用户名: 密码: 验证码:
XPS保温板与结构层粘结性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为重要的建筑节能技术,外墙外保温系统具有减少“热桥”、增加建筑物净空等一系列优点,因此受到世界范围内高度重视。工程上采用外墙外保温技术一般都是根据工程实践经验进行操作,未有能指导施工的深入研究,主要体现在以下几方面:没有粘结强度与各种影响因素之间定量的关系式给予指导;未考虑剪切强度的影响;缺少冻融条件下粘结强度试验研究;未考虑到胶层老化的因素等。本文通过试验和理论研究,主要完成了一下工作。
     (1)通过抗拉试验分析XPS保温板粘结层在轴向受拉情况下的破坏类型及应力分界点。根据大量试验数据分析抗拉粘结强度与粘结面积和粘结厚度之间的关系,并且在分析的基础上结合工程实际操作流程确定了最佳的粘结层厚度,为外墙外保温体系的工程应用提供数据支持;
     (2)通过抗剪试验分析XPS保温板与结构层之间的抗剪粘结强度与粘结面积、粘结方式和粘结厚度之间的关系,提出了剪切强度的多变量拟合方法。根据试验数据,基于最小二乘法,求解出剪切强度与诸多单变量之间的定量关系,并在此基础上进行多变量关系式拟合,为外墙外保温体系保温层的粘结提供理论依据。
     (3)为了研究冻融循环对保温板与结构层之间的粘结强度的影响,依据相关试验规范,对试件进行冻融次数分别为0次,10次、20次和30次冻融循环测试。试验结果反映了在不同板面尺寸的工况下冻融循环次数与抗剪粘结强度的关系,根据试验数据,基于最小二乘法,求解出剪切强度及剪切强度损失率与冻融循环次数之间的定量关系。
     (4)冻融循环交替作用是导致两者粘结机理退化的主要因素,本文从化学作用和物理作用两方面分析冻融循环作用下粘结强度退化机理。化学作用主要包括基层表面范德华力作用、表面扩散结合作用;物理作用主要表现为机械摩擦力。同时提出“嵌固作用”的概念,推导出冻融循环作用下粘结作用逐步退化的数学模型。
As an important architecture energy efficiency technology, external thermal insulation system was highly valued worldwide. Because it had series of advantages such as reducing the thermal bridge and increasing the building clearance. Exterior insulation technology used in engineering generally operated according to engineering experience, which lacked the in-depth study to guide the construction. For example, there was not provided with quantitative relationship between bond strength and various factors, without considering the impact of shear strength and aging of bonding layer, lack of experimental research on bonding behavior under the condition of freezing and thawing, etc. In this paper, the major contributions were summarized as follows by experimental research and theoretical analysis.
     (1) Damage type and stress demarcation point of adhesive layer of XPS insulation board were summarized under the condition of axial tension. According to a large number of experimental data, this paper analyzed the relationship between the tensile strength and bond area and bond thickness. Based on the results of analysis and integrated with operational processes in engineering, optimal bonding thickness was proposed, which provided theoretical basis for the application of XPS insulating boards bonding.
     (2) This paper studied the bond behavior of XPS insulation boards and structure layer, the results showed bonding behavior varied with the bonding area, bonding method and thickness. The multivariate fitting method of shear strength was proposed. Based on experimental data, via least square method, the multivariate relationship between shear strength and these variables was proposed, which provided theoretical basis for the application of XPS insulating boards bonding.
     (3) In order to study the influence of freeze-thaw cycles on adhesive strength between insulation board layer and the structure layer, rapid freeze-thaw cycle tests were carried out on specimen according to the relevant specifications. The specimens with 0,10,20, and 30 freeze-thaw cycles was tested. The test results showed the relationship between shear strength and freeze-thaw cycles under the condition of different board size. Based on experimental data, via least square method, the quantitative relationship between shear strength & shear strength loss and frequency of freeze-thaw cycles was proposed.
     (4) Freeze-thaw cycles were the main factor of leading to the degradation of bonding mechanism. This paper mainly studied degradation of the bonding mechanism between XPS insulation board layer and structure layer from the angles of chemical and physical effects and proposed the conception of embedded effect. Chemical effect mainly included Van Der Waals force on surface and diffusion and binding on surface. Physical effect mainly included mechanical friction. The mathematical model of the degradation of the bonding mechanism under freeze-thaw conditions was proposed.
引文
[1]杨昭,翟炳贤.华北地区采暖居住建筑全年能耗分析.低温建筑技术,2005(2):18-20.
    [2]江亿.中国建筑能耗现状及节能途径分析.新建筑,2008(2):4-7.
    [3]中华人民共和国.《民用建筑节能条例》.北京:中国建筑工业出版社,2008.
    [4]中华人民共和国建设部.《民用建筑节能设计标准(JGJ26-95)》.北京:中国建筑工业出版社,2006.
    [5]中华人民共和国建设部.《公共建筑节能设计标准》GB50189-2005.北京:中国建筑工业出版社,2005.
