用户名: 密码: 验证码:
钢筋混凝土梁在冻融循环和锈蚀下的受弯性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内外很多学者对钢筋锈蚀和混凝土冻害进行了大量研究,取得了很多研究成果,但是现有研究大多针对冻融、锈蚀等因素下钢筋或混凝土材料本身的耐久性性能变化,而对混凝土结构或构件的抗腐蚀以及抗冻性性能研究还处于初级阶段,尤其是考虑钢筋锈蚀和混凝土冻融同时作用下对钢筋混凝土结构耐久性影响的研究则更少。本论文针对钢筋混凝土受弯构件在冻融和锈蚀共同影响下的耐久性进行研究,研究成果可为我国东北地区钢筋混凝土构件在类似环境下的耐久性设计提供依据。
     论文对5组共13根钢筋混凝土梁进行了试验研究,其中:普通钢筋混凝土梁1根;仅锈蚀条件下的梁3根,锈蚀率分别为3.32%、6.64%和9.96%;仅冻融条件下的梁3根,冻融循环次数分别为25次、50次和75次;先锈蚀后冻融下的梁3根,锈蚀率分别为3.32%、6.64%和9.96%,锈蚀后冻融次数相同,均为39次;先冻融后锈蚀梁3根,冻融循环次数分别为25次、50次和65次,冻融后锈蚀率相同,均为6.64%。通过对上述梁的抗弯承载力研究得出以下结论:
     (1)随着冻融循环次数的增加,梁表面裂缝越来越宽且表面剥落情况也越来越严重,其抗弯承载力下降幅度增大,破坏形态由塑性破坏变为脆性破坏,试件耗能能力越来越差。与普通梁相比,经过冻融循环25次、50次、75次后的梁其开裂承载力分别降低8.17%、33.4%和50%,极限承载力分别降低降低11%、36.3%和59%。
     (2)随着锈蚀率的增加,由于锈胀梁表面产生的裂缝越来越大,其抗弯承载力下降幅度也越大,破坏形态由塑性破坏转变成脆性破坏。与普通梁相比,锈蚀率为3.32%、6.64%和9.96%的梁其开裂承载力分别降低8.84%、25%和50%,极限承载力分别降低5.5%、15.9%和33.5%。
     (3)对于先锈蚀后冻融梁,随着锈蚀率的增加,混凝土表面杂乱无章的裂缝也越来越多,角部混凝土也越来越酥脆,抗弯承载力下降幅度先降低后增大,破坏形态由塑性破坏转变成脆性破坏。与普通梁相比,先锈蚀2天、4天和6天再冻融循环39次的梁其开裂承载力分别降低50%、50%和58.4%,极限承载力分别降低35.9%、39.8%和62.9%。
     (4)对于先冻融后锈蚀梁,随冻融循环次数的增加,梁表面出现交叉裂缝的数量越来越多,抗弯承载力下降幅度增大,破坏形态为脆性破坏。与普通梁相比,先冻融25次、50次和65次后锈蚀4天的梁其开裂承载力分别降低50%、41.7%和50%,极限承载力分别降低28.2%、41.2%和67.8%。
     论文还对钢筋混凝土梁的受弯承载力进行了理论计算,结果表明:当只有锈蚀或先锈蚀后冻融存在的情况下,理论计算值与试验值相差不多,但只有冻融或者先冻融后锈蚀的情况下,两者之间误差较大。此外论文还利用有限元分析软件ANSYS对试验梁进行了分析,结果表明:在只有锈蚀或只有冻融存在的情况下,ANSYS计算值与理论计算值接近,误差在5%以内,均较试验值大;当冻融与锈蚀同时存在时,ANSYS计算值介于理论值与试验值之间,且与理论计算值误差在21%到43%范围内。究其原因是理论计算主要用强度利用系数来考虑钢筋与混凝土之间粘结力的下降,而有限元分析时主要通过加弹簧单元来实际模拟钢筋与混凝土之间的粘结滑移效应。针对理论计算值与试验值相差较大这一问题,本文在试验研究的基础上提出了钢筋混凝土梁在纯冻融和纯锈蚀下的抗弯承载力计算的修正公式。
     本文的研究成果可以为遭受冻融和锈蚀影响的钢筋混凝土梁的受弯承载力评估提供依据,对我国东北地区类似受力构件的设计和加固具有一定的指导意义。
At present, many scholars have studied a lot on steel corrosion and concrete freezing at home and abroad, they have achieved some results, but most existing studies are reinforced for the durability performance of steel and concrete material itself changes under the freeze-thaw cycles or corrosion factors. The concrete elements and structures of the anti-corrosion properties and frost resistance is still at the exploratory stage, especially the durability of reinforced concrete studies are rare about the influence considering existing the steel corrosion and freezing and thawing concrete. This paper hopes to provide reference and provide the basis for durability design for the reinforced concrete structures of northeast in freezing and thawing and corrosion environment in the project in future, through the experimental research on the durability of reinforced concrete structures in the northeast of our country.
