用户名: 密码: 验证码:
季冻区道路冻胀翻浆机理及防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
路基的冻胀和翻浆是公路工程中最常见的病害,对其机理进行深入细致地研究,对季冻区公路建设无疑具有重大的实际意义。本文结合国家自然科学基金项目“东北季冻区路基水份迁移的微观机理研究”(NO. 40672180)和交通部西部项目“季节性冰冻地区路基路面稳定技术研究”,结合实际工程,以东北地区季节冻土(即黄土状土)为研究对象,通过现场试验、含水量、地温、冻深和地下水监测,和室内土物质成分、化学成分、物理力学性质、毛细上升高度、微观结构分析,重点解决了季冻区路基土水分迁移特征、路基冻胀、翻浆及处治问题。
     首先就有关冻胀翻浆的理论研究进行了全面系统地研究和总结,对该领域的研究状况有了较为清楚地认识。结合试验路段,对路基土的粒度、矿物、盐分、比表面、阳离子交换以及物理力学性质进行了试验,并对路基土的热力学参数、未冻水随温度的变化等进行了大量研究。针对不同压实度,采用直接法、冻融法和卡明斯基毛管法等不同试验方法,对路基土的毛细上升高度进行了试验。进行室内试验的同时,并在试验路段布置观测点,进行了地面温度、路基含水量、地温、冻深以及地下水位的长期监测,提出了聚冰层厚度、水分迁移量和路基土冻胀率。应用扫描电子显微镜,对路基土的结构单位元体、微孔隙进行了定量研究,并针对不同压实度、不同土质的微观结构变化进行了分析对比研究,对路基土的微观颗粒进行了分形研究,并与路基土的物理力学参数进行了相关分析。在拥有了上述大量试验数据的前提下,对试验路段的路基土水分迁移、路基土的冻胀翻浆机理进行了详细研究,得出可靠的结论。
     最后,针对试验路段水分迁移和冻胀翻浆特点,为指导设计和施工,本文结合调查和试验数据,提出了防治路基冻胀翻浆的措施,这对季冻区公路工程建设具有一定的指导意义,为公路设计施工提供可靠的参数。
     论文通过大量的现场试验和室内试验,丰富了季冻区道路冻胀翻浆机理,为公路设计施工提供了新的思路和方法。
Seasonal freezing soil is a kind of soil frozen in winter and thawed totally in summer. In China, it distributes in the northward regions of north latitude 30°,and its area is up to 513.7×104 square kilometers that occupies about 53.5 percent of the Chinese territory. Seasonal freezing soil is a kind of special soil-water system in which there is ice crystal, and it is multiphase complex object composed of soil grain,ice,liquid water ,and gas.
     Highway is a kind of band construction that link among cities. Because road net crossed-interleaving, road construction is all over China, and seasonal freezing area is over half of the Chinese territory, it is impossible that road is builded in seasonal freezing area. But subgrade produces a series of frost hazard because of some natural elements in seasonal freezing area—geology, hydrology, weather and so on. In order to meet rapidly economic development, to form express-way net that capital connect metropolis, that metropolis communicates each other, that communicates main cities and important town, to build safe, comfortable, environment-protected, demonstratable express-way. It is very important for us to research frost hazard in seasonal freezing area, to provide theory bases for design and construct.
     Firstly, the paper systemically summarizes the theories on frost heaving and frost boiling to realize distinctly research state of it. Secondly, auther does a lot of subgrade soil tests-grain,mineral,salt ingredients, specific suface area,cation exchange and physical-mechanical characteristic, researches thermal parameters and unfrozen water contents with temperature, does capillary height test for various test methods and degree of compaction. at the same time, author disposes observation spots to monitor ground temperature, subgrade water contents,underground temperature,frost depth and underground water line.with scan electronic microscope, author does micro-fabric experiment of subgrade soil, contrasts micro-fabric of various soil and various degree of compaction, researches for flactal of micro-grain, and analyzes relativities of physical and mechanical parameters. On the premise of mounts of experimental parameters, auther studies in details mechanism of water transport, frost heaving and frost boiling. In allusion to features of water transport and frost heaving and frost boiling in test road, the paper brings forward prevention methods of subgrade frost heaving and frost boiling to instruct design and construction according to investigate and test data. It is very significative to supply credible parameters for road engineering construction. Its main jobs and results are as follows:
     1 In order to master adequately research state and development direction, the author previews systemically its research state and theories by means of consulting large amounts of documents on frost soil. And realizes road frost heaving and frost boiling, clarifies its harm to road construction, specifies the project importances to design and construction according to features of road construction.