    [6]隋艳娥.居住建筑节能研究[D].硕十学位论文.西安建筑科技大学,2005年.
    [7]中华人民共和国建设部.《夏热冬冷地区居住建筑节能设计标准》JGJ 134-2001.北京:中国建筑工业出版社,2001.
    [8]中国建筑标准设计研究院.外墙外保温建筑构造(一)02J121-1.2003.
    [9]何禹.建筑外墙外保温与内保温优势比较.中国住宅设施,2009(08):24-27.
    [10]张行柠.外墙外保温技术性能及应用[J].建筑技术2008(10):136-139.
    [11]宋长友,黄振林等.外墙外保温防火技术现状及问题探讨.建筑科学,2008(02):1-7.
    [12]中华人民共和国建设部.《外墙外保温工程技术规程》JGJ 144-2004.北京:中国建筑工业出版社,2005.
    [13]庄剑英.建筑节能与节能建筑材料[J].墙材革新与建筑节能,2005(7):48-50.
    [14]巩永忠,苑峰,孙艳.国内建筑外墙外保温材料现状及发展前景.新型建筑材料,2006(10):42-43.
    [15]张家昕.聚氨酯硬质泡沫的保温性能及技术应用[J].建设科技,2005(14):32-33.
    [16]刘洪涛.儿种常见的外墙保温形式及材料[J].建筑技术与应用,2001(1):39-40.
    [17]雒伟民.建筑外墙外保温技术及其发展趋势.建筑工程,2005:272-273.
    [18]张春侠,王命平.外墙外保温体系保温层与基层墙体的联接机理研究.保温材料与建筑节能.2004(09):33-36.
    [19]张春侠.外墙外保温体系关键技术研究.青岛建筑工程学院,硕十学位论文,2004.
    [20]张林峰.外保温外墙保温层的粘结分析.硕士学位论文.天津大学,2004.
    [21]阎磊,徐春一,石福生.既有建筑节能改造中外墙外保温的黏结分析.建筑节能,2008(01):29-31.
    [22]Williams. Monitoring joint movement in a panelized EIFS building. ASTM Special Technical Publication,1995:307-320.
    [23]Kub E.G.I, Cartwright.L.G, Oppenheim.I.J. Cracking in Exterior Insulation and Finish Systems Journal of Performance of Constructed Facilities. VOL.7,No.1,Feb.1993:60-66.
    [24]Sami.A,A1-Sanea. Thermal performance of building roof dements. Building all Environment. 1995,30, (3):309-321.
    [25]Gerard Fleury. Quality Requirement for the EIFS in France, CSIB 1992:509N640.
    [26]中国建筑标准研究院.《外墙外保温建筑构造》(06J121),北京:中国计划出版社,2006.
    [27]中华人民共和国建设部.《夏热冬冷地区居住建筑节能设计标准》JGJ 134-2001.北京:中国建筑工业出版社,2001.
    [28]中华人民共和国建设部.《夏热冬暖地区居住建筑节能设计标准》JGJ75-2003.北京:中国建筑工业出版社,2006.
    [29]马宝联.外墙外保温技术现状及相关问题探讨.建筑与结构设计,2009(5):47-50.
    [30]冯瑞刚,周字龙等.外墙外保温施工现场常见质量问题分析及防治措施[J].科技信息(科学教研),2008(11):107.
    [31]吕华东.浅析外墙外保温膨胀聚苯板(EPS板)薄抹灰系统墙面裂缝产生的原因及防治.安徽建筑,2008(2):28-30.
    [32]隋霄晶,路永华.外墙外保温用聚合物砂浆耐久性研究及其机理分析.墙体保温材料及应用技术,中国电力出版社,2006:153-157.
    [33]曹力强,路永华,隋霄晶.负温下外墙外保温系统中聚合物砂浆粘结性能的研究.墙体保温材料及应用技术,中国电力出版社,2006:122-125.
    [34]韩涛.影响外墙外保温的主要因素.黑龙江科技信息,2008(28),245-246.
    [35]刘付林,潘玉勤,李夜明.外墙外保温体系粘结材料拉伸粘结强度试验方法比较与分析.建筑节能,2008(01):47-48.
    [36]吴长毅.外墙外保温系统保温层与结构层的研究.建设科技,2009(1):45-46.
    [37]王晓东,王英.浅析外墙外保温技术和材料应用.散装水泥,2009(02):50-51.
    [38]丁宝君,张帅.EPS板外保温系统不加胀钉的分析[J].中国建设报,2004(05):18.
    [39]刘伟.影响粘接物理强度的物理因素[M].北京:中国建筑工业出版社,2004:108-121.
    [40]中华人民共和国建材行业标准.《道桥用防水涂料(JC/T975-2005)》,北京:中国建筑工业出版社,2006.
    [41]姚永兴,孙洪修.建筑节能数学模型及其计算方法.信息工程学院学报,1994,13(4):44-50.
    [42]张军.外墙外保温技术在北方住宅中的应用[J].鞍山钢铁学院学报,2002,25(4):292-293.