     This paper designed 13 (the group of 5) reinforced concrete beams and tested their performance, such as 1 comparison beam; 3 corrode beams, that is the corrosion rate arriving 3.32%,6.64% and 9.96%; 3 freezing and thawing specimen, that is freeze-thaw cycles times 25, times 50 and times 75; 3 freeze-thaw specimens after corrosion, that is freezing and thawing 39 times after corrosion rate arriving at 3.32%,6.64% and 9.96%; 3 corrode specimens after freeze-thaw, that is rate arriving at 6.64% after the freezing and thawing times 25,50 and 65. to study the flexural capacity of the reduced rate after corrosion and freezing-thawing, the following conclusions can be drawn through the experimental study.
     (1) With the increase in the number of freeze-thaw cycle, the cracks in the specimen surface is becoming wider and serious, and causing more surface flake, the flexural capacity of the reinforced concrete beam increases gradually in the rate of decline, failure modes of specimens changed from the plastic damage to the brittle failure caused by the concrete crushing, energy dissipation capacity of the specimen is getting worse. Compared with the ordinary beam, its cracking capacity was reduced by 8.17%,33.4% and 50%; ultimate strength decreased by 11%,36.3% and 59% after freezing and thawing cycles arriving 25 times,50 times and 75 times.
     (2) With the increase of corrosion rate, the specimen surface were growing cracks because of the rust expansion, the flexural capacity increased more in the rate of decline, failure modes changed from plastic into brittle destruction. Compared with the ordinary beam, its cracking capacity was reduced by 8.84%,25% and 50%; ultimate strength decreased by 5.5%,15.9% and 33.5% after corrosion rate arriving 3.32%,6.64% and 9.96%.
     (3) With the increase of corrosion rate, the concrete surface cracks are more and more chaotic, the corner becomes crisp increasingly, the declining rate of the flexural capacity increases first and then decline, failure modes changed from the plastic into brittle destruction. Compared with the ordinary beam, its cracking capacity was reduced by 50%,50% and 58.4%; ultimate strength decreased by 35.9%,39.8% and 62.9% after first corrosion rate arriving 2d, 4d and 6d then freezing and thawing cycles arriving 39 times.
     (4) With the increase of freeze-thaw cycles, the surface crossing-crack of the specimen was becoming much large, the declining rate of flexural capacity failure increases obviously, failure modes were brittle fracture. Compared with the ordinary beam, its cracking capacity was reduced by 50%,41.7% and 50%; ultimate strength decreased by 28.2%,41.2% and 67.8% after first freezing and thawing cycles arriving 25 times,50 times and 65 times and then corrosion rate arriving 4d.
     This paper have done some theorical research to samples, it can be drawn:When under only corrosion or first corrosion then thawing and corrosion, theoretical calculation si similar to the experimental value, but if freezing and thawing or first freezing-thawing then corrosion exist, the two value is large different. Using the finite element analysis software ANSYS to analyze the samples, it can be drawn:the ANSYS calculation is close to the theoretical calculation when only corrosion or freezing and thawing, when freezing and thawing and corrosion exist at the same time, ANSYS calculated value is ranged between theoretical and experimental value. Theoretical analysis uses intensity declining factor instead of the bond between steel and concrete, while the ANSYS uses combination 39 element instead of to simulate the bond slipping effect between steel and concrete. Because the error of theoretical value and experimental value is bigger, this paper proposed the bearing capacity of the modified formula in pure freezing-thawing cycle and corrosion based on the experimental study of reinforced concrete beams.
     The research result can provide the basis to the bearing capacity of reinforced concrete beams which are subjected to freezing-hawing and corrosion, and hope to guide projection better to contribute to realize the saving society.
引文
[1]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [2]张巨松,增尤.建筑混凝土工程历史、现状及发展趋势[J].建筑技术开发,2001,28(3):49-50.
    [3]P. K. Metha. Concrete durability-fifty years progress Proc of 2 Inter Conf On Concrete Durability[J]. ACI SP 126-1,1991,1-31.