     2 Author studies physical ingredients and physical-chemical parameters. A section of test road locates near Changchun city suburb belonging to Changchun-Siping road, Changchun-Songyuan road and Changchun-Jilin north road.subgrade soil composes of clay, silty clay and silt, granularity ingredient is mainly silt occupied up to 60 to 70 percent, and clay occupied up to 20 percent. Mineral ingredient is mainly proto-mineral, quartz is 40 to 49 percent, feldspar is 33 to 44 percent. Clay mineral contents are not much, it is mainly illite and illite-to-montmorillonite mixed layer mineral, total contents is 10~14 percent. Chemically soluble salt contents are lower, it is less than 0.1 percent, cation(Na+、Ca2+) contents are much. Cation exchange contents are 20 to 40 m·e/100g, specific surface area is 40 to 140m2/g. Thus according to mineral and chemical ingredients, subgrade soil clay mineral contents in shree test road are not much, soluble salt contents is less, cation exchange capacity and specific surface area is less, So water transport capability of subgrade soil is weak, but there are a lot of Na+, that can incrassate bound water film of soil grain, it is convenient to water transport of film water. Mechanically, subgrade soil is in over-concretion, concretion press is 158 to 316kpa, void ratio is 0.627 to 0.826.
     In this paper, auther does capillary height test by Kaminski capillary cube method, direct method and frozen-thaw method. Subgrade is clay and silty clay, whose capillary height is higher, capillary height is 1.0 to 1.6 meter by direct method and frozen-thaw method, capillary height is 256 to 345 centimeter by Kaminski capillary cube method, such soil easily produces all sorts of question on water transport.
     Soil skeleton specific heat mainly lies on mineral ingredients and organic matter contents, and correlative with tempareture, thaw-soil skeleton specific heat is a little more than frost soil, but difference is not much. Conducting heat coefficient varies less under the same temperature. Unfrozen water contents of subgrade soil decrease exponentially with negative temperature, but the exponent is not same with different soil.
     3 Soil micro-structure is significant for engineering geology characteristics, water transport, frost heaving and frost boiling. The paper researches in details for micro-structure of subgrade soil in test road, and contrasts with subgrade soil under different degree of compaction.
     In the subgrade soil of test road, its grain that is more than 20μm and less than 1um is little, its grain that is 1 to 2μm is not much, main grain is 2 to 5μm and 5 to 10μm.
     In subgrade soil, pore whose diameter contents is more than 20μm and is 10 to 20μm is nearly zero, pore whose diameter contents is 5 to 10μm is not much, main pore diameter is in three sections-less than 1μm, 1 to 2μm and 2 to 5μm, thus it reveals that micro-pore is very strong, contact among grains is side-surface pattern,and pore connectivity is better. These provide convenient water transport passage.
     Soil micro-pore contents are consanguineous with degree of compaction. Pore whose diameter is 1 to 2μm is more when degree of compaction is lower(80 percent), soil fabric is relatively looser, and bound water’s resistance is not strong,capillary water is easy to rise. But pore contents whose diameter is less than 1μm increase with increasement of degree of compaction, pore contents whose diameter is 1 to 2μm decrease relatively. It reveals that soil’s dry density increases with increasement of degree of compaction, that soil grain shrinks tightly, that soil pore diminishes gradually, that soil resistance of internal friction and cohesion increases constantly. When soil degree of compaction increases to some extent( more than 90 percent), bound water film of neighbouring soil grain surface is interleaving each other, and blocks movement of capillary water, velocity and heght of capillary water rising will decrease. Subgrade soil of test road is flocculated-reunited fabric.
