用户名: 密码: 验证码:
中低温热源有机物工质发电系统分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统方式的以水为工质的朗肯循环回收利用系统,由于循环效率低,系统复杂,其经济效益非常有限。若使用有机工质朗肯循环(Organic Ranking Cycle,简称ORC),利用低沸点有机工质回收中低温热源的热能,将低品位能源(废热)转换为高品位能源(电能),既实现能源的回收利用,又在相同输出条件下,减少二氧化碳等污染物的排放,有利于环境保护。由于ORC系统蒸发和冷凝温度较低、热效率相对较高及设备简单,被认为是一种有效的低品位余热发电技术。
     有机工质朗肯循环发电系统可利用的低品位能主要有工业余热、太阳能、地热、生物质能、海洋温差能和LNG冷能等,本课题以实现能源的低消耗、低排放、高效率为研究目的,对有机物工质的中低温热源发电系统进行了分析,主要做了以下几方面的工作:
     首先,在已有的大量研究工作的基础上,分析了有机物朗肯循环发电系统的结构和运行原理、主要特征和技术关键点。
     其次,对常用低沸点环保工质进行了优化分析,并选择三种相对环保型的有机物作为工质,利用NIST软件在Matlab界面下编程对稳态工况的ORC系统进行了热力计算,分析了ORC发电系统的影响因素。
     再次,以提高系统循环热效率和做功能力为目的,对改进后的ORC动力循环,回热式和抽汽回热式ORC系统的性能进行了研究。
     最后,利用热水模拟低品位热源,对采用涡旋式膨胀机的有机物朗肯循环发电系统进行了实验研究。对实验数据进行了分析与总结,研究结果表明涡旋式膨胀机在中小型低品位热能的ORC系统中具有较大的优势,而有机物朗肯循环系统的设计,需要将有机物工质的流量、蒸发压力,与余热流相匹配,从而使得系统的输出功率最大。
     本文所做的工作为进一步研究有机物朗肯循环发电系统提供了基础的实验数据和理论指导,对中低温热源回收利用技术的推广和推进节能减排事业具有一定的理论价值和现实意义。
Due to the low cycle efficiency,complicated system and limited economic benefits, recycling the wide range and huge quantities of low-temperature heat in traditional way based on Rankine cycles with water as working fluid, is not appropriate. While utilize organic fluids which have lower boiling point as working fluid in Rankine cycles, will convert low-grade heat source into high-grade energy (electricity) with higher efficiency. This system not only achieves the goal of recycling, but also reduces the emission of carbon dioxide and other pollutants. So Organic Rankine Cycle (ORC) is considered to be an effective power generation technology driven by low-grade waste heat due to its higher thermal efficiency, lower evaporation and condensation temperatures, relatively simple system and environmentally friendly action.
     Low-grade heat which can be used by organic Rankine cycle power generation system mainly include industrial waste heat, solar energy, geothermal heat, biomass energy, ocean thermal energy and cold energy of LNG (liquid natural gas). With the purpose of reducing energy consumption, pollutants emission and achieving higher efficiency, this subject analyzed power generation system based on organic Rankine cycle driven by low-grade heat. There are following parts of assignments in this paper:
     First, based on a lot of research work, this paper made an analysis on structures and operation principle of organic Rankine cycle power generation system, also described the main features and key technical points of ORC system.
     Secondly, analyzed and optimized usual organic working fluids, then selected three kinds of environmental friendly organics as working fluid, utilized NIST software, programmed under Matlab, made a thermodynamic calculation and analyzed the affecting factors on ORC power generation system.
     With the purpose of improving system thermal efficiency and work capacity, this paper made a research on properties of improved power generation systems like regenerative and regenerative extraction organic Rankine cycles.
     Finally, simulated low-grade heat source with hot water, this subject made an experimentally study on organic Rankine cycle power generation system with scroll expander. Through experimental data analysis and conclusion, it is believed that the scroll expander has greater advantages in small and medium style ORC systems driven by low-grade heat. While the design of organic Rankine cycle system needs to be fully considered with working fluid flow, match with evaporation pressure and heat flow rate to have the maximum output power.
     This research provides theoretical guidance and basic experimental data to further study of power generation system based on organic Rankine cycle, also have a certain theoretical value and practical significance to low temperature heat recovery and utilization technology, as well as energy-saving and emission reduction career. ?
引文
[1]安玉彬,刘旭东,田永春.二十一世纪中国能源发展的总趋势[J].能源工程,1999(1):1-4.