    [4]Monica Prezzi,Philippe geyskens. Reliability Approach to service life prediction of concrete exposed to marine environments[J]. CI Material Journal Vol.93, No.6,1996:514-522.
    [5]P. Rodriguez.Methods for studying corrosion in reinforced concrete[J]. Magazine of Concrete Research, Vol.47, No.167,1994:31-40.
    [6]J. A. Gonzalez. Some questions on the corrosion of steel in concrete-part 1:when,how and how much steel corrodes[J]. Materials and Structures, Vol.29, January-February,1996: 40-46.
    [7]龚洛书,柳春圃.混凝土的耐久性及其防护修补[M].北京:中国建筑工业出版社,1990.
    [8]卢木.混凝土耐久性研究现状和研究方向[J].工业建筑,No.5,1997:1-7.
    [9]R. K. Dhir, M. R. Jones. Rapid estimation of chloride diffusion concrete[J]. Magazine of concrete Research, Vol.42, No.152,1990:177-185.
    [10]Ahmad A. Hamid. Improving structural concrete durability in the Arabian Gulf[J]. Concrete International, Vol.17, No.5,1995:32-35.
    [11]四航局科研所.华南沿海部分码头调查情况介绍[J].水运工程,No.2,1982:1-7.
    [12]屈文俊.现有混凝土桥梁的耐久性评估及寿命预测[D].西南交通大学博士学位论文,1995.10.1.
    [13]王玲,田培等.重点工程混凝土耐久性的研究与工程应用[M].北京:中国建材工业出版社,2001.
    [14]陈蔚凡.混凝土结构工程的安全性和耐久性问题[C].北京:工程科技论坛—土建结构工程的安全与耐久性,2001.11,249-258.
    [15]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [16]千有志等.预席力混凝土结构[M].中国水利水电出版社,1999.
    [17]Kilareski W R. Failure of reinforced concrete structures due to corrosion material performace[J]. Concrete International.1980,3:48-50.
    [18]Tamon UEDA. Durability design concept in Asian Concrete Model Code and its future direction[J]. Hokkaido University, Japan,2005.10.
    [19]中国水利水电科学研究院.大坝混凝土材料的强度、老化和耐久性[R].北京:中国大坝长期安全性评价专项报告,2006,7.
    [20]亢景福,冯乃谦.水工混凝土耐久性问题与水工高性能混凝土[J].混凝土与水泥制品,1997,8(4):4-10.
    [21]刘西拉.结构工程学科的现状与愿望[M].北京:人民交通出版社,1997.
    [22]G.Balabanic, N.Bicanic, A. Durekovic. The Influence of W/C Ratio, Concrete Cover Thickness and Degree of Water Saturation on the Corrosion Rate of Reinforcing Steel in Concrete[J]. Cement and Concrete Research,1996,26 (5):761-769.
    [23]洪乃丰.混凝土中的钢筋腐蚀与防护技术(2)—混凝土对钢筋的保护及钢筋腐蚀的电化学性质[J].工业建筑,1999,29(9):58-61.
    [24]王林科,陶峰,王庆霖等.绣后钢筋混凝土粘结锚固的试验研究[J].工业建筑,1996,26(4) :14-16.
    [25]张伟平,张誉.锈胀开裂后钢筋混凝土粘结滑移本构关系研究[J].土木工程学报,2001,34(5):40-44.
    [26]袁迎曙,余索,贾福萍.锈蚀钢筋混凝土的粘结性能退化的试验研究[J].工业建筑.1999,29(11):47-50.
    [27]J. Cairns, Y. Du, D. Law. Influence of corrosion on the friction characteristics of he steel/concrete interface[J]. Construction and Building MATERIALS,2007 (21):190-197.
    [28]Xuli Fu, D, L. Chung. Effects of water-cement ratio, curing age, silica fume, polymer admixtures, steel surface treatments, and corrosion on bond between concrete and steel reinforcing bars[J]. ACI Materials Journal,2003,97 (6):723-734.
    [29]邸小云,周燕,陶里,等.钢筋锈蚀对混凝土构件性能影响的计算分析[C].第五届全国混凝土耐久性学术交流会,2000:87-95.
    [30]张誉,蒋利学,张伟平等.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003
    [31]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科技出版社,2003.
    [32]孙维章,梁宋湘,罗建群.锈蚀钢筋剩余承载能力的研究[J].水利水运科学研究,1993(2):169-179.
    [33]Abdullah A. Almusallam. Effect of Corrosion on the Properties of Reinforcing Steel Bars[J]. Construction and Building Materials,2001(5):361-368.