     Clay mineral that is mainly illite and illite-montmorillonite mixed layer forms flocculated and reunited body, cementing matter that is among fabric unit cements soil grain by bridge pattern, cementing matter is mainly clay mineral, and some clay mineral don’t crystal absolutely. Linking pattern is mainly contact linking and bound water linking that varies with water content, so increase and decrease soil fabric strength. In the view of state of soil pore, the author thinks that soil fabric linking and connectivity is better, soil grain is evidently not beamed, and soil grain is basically even.
     4.Author selects several roads to monitor water contents, frost depth, underground temperature and underground water line during a frozen-thaw, and finds that water contents increase in 0.0 to 1.0 meter, that name roadbed, and it reveals that here is water transport area where frost heaving and frost boiling can produce. by chronically monitoring and consulting data of Jilin province observatory, weather temperature lowest time is in january to february, month average weather temperature is about -20℃.underground negative temperature is 0.0 to 1.0 meter, there is maximium in january to february, that is correlative to local weather temperature, maximium is -7 to -10℃.maximium frost depth is 2.09meter in 2000, 1.9meter in 2004, but this data is different in another monitor spot that is correlative to weather temperature and frozen time.
     5. Water transport in frost soil is a complex procedure that is correlative with all sorts of elements, water can transport under humidity gradient, press gradient, temperature gradient, solute concentration gradient and electric field gradient or mechanical field that produces in physical and chemical procedure. Besides capillary water, film water and gas water can also transport, but strongly bound water cann’t transport under external environment because of strong attraction of soil grain surface, so strongly bound water isn’t considered researching water transport. Although gas water also takes part in water transport, its contribution is very poor.
     Soil grain fractal value is nearly correlative to water transport by analysis.under same conditions(water, temperature), water in soil grain of big fractal value can easily transport, vice versa.
     6 Author analyzes mechanism of frost heaving and frost boiling for several test roads. Soil heave is produced through capillary water and film water transport, soil frost heave value sharply increase as a result that water from outside that is absorbed by frozen front freeze and form collect ice layer. Segregation frost heave mechanism includes two physical procedure:soil water transport and ice process. In several test road, collection ice layer is about 1.5meter thick, water increment is about 3.5 to 4.6 percent.subgrade soil frost heave content is about 0.74 to 1.44 percent and increasing with water content. Under coupling action of temperature, water and matter ingredient of subgrade soil, subgrade produce frost boiling by libration load.
     7 on the premise that author understands mechanism of subgrade soil frost heaving and frost boiling, treatment of subgrade soil frost heaving and frost boiling is provided in actual engineering, that is mainly prevention during design and is assistantly treatment during construction.
引文
[1] 徐学祖,王家澄,张立新. 冻土物理学[M]. 北京:科学出版社,2001.4.1~6
    [2]王志胜.长春市冻胀翻浆模型研究[D].中国优秀硕士学位论文全文数据库:中国知网.2006
    [3]钟阳.路基路面工程[M]. 北京:科学出版社,2005.3~4
    [4]邱国庆,程国栋,周幼吾等.中国冻土[M]. 北京:科学出版社,2000.4~12
    [5]武憼民,汪双杰,章金钊.多年冻土地区公路工程[M].北京:人民交通出版社,2005.9~11
    [6] 童伯良.从第三届国际冻土会议看普通冻土学的成就和动向[J].冰川冻土,1979.1:65~73
    [7]朱元林,程国栋.从第六届国际冻土学大会(Ⅵ ICOP)看冻土学研究现状及发展趋势[J].中国科学院院刊,1994.1:84~87.
    [8]陈建兵,章金钊.国际冻土研究动态[J].公路,2004.1:94~98.
    [9]陈肖柏,童伯良,丁靖康等.中国冻土研究与工程实践三十年[J]. 冰川冻土,1998,20(3):7~12
    [10]程国栋.中国冻土研究近今进展[J].地理学报,1990.45(2):220~224.
    [11] 程国栋.中国冰川学和冻土学研究40年进展和展望[J]. 冰川冻土,1998.20(3):213~226.