    [2]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359
    [3]谈芦益,谢永慧.微型低品质余热热源有机工质回热发电系统[A]. 07’中国西安能源动力科技创新研讨会及展示会论文集[C],西安,2007:108-117.
    [4]汪玉林.低温余热能源发电装置综述[J].热电技术,2007,93(1):1-4.
    [5]田瑞,闫素英等.能源与动力工程概论[M].北京:中国电力出版社2008.
    [6]黄素逸,王晓墨等.能源与节能技术[M].中国电力出版社,2008.
    [7]李艳,连红奎,顾春伟.有机朗肯循环在工业余热回收中的应用.中国动力工程学会透平专业委员会2009年学术研讨会论文集[C],北京, 2009:123-128.
    [8]郑浩,汤珂,金滔,王金波等.有机朗肯循环工质研究进展[J].能源工程,2008(4):5-11.
    [9]顾伟,翁一武,曹广益,翁史烈.低温热能发电的研究现状和发展趋势[J].热能动力工程,2007,22(2):115-119.
    [10] Owen Bailey, Ernst Worrell. Clean energy technologies: a preliminary inventory of the potential for electricity generation energy analysis department [R] .LBNL-57451, Berkeley: University of California, 2005.
    [11]张红.低沸点工质的有机朗肯循环纯低温余热发电技术[J].水泥, 2006(8) :13-15.
    [12] John Wall karlskrona. Dynamic study of an automobile exhaust system[J]. Department of Mechanical Engineering Blekinge Institute of Technology, 2003, 68-70.
    [13] Bahaa Saleh, Gerald Koglbauer, et al. Working fluids for low-temperature Ranking cycles [J]. Energy, 2007(32):1210-1221.
    [14] Angel No G, Piero Colonna di Paliano. Organic Ranking cycles (ORCs) for energy recovery from molten carbonate fuel cells[C]. Energy Conversion Engineering Conference and Exhibit, 2000:1400-1409.
    [15] Angel No G. Multi-component working fluids for organic rankine cycles (ORCs) [J]. Energy, 1998, 23 (6) : 449– 463.
    [16]杨智博.基于有机朗肯循环的柴油机废气余热发电系统研究[D]:硕士论文.哈尔滨:哈尔滨理工大学,2006.
    [17]柯文.基于有机朗肯循环的铝电解槽烟气余热发电技术研究[D]:硕士论文.湖南:中南大学,2009.
    [18] Bo-Tau Liu, Kuo-Hsiang Chien, Chi-Chuan Wang. Effect of working fluids on organic Ranking cycle for waste heat recovery [J]. Energy ,2004(29):1207-1217
    [19] T. C. Huang, T. Y. Shai, S. K. Wang. A review of Organic Ranking cycles (ORCs) for the recovery of low grade waste heat [J]. Energy ,1997, 22(7):661-667
    [20] Amnon Einav. Solar energy research and development achievements in Israel and their practical significance [J]. Journal of Solar Energy Engineering, 2004, 126 (3): 921 -928.
    [21] Manolakos D, Papadakis G. Design of an autonomous low-temperature solar Ranking cycle system for reverse osmosis desalination [J]. Desalination, 2005, 185: 73– 80.
    [22] Garcia-Rodriguezal, Delgado-Torresam. Solar-powered Ranking cycles for fresh water production [J]. Desalination, 2007, 212: 319– 327.
    [23]李晶,裴刚,季杰.太阳能有机朗肯循环低温热发电关键因素分析[J].化工学报,2009,60(4):826-832.
    [24]王辉涛,王华.低温太阳能热力发电有机朗肯循环工质的选择[J].动力工程,2009,29(3):287-291.
    [25] Ronald Di Pippo. Second Law assessment of binary plants generating power from low temperature geothermal fluids [J]. Geothermics, 2004(33): 565 - 586.
    [26]周大吉.地热发电简述[J].电力勘测设计,2003(3):1-6.
    [27] Saleh B, Koglbauer G. Working fluids for low-temperature organic Ranking cycles [J]. Energy, 2007, 32 (7): 1210 - 1221.
    [28]朱江,鹿院卫,马重芳,吴玉庭.低温地热有机朗肯循环(ORC)工质选择[J].可再生能源,2009,27(2):76-79.
    [29]丁晓雯,李薇,唐阵武.生物质能发电技术应用现状及发展前景[J].现代化工,2008,增刊(2):110-113.