    [34]惠云玲.锈蚀钢筋力学性能变化初探[J].工业建筑,1992(10):33-36.
    [35]惠云玲,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,1997,27(6):10-13.
    [36]张平生,卢梅,李晓燕.锈损钢筋的力学性能[J].工业建筑,1995,25(9):41-44.
    [37]Lee H S, Noguchi T, Tomosoma F. FEM Analysis for Structural performance of Deteriorated RC Structures due to Rebar Corrosion. In:Proceeding of the Second International Conference on Concrete Under Severe Conditions, Tromso,1998:1010-1019.
    [38]袁迎曙,贾福萍,蔡跃.锈蚀钢筋的力学性能退化研究[J].工业建筑,2000,30(1):43-46.
    [39]王军强.大气环境下锈蚀钢筋力学性能试验研究分析[J].徐州建筑职业技术学院学报,2003,3(3):25-27.
    [40]杨淑慧.腐蚀对钢筋力学性能影响的研究[D].[郑州大学硕士学位论文].郑州:郑州大学,2002.
    [41]A.M.内维尔.混凝土的性能[M].中国建筑工业出版社,1983.
    [42]Pigeon. M. Crital Air Void Spacing Factors for Concrete as Submitted to Shouw Freeze-thaw Cycle [J]. ACI Journal.1981,78(4):282-291.
    [43]王玲,李刚.纤维混凝土在冻融循环、冻融-氯盐共同作用下的耐久性试验研究[J].混凝土,2002,(12):43-46.
    [44]陈惠苏,孙伟,慕儒.掺不同品种混合材的高强混凝土与高强钢纤维混凝土在冻融冻融与氯盐侵蚀同时作用下的耐久性能[J].混凝土与水泥制品,2000,(2):36-39.
    [45]Sidney Mindess, J. Francis Young, David Darwin.混凝土[M].吴科如,张雄,姚武等译.北京:化学工业出版社,2005.
    [46]张德思.粉煤灰混凝土的抗冻耐久性[J].混凝土与水泥制品,1998,4:8-10.
    [47]杨鼎易,周明耀等.粉煤灰混凝土的耐久性[J].水利与建筑工程学报,2003,1(3):1-5.
    [48]许辉,谢友军等.引气粉煤灰混凝土抗冻融耐久性的研究[J].粉煤灰,2006,4:3-5.
    [49]高建明,王边等.掺矿渣微粉混凝土的抗冻性试验研究[J].混凝土与水泥制品,2002,5:3-5.
    [50]Mandal S, Chakarborty S, Gupta A. Some studies on durability of recycled aggregate concrete[J]. Indian concrete journal,2002,76(6):385-388.
    [51]Salem, Rohi M. Resistance to freezing and thawing of recycled aggregate concrete [J]. ACI Mat. Journal,2003,100(3):216-221.
    [52]王武祥.再生混凝土集料研究[J].混凝土与水泥制品,2001,4:9-12.
    [53]中华人民共和国国家标准.普通混凝土长期性能和耐久性能试验方法(GBJ82-85)[S].北京:中国建筑工业出版社,1986.
    [54]朱伯龙,肖建庄.碳化混凝土的结构性能[J].工业建筑,1998 28(9):41-44.
    [55]中华人民共和国国家标准.混凝土结构设计规范(GB510010-2002)[S].北京:中国建筑工业出版社,2002.
    [56]张曙光主编.建筑结构试验[M].北京:中国电力出版社,2005.
    [57]中华人民共和国国家标准.普通混凝土力学性能试验方法标准(GB50081)[S].北京:中国建筑工业出版社,2002.
    [58]王振东主编.混凝土及砌体结构[M].北京:中国建筑工业出版社,2002.
    [59]中华人民共和国国家标准.混凝土结构试验方法标准(GB50152-92)[S].北京:中国建筑工业出版社,1992.
    [60]孙彬,牛荻涛,王庆霖.锈蚀钢筋混凝土梁抗弯承载力计算方法[J].土木工程学报,2008,11(41):1-5.
    [61]王宏伟.冻融环境下混凝土受弯构件的计算模式研究[D].哈尔滨工业大学硕士学位论文,2008.
    [62]张朝晖主编.结构分析工程应用实例解析[M].北京:机械工业出版社,2010.
    [63]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板桥极限分析[M].北京:清华大学出版社,1993.
    [64]袁迎曙,余索.锈蚀钢筋混凝土梁的力学性能退化[J].建筑结构学报,1997,18(4):51-57.
    [65]徐善华.混凝土结构退化模型与耐久性评估[D].西安:西安建筑科技大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700