    [12]Beskow G.soil freezing and frost heaving with special application to roads and railroads[J] Swedish Geol. Survey Yearbook.1935.26(3):375~380
    [13]李向群.吉林省公路冻害原因分析及处理方法研究[D].中国优秀硕士学位论文全文数据库:中国知网.2006
    [14]铁道部第三勘测设计院.冻土工程[M].北京:中国铁道出版社,1994.117~118.
    [15]Everett D H. The thermodynamics of frost damage to porous solids[J]. Trans.Faraday Soc.1961.57:1541~1551.
    [16]Penner E.Fundamental aspects of frost action[R].Int.Symp.on Frost action in soils.Sweden,1977
    [17]Williams P J.Properties and behavior of freezing soils[R].Oslo:Norwegian Geotech.Inst.Publ.1968
    [18]Jones R H,Hurt K G.An osmotic method for determining rock and aggregate suction characteristics with applications to frost heave studies[J].Quarterly J.Eng.Gell.1978.11:245~252.
    [19]Loch J P G.Miller R D.Test of the concept of secondary frost heaving[J].soilSci.Soc.Am.Proc.1975.39:1036~1041
    [20]Miller R D.Freezing and heaving of saturated and unsaturated soils[J]Highway Research Record.1972.(393):1~11.
    [21]Miller R D.Lens initiation in secondary frost heaving[R].Int.Symp.on Frost action in soils.Sweden.1977
    [22]李萍,徐学祖,陈峰峰.冻结缘和冻胀模型的研究现状与进展[J]. 冰川冻土,2000.22(1):90~95.
    [23]H.A.崔托维奇 张长庆,朱元林译. 冻土力学[M]. 北京:科学出版社,1985.1.
    [24]柯洁铭,杨平.冻土冻胀融沉的研究进展[J].南京林业大学学报(自然科学版),2004.28(4):105~108.
    [25]徐学祖,何平,张健明.土体冻结和冻胀研究的新进展[J]. 冰川冻土,1997.19(3):280~283
    [26]程国栋.冻土力学与工程的国际研究新进展地球科学进展,2001.16(3):293~299.
    [27]程国栋,马巍.国际冻土工程研究进展[J]. 冰川冻土,2003.25(3):303~308.
    [28] 黄小铭.我国寒区道路工程中冻土问题研究的回顾[J]. 冰川冻土,1988.10(3):344~351.
    [29]冻土地区建筑地基基础设计规范(JGJ118 98) [M]. 北京: 中国建筑出版社,
    [30]袁忠淮.我国东北地区寒区建筑中的冻土研究回顾[J]. 冰川冻土,1988.10(3):338~341
    [31]杨成松,何平,程国栋等.冻土热融下沉研究的现状和进展[J].工程地质学报,2004.12:147~151
    [32]JTJ 024-85. 公路桥涵地基与基础设计规范[S].
    [33]吴紫汪等. 土的冻胀性实验研究. 兰州冰川冻土所集刊第2号[M]. 北京:科学出版社 .1981,82—96
    [34]刘鸿绪.法向冻胀力计算. 冰川冻土,1981.2:13~17
    [35]吴紫汪.冻土工程分类. 冰川冻土,1982.4:43~48
    [36] 王正秋. 细砂土冻胀分类 . 第二届全国冻土学术会议论文选集[M] . 甘肃人民出版社1983,218—222
    [37] 孔庆铨. 素混凝土板衬砌渠道地基冻胀土壤的分级及防冻害措施. 第二届全国冻土学术会议论文选集[M]. 兰州:甘肃人民出版社 . 1983, 462—470
    [38] 陈肖柏等. 冻结速率与超载应力对冻胀的作用. 第二届全国冻土学术会议论文选集[M]. 兰州:甘肃人民出版社.1983 ,223—228
    [39] 徐学祖,奥利奋特J L,泰斯A R.土水势、未冻水含量和温度[J]. 冰川冻土,1985.1:1~13
    [40] 邱国庆,E.张伯伦,I.伊斯坎达. 莫玲粘土冻结过程中的离子迁移、水分迁移和 冻胀[J]. 冰川冻土,1986. 8(1):1~14
    [41] 朱强等. 论季节冻土的冻胀沿冻深分布[J].
