,等.基于东北玉米区域动力模型的低温冷害预报应用研究[J].应用气象学报,2003,14(5):616-625.
    82.刘锦銮,杜尧东,毛慧勤.华南地区荔枝寒害风险分析与区划[J].自然灾害学报,2003,12(3):126-130.
    83.刘兰芳,刘盛和,刘沛林,等.湖南省农业旱灾脆弱性综合分析与定量评价[J].自然灾害学报,2002,11(4):78-83.
    84.刘小艳.陕西省干旱灾害风险评估与区划[硕士学位论文].陕西:陕西师范大学,2010.17-18.
    85.刘晓英,李玉中,郝卫平.华北主要作物需水量近50年变化趋势及原因[J].农业工程学报,2005,21(10):155-159.
    86.刘燕华.风险管理—新世纪的挑战[M].北京:气象出版社,2005.
    87.刘引鸽.气象气候灾害及其防御[M].北京:气象出版社,2005.63-85.
    88.刘钰,L.S.Pereira对FAO推荐的作物系数计算方法的验证[J].农业工程学报,2000,16(5):26-30.
    89.刘钰,L. S. Pereira.气象数据缺测条件下参照腾发量的计算方法[J].水利学报,2001,(3):11-17.
    90.刘钰,汪林,倪广恒,等.中国主要作物灌溉需水量空间分布特征[J].农业工程学报,2009,25(12):6-12.
    91.娄伟平,吴利红,邱新法,等.柑桔农业气象灾害风险评估及农业保险产品设计[J].自然资源学报,2009,24(6):1030-1040.
    92.吕厚荃等.中国主要农区重大农业气象灾害演变及其影响评估[M].北京:气象出版社,2011.1-2.
    93.马树庆.吉林省农业气候研究[M].北京:气象出版社,1996.166-180.
    94.马树庆,刘玉英,王琪.玉米低温冷害动态评估和预测方法[J].应用生态学报,2006,17(10):1905-1910.
    95.马树庆,王琪,王春乙,等.东北地区玉米低温冷害气候和经济损失风险分区[J].地理研究,2008,27(5):1169-1177.
    96.马树庆,王琪,王春乙,等.东北地区水稻冷害气候风险度和经济脆弱度及其分区研究[J].地理研究,2011,30(5):931-938.
    97.马树庆,裘祝香,王琪.中国东北地区玉米低温冷害风险评估研究[J].自然灾害学报,2003,12(3):137-141.
    98.马晓群,陈晓艺,盛绍学.安徽省冬小麦渍涝灾害损失评估模型研究[J].自然灾害学报,2003,12(1):158-162.
    99.马晓群,吴文玉,张辉.利用累积湿润指数分析江淮地区农业旱涝时空变化[J].资源科学,2008,30(3):371-377.
    100.毛飞,高素华,庄立伟.近40年东北地区低温冷害发生规律的研究[C]//王春乙,郭建平.农作物低温冷害综合防御技术研究.北京:气象出版社,1999.17-26.
    101.倪广恒,李新红,丛振涛,等.中国参考作物腾发量时空变化特性分析[J].农业工程学报,2006,22(5):1-4.
    102.倪深海,顾颖,王会容.中国农业干旱脆弱性分区研究[J].水科学进展,2005,16(5):705-709.
    103.任国玉,初子莹,周雅清,等.中国气温变化研究最新进展[J].气候与环境研究,2005,10(4):701-716.
    104.商彦蕊.自然灾害综合研究的新进展—脆弱性研究[J].地域研究与开发,2000,19(2):73-77.
    105.绍波,陈兴鹏.甘肃省生态环境质量综合评价的AHP分析[J].干旱区资源与环境,2005,19(4):29-32.
    106.盛绍学,石磊,张玉龙.江淮地区冬小麦渍害指标与风险评估模型研究[J].中国农学通报,2009,25(19):263-268.
    107.史培军.再论灾害研究的理论与实践[J].自然灾害学报,1996,5(4):6-17.
    108.史培军.三论灾害研究的理论与实践[J].自然灾害学报,2002,11(3):1-9.
    109.史培军.四论灾害系统研究的理论与实践[J].自然灾害学报,2005,14(6):1-7.
    110.苏筠,李莲华,吴之正,等.农业旱灾形成过程中的承灾体脆弱性分析—以湖南鼎城为例[J].自然灾害学报,2005,14(6):83-87.
    111.孙凤华,杨素英,陈鹏狮.东北地区近44年的气候暖干化趋势分析及可能影响[J].生态学杂志,2005,24(7):751-755.
    112.孙凤华,杨素英,任国玉.东北地区降水日数、强度和持续时间的年代际变化[J].应用气象学报,2007,18(5):610-618.
    113.孙凤华,袁健,路爽.东北地区近百年气候变化及突变检测[J].气候与环境研究,2006,11(1): 101-108.
    114.唐启义.DPS数据处理系统—试验设计、统计分析与数据挖掘[M].北京:科学出版社,2010a:1127-1138.
    115.唐启义.DPS数据处理系统—试验设计、统计分析与数据挖掘[M].北京:科学出版社,2010b:719-726.
    116.王博,崔春光,彭涛.暴雨灾害风险评估与区划的研究现状与进展[J].暴雨灾害,2007,26(3):281-286.
    117.王春乙,毛飞.东北地区低温冷害的分布特征[C]//王春乙,郭建平.农作物低温冷害综合防御技术研究.北京:气象出版社,1999.9-15.