    [30]董长青.生物质发电模式展望[J].现代电力,2007,24(5):43-47.
    [31] Chinese D, Antonella Meneghetti, Gioacchino Nardin. Diffused introduction of Organic Rankine Cycle for biomass2based power generation in an industrial district: a systems analysis [J]. Int J Energy Res, 2004, 28 (11):1003- 1021.
    [32] Drescher U, Bruggemmann D. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants [J]. Applied thermal engineering, 2007, 27: 223– 228.
    [33] Obernberger I, Thonhofer P. Description and evaluation of the new 1000 kW organic Rankine cycle process integrated in the biomass CHP plant in Lienz, Austria [J]. Euro heat and Power, 2002, 10:18– 25.
    [34] Claude G. Power from the Tropical Seas [J] .Mechanical Engineering, 1930, 52 (12): 1039 - 1044.
    [35]李赫.两种混合式海洋温差能发电系统的研究与对比分析[D]:[硕士论文].天津:天津大学,2006.
    [36]刘奕晴.混合式海洋温差能利用系统的理论研究[D]:[硕士论文].天津:天津大学,2004.
    [37]王辉涛,王华.海洋温差发电有机朗肯循环工质选择[J].海洋工程,2009,27(5):119-123.
    [38]贺红明.利用LNG物理火用的朗肯循环研究[D]:[硕士论文].上海:上海交通大学,2006.
    [39] Miyazaki T. A combined power cycle using refuse incineration and LNG cold energy [J]. Energy, 2000, 25: 639 - 655.
    [40]游立新,陈玲华.液化天然气冷量利用发电方案探讨[J].能源研究与利用,1995(3): 12-15.
    [41]高林,王宇,金红光,刘泽龙,蔡睿贤.利用LNG冷能的混合工质中低温热力循环开拓研究[J].工程热物理学报,2002,23(4):397-400.
    [42]张红.用低沸点工质的朗肯循环(ORC)方法回收低位工业余热[J].节能,2004(11) : 22-24 .
    [43]汪玉林.低温余热能源发电装置综述[J].热电技术.2007, 93(1):1-4.
    [44]柯玄龄,梁秀英.有机工质朗肯循环(ORC)在中、低温余热能量回收中的应用.汽轮机技术,1985,(5):58-69.
    [45]郑敏之。涡卷式膨胀机的性能试验[J].压缩机技术,1991(3):1-5.
    [46] Takahisa Yamamoto,Tomohiko Furuhata,Norio Arai, Koichi Mori.Design and testing of the Organic Rankine Cycle[J].Energy,2001,26(3):239—251.
    [47] Liu Bo Tau,Chien Kuo Hsiang, Wang Chi Chuan.Effect of working fluids on Organic Rankine Cycle for waste heat recovery[J].Energy,2004,29(8):1207—1217.
    [48] M.J. Lee, D.L. Tien, C.T. Shao, Thermophysical capability of ozozno safe working fluids for an organic Rankine-cycle system[J], Heat Recovery System and CHP. 1993 (13):409–418.
    [49] Hung Tzu Chen. Waste heat recovery of organic Ranking cycle using fry fluids [J].Energy Conversation and Management, 2001, 42 (5):539-553.
    [50]郑彬,翁一武等.低温热源喷射式发电制冷复合系统特性分析[J].中国电机工程学报, 2008,(28)29:16-21.
    [51]曹德胜,史琳.制冷剂使用手册[M].北京:冶金工业出版社,20O3.
    [52]丁国良,张春路,赵力.制冷空调新工质[M].上海:上海交通大学出版社,20O3.
    [53] P.J.Mago, L.M.Chamra, et al. An examination of regenerative organic Rankine cycles using dry fluids [J]. Applied Thermal Engineering, 2008(28):998-10007.
    [54]严加騄.低温热能发电方案中选择工质和确定参数的热力学原则和计算公式[J].工程热物理学报.1982年.No.1.?
    [55]沈维道,蒋智敏,童钧耕.工程热力学[M].北京:高等教育出版社,2004?
    [56]刘井龙,熊联友,侯予,王瑾,陈纯正.一种新型膨胀机-涡旋式膨胀机[J].深冷技术,2000(04):13-15.
    [57]刘振全等.涡旋式流体机械与涡旋压缩机[M].机械工业出版社,2009.
    [58]刘广彬,赵远扬,李连生,卜高选等。低温余热回收用涡旋膨胀机性能模拟研究[J].西安交通大学学报,2009,43(7):88-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700