用户名: 密码: 验证码:
利用LNG物理(火用)的朗肯循环研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气作为人类三大一次能源之一,以其高效、优质、清洁等优异性能以及广泛的用途,将成为21世纪人们利用最多的能源形式。对于天然气的储运,在除非地理条件十分优越时采用管道输送,否则必须使用液态的储存形式,即液化天然气LNG(Liquefied Natural Gas)。实际使用天然气的终端却大都是以气态形式加以利用,这就需要把LNG再次气化。鉴于LNG的存储状态与环境之间巨大差异,在其气化过程中会释放大量可用的物理。本文就是基于此来研究如何采用朗肯循环回收利用这部分能量。本文完成的工作主要有以下内容:
     (1)查阅、研究并总结了国内外大量关于LNG物理回收利用的文献资料。分析了包括低温朗肯循环在内的各种利用方法的回收效果情况,并总结尚未得到解决的几个主要问题,以此作为本研究的切入点。
     (2)从理论上分析了LNG的冷量及物理的计算方法及其相关因素,并研究了LNG蒸发过程中与典型的工质丙烷的换热过程特性,包括损失分析。研究表明LNG蒸发压力及甲烷含量均对其物理释放存在重要影响,并针对不同蒸发压力情况,从换热过程温度匹配恰当、减少损失角度,提出采用不同形式的朗肯循环来回收LNG的物理。
As the one of the three primary energy sources for human civilization, natural gas will be the most widely used energy type, for its excellent performance: high efficiency and quality, clean. When the geography condition is not very convenient for the transportation of natural gas with pipeline, the liquefied natural gas (LNG) form must be adopted. In the project application the natural gas terminal accepts the gas form, which means LNG must be regasify before used. For the huge condition differences between LNG and the atmosphere, great amount of physical exergy will be released from LNG during its evaporation. The paper bases on this idea to study how to use the Rankine cycle to recycle this part of energy and the following work was finished:
     (1) The main public documentations and papers about the LNG physical exergy utilization were consulted and studied. The effect of all kinds of LNG physical exergy recycles were analyzed, including the important Rankine
引文
[1] 马爱山. 世界能源展望. 北京:地质出版社,1993
    [2] Taylor Moore,Electricity in the Global Energy Future. EPRI, 1999, 24 (3): 9~17
    [3] BP Company. BP Statistical Review of World Energy June 2005, June 2005
    [4] 王威,张娜,蔡睿贤. LNG冷动力系统的工质选择及系统分析方法,燃气轮机技术,2001,14(3):17
    [5] 顾安忠等. 液化天然气技术. 北京:机械工业出版社,2004
    [6] 刘蔚蔚. 利用液化天然气冷的燃气轮机热力系统的研究,[学位论文],北京:中国科学院工程热物理研究所,2003
    [7] 游立新,陈玲华. 液化天然气冷量利用发电方案探讨. 能源研究与利用, 1995, 3:12~15
    [8] 朱刚,顾安忠. 液化天然气冷能的利用. 能源工程,1999, 3:1~3
    [9] 王坤,顾安忠,鲁雪生,石玉美. LNG 冷能利用技术及经济分析. 天然气工业,2004, 24(7):122~125
    [10] Deng S, Jin H, Cai R, et al. Novel cogeneration power system with liquefied natural gas (LNG) cryogenic exergy utilization. Energy, 2004, 29(4):497~512
    [11] 王海华,张同. 液化天然气冷能发电. 公用科技,1998,4(1):5~7
    [12] 王强,厉严忠,陈曦. 一种基于低品位热源的 LNG 冷能回收低温动力系统. 热能动力工程,2003,18(3):245~247
    [13] 程文龙,伊藤猛宏,陈则韶. 一种回收液化天然气冷能的低温动力系统. 中国科学技术大学学报,1999,29(6):671~676
    [14] Ken’ichi Kaneko, Kiyoshi Ohtani, Yoshiharu Tsujikawa ,Shoichi Fujii. Utilization of the cryogenic exergy of LNG by a mirror gas-turbine. Applied Energy, 2004, 79:355~369
    [15] Miyazaki T, Kang Y T, Akisawa A, et al. A combined power cycle using refuse incineration and LNG cold energy. Energy, 2000, 25(7):639~655