    118.王春乙,王石立,霍治国,等.近10年来中国主要农业气象灾害监测预警与评估技术研究进展[J].气象学报,2005,63(5):659-671.
    119.王春乙.重大农业气象灾害研究进展[M].北京:气象出版社,2007.306pp.
    120.王春乙.东北地区农作物低温冷害研究[M].北京:气象出版社,2008.
    121.王春乙,张雪芬,赵艳霞,等.农业气象灾害影响评估与风险评价[M].北京:气象出版社,2010.
    122.王春乙.中国重大农业气象灾害研究[M].北京:气象出版社,2010.409-429.
    123.汪宏宇,龚强.东北地区作物生长季降水异常特征分析[J].气象科技,2005,33(4):345-354.
    124.王劲松,郭江勇,周跃武,等.干旱指标研究的进展与展望[J].干早区地理,2007,30(1):60-65.
    125.王静爱,商彦蕊,苏筠,等.中国农业旱灾承灾体脆弱性诊断与区域可持续发展[J].北京师范大学学报,2005,(3):130-137.
    126.王绍武,罗勇,唐国利,等.近10年全球变暖停滞了吗?[J]气候变化研究进展,2010,6(2):95-99.
    127.王素艳,霍治国,李世奎,等.干旱对北方冬小麦产量影响的风险评估[J].自然灾害学报,2003,12(3):118-125.
    128.魏凤英.现代气候统计诊断与预测技术(第2版)[M].北京:气象出版社,2007.18-66.
    129.吴东丽.华北地区冬小麦干旱风险评估研究[D].北京:国家气候中心,2009.20-21.
    130.袭祝香,马树庆,王琪.东北区低温冷害风险评估及区划[J].自然灾害学报,2003,12(2):98-102.
    131.袭祝香,王文跃,时霞丽.吉林省春旱风险评估及区划[J].中国农业气象,2008,29(1): 119-122.
    132.徐新良,刘纪远,庄大方.GIS环境下1990~2000年中国东北参考作物蒸散量时空变化特征分析[J].农业工程学报,2004,20(2):10-14.
    133.徐振邦,金淳浩,娄元仁,等.χ2距离系数和φ2距离系数尺度在聚类分析中的应用[M].赵旭东等 主编.中国数学地质(1).北京:地质出版社.1986.
    134.薛昌颖,霍治国,李世奎,等.华北北部冬小麦干旱和产量灾损的风险评估[J].自然灾害学报,2003a,12(1):131-139.
    135.薛昌颖,霍治国,李世奎,等.灌溉降低华北冬小麦干旱减产的风险评估研究[J].自然灾害学报,2003b,12(3):131-136.
    136.杨春燕,王静爱,苏绮,等.农业旱灾脆弱性评价:以北方农牧交错带兴和县为例[J].自然灾害学报,2005,14(6):88-93.
    137.杨镇,才卓,景希强,张世煌.东北玉米[M].北京:中国农业出版社,2007.
    138.于飞,谷晓平,罗宇翔,等.贵州农业气象灾害综合风险评价与区划[J].中国农业气象,2009,30(2):267-270.
    139.袁文平,周广胜.干旱指标的理论分析与研究展望[J].地球科学进展,2004,19(6):982-990.
    140.曾艳丽,顾颖.农业干旱风险评价技术应用初探[J].水文,2008,28(4):9-11.
    141.张继权,冈田宪夫,多多纳裕一.综合自然灾害风险管理[J].城市与减灾,2005,(2):2-5.
    142.张继权.气象灾害及其防御[M]//张继权,吕军.实用气象学.长春:吉林科学技术出版社,2005.242-265.
    143.张继权,冈田宪夫,多多纳裕一.综合自然灾害风险管理—全面整合的模式与中国的战略选择[J].自然灾害学报,2006,15(1):29-37.
    144.张继权,李宁.主要气象灾害风险评价与管理的数量化方法及其应用[M].北京:北京师范大学出版社.2007.
    145.张建平.基于作物模型的农业气象灾害对东北华北作物产量影响评估[D].北京:中国农业大学,2010.
    146.张琪,张继权,严登华,等.朝阳市玉米不同发育阶段干旱灾害风险预测[J].中国农业气象,2011,32(3):451-455.
    147.张倩.长江中下游地区高温热害对水稻的影响评估[硕士学位论文].中国气象科学研究院,2010.47-48.
    148.张书余等.干旱气象学.北京:气象出版社,2008.
    149.张艳红,吕厚荃,李森.作物水分亏缺指数在农业干旱监测中的适用性[J].气象科技,2008,36(5):596-600.
    150.赵春雨,任国玉,张运福.近50年东北地区的气候变化事实检测分析[J].干旱区资源与环境.2009,23(7):25-30.
    151.钟秀丽,王道龙,李玉中,等.黄淮麦区冬小麦拔节期的时空变化研究[J].中国生态农业学报,2007,15(2):22-25.
    152.周琳.东北气候[M].北京:气象出版社,1991.
    153.周寅康.自然灾害风险评价初步研究[J].自然灾害学报,1995,4(1):6-11.
    154.祝昌汉.再论总辐射的气候学计算方法(二)[J].南京气象学报学报,1982,2:196-206.
    155.朱自玺,刘荣花,方文松,等.华北地区冬小麦干旱评估研究[J].自然灾害学报,2003,12(1):154-150.
    156.邹铭,范一大,杨思全,等.自然灾害风险管理与预警体系[M].北京:科学出版社.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700