    [42] 陈肖柏等. 砂砾料之冻胀敏感性[J]. 岩土工程学报. 1988,(3):23—29
    [43]刘鸿绪.对土冻结过程中若干冻胀力学问题的商榷[J]. 冰川冻土.1990,12(3):269—280
    [44] 戴惠民等. 季节冻土区公路桥涵地基土冻胀性研究[J] . 冰川冻土 . 1993,15(2): 377—382
    [45]戴惠民,乐鹏飞,王兴隆等.季冻区公路路基土冻胀性的研究[J].中国公路学报,1994,7(2):1~8
    [46]张建明,刘永智,吴青柏等.公路工程冻土类型划分研究[J].西安公路交通大学学报,2001.4:38~44
    [47]原国红.季节冻土水分迁移的机理及数值模拟[D].中国优秀硕士学位论文全文数据库:中国知网.2006
    [48]塔萨奇、泼克,蒋彭年译,工程实用土力学[M],北京:水利电力出版社,1960.44~50
    [49] Collias,K.and Megown, A. The form and function of microfabric feature in a variety of natural soils[J], Geotechnique. 1974.2:93~98
    [50]谭罗荣.土的微观结构研究概况和发展[J].岩土力学,1983.4(1):73~86
    [51] Aylmore, L.A.G, Quirk, f.P.,Swelling of Claywater systems[J], Nature,1959.2:32 ~38
    [52]GillottJ. E. Study of the fabric of fine-grained sediments with the scanning electron microscope, Sedimentary Petrology[J], 1969.39(1):90~105.
    [53] Tovey,N. K. Quantitative analysis of electron micrographs of soil structure,Proceedings of the International Symposium on Soil structure,Gothenburq,Sweden, 1973.
    [54]施斌.粘性土微观结构研究回顾与展望[J].工程地质学报,1996.4(1):39~44
    [55] Tan, T.K(陈宗基).The fundamental properties of clays, loess and rock and their application to engine ering problems[J] Scieatia Sinica, 1959.8(10):78~89
    [56]林崇义.黄土的结构特征,黄士基本性质的研究,中科院土建所研究报告第13号[R],北京:科学出版社,1961.
    [57] 朱海之,文启忠,姚金盆.黄士结构某些特征的初步研究[M].北京:科学出版社,1964.1~15
    [58] 高国瑞,膨胀土微结构特征的研究[J],工程勘察,1981.5:46~51
    [59] 罗鸿喜,周芳琴,郧县胀缩土的矿物成分及徽观结构的研究[J],工程勘察,1981.5:16~19
    [60] 王幼麟.蒲圻第四纪红色粘土的物质成分和结构特性及其工程性质的关系[C],长江水电科学研究院科技成果选编.1981.9.236~242
    [61] 罗鸿禧,陈守义.湛江灰色粘土的工程地质特性[J].水文地质工程地质,1981.5:5~11.
    [62] 谭罗荣、张梅英,一种特殊土的微观结构特性的研究[J],岩土工程学报,1982.2:33~39.
    [63] 曲永新、单世桐、徐晓岚等.某水利工程泥化夹层的形成及变化趋势的研究[J],地质科学,1977.4:35~43
    [64] 施斌,李生林.击实膨胀土微结构与工程特性的关系[J].岩土工程学报,1988.10(6),80~87.
    [65] 施斌,水汀.一种测定粘性土徽观结构定向性的新技术—D/MAX z A型全自动结构 测角仪[J].水文地质工程地质,1991.6:54~ 55.