    [16] Hisazumi Y,Yamasaki Y, Sugiyama S. Proposal for a high efficiency LNG power-generation system utilizing waste heat from the combined cycle. Applied Energy, 1998, 60(3):169~182
    [17] 王威,蔡睿贤. LNG 冷利用动力系统和微型燃气轮机系统的研究,[学位论文],北京:中国科学院工程热物理研究所,2003
    [18] Na Zhang, Noam Lior. A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization. Energy, 2006, 31:1666~1679
    [19] 游立新,顾安忠. 液化天然气冷能特性及其应用. 低温工程,1996,3:5~12
    [20] 王加璇,张恒良. 动力工程热经济学. 北京:水利水电出版社,1995
    [21] Hongtan Liu, Lixin You. Characteristics and applications of the cold heat exergy of liquefied natural gas. Energy conversion & management, 1999, 40:1515~1525
    [22] 吴胜琪,杨冠雄. 利用 LNG 冷能于冷冻冷藏库与其他节能系统应用研究,[学位论文],高雄:国立中山大学,2003
    [23] 冯健美,张强. 纯质与混合工质凝结换热计算及冷凝器的计算机模拟,[学位论文],西安:西安建筑科技大学,2001
    [24] M. J. E. Verschoor, E. P. Brouwer. Description of the SMR cycle, which combines fluid elements of steam and organic Rankine cycles. Energy, 1995, 20(4):295~303
    [25] 高林,王宇等. 利用 LNG 冷能的混合工质中低温热力循环开拓研究. 工程热物理学报,2002,23(4):397~400
    [26] Takahisa Yamamoto, Tomohiko Furuhata, Norio Arai b, Koichi Mori. Design and testing of the Organic Rankine Cycle. Energy, 2001, 26:239~251
    [27] 陈大燮. 动力循环分析. 上海:上海科学技术出版社,1981
    [28] T. C. Hung, T. Y. Shai, S. K. Wang. A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy, 1997, 22(7):661~667
    [29] 朱明善. 绿色环保制冷剂的趋势与展望. 华北电力大学学报,2000(29)
    [30] Tzu-Chen Hung. Waste heat recovery of organic Rankine cycle using dry fluids. Energy Conversion & Management, 2001, 42:539~553
    [31] V. Maizza, A. Maizza. Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems. Applied Thermal Engineering, 2001, 21:381~390
    [32] Gianfranco Angelino, Piero Colonna Di Paliano. Multicomponent working fluids for organic Rankine cycles (ORCs). Energy, 1998, 23(6): 449~463
    [33] S Deng,H Jin,R Cai,et al. Novel Gas Turbine Cycle with Integration of CO2 Recovery and LNG Cryogenic Exergy Utilization. In:Proc:ASME IMECE,2002
    [34] B. M. 布罗章斯基著,王加璇译. 方法及其应用. 北京:中国电力出版社,1996
    [35] John E. Ahern. The exergy method of energy systems analysis. A Wiley-Interscience Publication, 1980
    [29] P Mathieu,R Nibart. Zero-Emission MATIANT Cycle. Journal of Engineering for Gas Turbines and power,1990,121:116~120
    [30] 张娜,蔡睿贤,王威等. 利用LNG冷的准零CO2排放循环探析. 工程热物理学报,2003,24(6):901~905
    [31] 王威,蔡睿贤,张娜. 利用LNG冷的CO2Rankine循环方案探析. 中国电机工程学报,2003,23(8):191~195
    [32] H. Yamaguchi, X. R. Zhang, K. Fujima, M. Enomoto, N. Sawada. Solar energy powered Rankine cycle using supercritical CO2. Applied Thermal Engineering, 2006, 26: 2345~2354
    [33] Y. Chen, P. Lundqvist, A. Johansson, P. Platell. A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery. Applied Thermal Engineering, 2006, 26:2142~2147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700