    [43]刘加平.建筑物理[M].北京:中国建筑工业出版,2001.
    [44]马洪兵.外墙外保温裂缝产生原因的初步分析.经营管理者,2009(03):310.
    [45]Terry.R.A;Titus.P.H. Thermal and structural nonlinear analysis of the ignitor plasma cha mber.10th Symposium on Fusion Engineering Proceedings.(Cat.No.83CH1916-6 NPS). 1983:1083.
    [46]Lee Y.S;Choi.M.H;Kang.Y.H;Shin.D.S. A structural analysis of the circular cylinder with multi holes under thermal loading. International Journal of Advanced Manufacturing Technology, VOL 27, NO 7-8, January2006:677-687.
    [47]孙世钧,于奕欣,陈庆丰.建筑地面保温与节能.哈尔滨工业大学学报,2003(05),14-17.
    [48]王沣浩,王东洋,罗昔联.既有建筑围护结构能耗模拟及节能分析[J].建筑科学,2007年02期.
    [49]郭宏宝.外墙外保温板节能工程中存在的问题分析.太原铁道科技,2007(3).
    [50]刘岩,高伊琳.建筑节能技术的应用.辽宁建材,2004(02):16-17.
    [51]高甫生,李丽群.外窗密闭性对寒冷地区建筑能耗的影响[J].暖通空调,1998,28(4):11-13.
    [52]陈集阳,施恩斌,刘军等.GS聚苯板外保温系统聚合物砂浆的研制与应用.化学建材,2006,22(1).
    [53]杨永昌,茅艳.外墙保温的新方法及其热工特性分析.郑州粮食学院学报,1999,20(3),61-63.
    [54]曾晓文.日照作用平面二维温度场计算研究,华中科技大学学报,2002,19(4):61-63.
    [55]方展和.法国的建筑节能.建筑技术,1996,23(11):770-772.
    [56]方修睦.现场检测的建筑节能指标的拆算方法研究.哈尔滨建筑大学学报,2001,34(3):79-82.
    [57]孙淑范.外墙保温优点及技术关键和可选方案.甘肃科技,1999(5):20-21
    [58]Rebeiz.K.S; Banko.A.S; Craft.A.P. Thermal Properties of Polymer Mortar Using Recycled PET and Fly Ash. Journal of Materials in Civil Engineering. VOL 7, NO.2, May 1995: 129-133.
    [59]Sakai.Etsuo; Sugita.Jun. Composite mechanism of polymer modified cement. Cement and Concrete Research, VOL25, NO1, Jan,1995:127-135.
    [60]Sandrolini.F; Bignozzi.M C; Saccani.A. New polymer mortars containing polymeric wastes. Ⅰ. Microstructure and mechanical properties Composites Part A:Applied Science and Manufacturing(UK). V01.31A, no.2,2000:97-106.
    [61]Kub Edward GII. Cracking in exterior insulation and finish systems. Journal of Performance of Constructed Facilities,1993,7(1):60-66.
    [62]Nelson. Joint movement of a panelized EIFS wall system. ASTM Special Technical Publication,1995:294-360.
    [63]任庆萍,吴世强.解析外墙保温技术标准[J].企业标准化,2005(6):27-28.
    [64]郭莹.外墙内外墙外保温技术在建筑节能住宅中的作用[J].建筑技术开发,2002(2)46-48.
    [65]欣月.外墙保温隔热专用外饰材料——瓷石漆[J].建材工业信息,2005(7):56-57.
    [66]陈庆丰.建筑保温设计[R]. 哈尔滨:哈尔滨建筑大学,1990.
    [67]黄春强.浅谈屋面保温节能技术的应用.山东建材,2006(04),51-54.
    [68]马昌.节能技术在建筑外围护结构设计中的应用.2008年第4期.
    [69]周燕,闫成文等.居住建筑外窗气密性对建筑能耗的影响.宁波大学学报(理工版),2007(06):247-250.
    [70]周利虹,田奕.浅析提高建筑门窗保温性能的意义及途径.广西轻工业,2010(03),37-39.
    [71]耿承达.水泥聚苯板在外墙保温体系的应用. 建筑人造板,1999(3):30-35.
    [72]Yang Shoumin. Solution of transient temperature distribution and calculation of thermal stress. Proceedings of the Society of Electrical Engineering,VOL6,NO6,Nov.1986:55-64.
    [73]吴成东,李新辉.建筑节能技术及其发展[J].IB智能建筑与城市信息,2005年10期.
    [74]王昭,王鑫.浅谈外墙外保温节能技术的应用与发展.价值工程,2010年第33期.
    [75]孙昭杰.浅谈建筑外墙保温节能技术的应用.四川建材,2010(04):12-13.
    [76]王雪茜,任江林.浅谈外墙保温技术在建筑设计中的应用.陕西煤炭,2007(2),71-72.
    [77]雒伟民.建筑外墙外保温技术及其发展趋势.建筑工程,2005:272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700