    [66]王清,唐大雄,张庆云等.中国东部花岗岩残积土物质成分和结构特征的研究[J].长春地质学院学报,1991.21(1):73~81
    [67] 王家澄,张学珍,王玉杰.扫描电子显微镜在冻土研究中的应用[J].冰川冻土,1996.18(2):184~188
    [68]肖树芳,雷华阳,房后国等.近代海积软土结构性及弹—塑性模型研究[J].工程地质学报,2000.8(4):394~399
    [69]陈慧娥,王清.有机质对水泥加固软土效果的影响[J].岩石力学与工程学报,2005.24(2):5817~5821
    [70]王国欣,肖树芳.土结构性本构模型研究现状综述[J].工程地质学报,2006.14(5):620~626
    [71]林宗元.岩土工程勘察设计手册[M].沈阳:辽宁科学技术出版社,1996.216~217
    [72]《工程地质手册》编委会. 工程地质手册[M]. 第四版.北京.中国建筑工业出版社. 2007.161~162
    [73]唐大雄,孙愫文.工程岩土学[M].北京:地质出版社,1987.17~18.
    [74]葛世荣,朱华.摩擦学的分形[M].北京:机械工业出版社,2005.26~27
    [75] 徐学祖,邓友生.冻土中水分迁移的试验研究[M]. 北京:科学出版社,1991.4. 1991.64~69
    [76] Fredlund.D.G,Rahardjo.H,陈仲颐等译. 非饱和土力学[M]. 北京:中国建筑工 业出版社,1997.164~172
    [77] 任天培,彭定邦,周柔嘉等.水文地质学[M]. 北京:地质出版社,
    [78] 东南大学,浙江大学,湖南大学等.土力学[M]. 第二版.北京:中国建筑工业出版社.2005.17~19
    [79] 郑秀清,樊贵盛,邢述彦. 水分在季节性非饱和冻融土壤中的运动[M]. 北京: 地质出版社,2002.128~129
    [80] 苏群.东北地区路基土冻胀机理与防治对策[J].黑龙江工程学院学报,2001.15(1):2~4
    [81] 霍凯成,黄继业,罗国荣.路基冻胀机制及冻害防范整治措施探讨[J].岩石力学与工程学报,2002.21(7):1099~1103
    [82]别小勇,梁恒昌,胡敬礼等.人工冻土冻胀及其抑制研究述评[J].连云港化工高等专科学校学报,2002.15(1):46~49
    [83] 陈肖柏,刘建坤,刘鸿绪等. 土的冻结作用与地基[M]. 北京:科学出版社,2006.114~116
    [84] 童长江,管枫年.土的冻胀与建筑物冻害防治[M].北京:水利水电出版社,1985.28~31
    [85] 辽宁省交通局.道路翻浆及防治方法[M]. 北京:人民交通出版社,1975.1~3
    [86] 李上红.公路工程施工常见地质病害处治技术[M].北京: 2004.106~110
    [87]陈洪凯,张雪清,唐红梅等.高寒地区道路翻浆发育机理研究[J].重庆交通学院学报,2002.21(3):47~51
    [88]王春鹤.中国东北冻土区融冻作用与寒区开发建设[M].北京:科学出版社,1999.120~127
    [89]孟凡松,刘建平,刘永智.黑北公路冻土路基设计原则及病害特征[J]. 冰川冻土,2001.23(3):307~311
    [90]钱育锋.四川省高寒地区常见的公路病害及防治措施[J].公路,2003.8:156~160
    [91]吉林省交通厅.公路抗冻设计与施工技术指南[M]. 2006.23~24
    [92]JTG D30-2004.公路路基设计规范[S].
    [93]周宪华.公路路基[M].第三版.北京:人民交通出版社,1987.36~39
    [94]JTG B01-2003.公路工程技术标准[S].
    [95]交通部第二公路勘察设计院.公路设计手册(路基)[M].第三版. 北京:人民交通出版社,2001.526~534
    [96]JTJ 018-97.公路排水设计规范[S].
    [97]南京工学院.公路路面[M]. 第二版.北京: 1987.7~30
    [98]邴文山.道路冻害与防治译文集[M].哈尔滨:哈尔滨工业大学出版社,1992:218~225
    [99]田德廷.道路桥梁冻害及其防治[M].北京:人民交通出版社,1987.276~283
    [100]窦建明,杨晨光,陈忠达等.渭清公路黄龙段道路翻浆成因[J].长安大学学报(自然科学版),2003.23(5):9~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700