用户名: 密码: 验证码:
畜禽养殖场沼液的微电解—电极-SBBR处理工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国的畜禽养殖业逐步走向规模化、集约化,大中型沼气工程也随之得到迅猛发展,畜禽养殖场沼气工程在利用废物产生清洁能源的同时形成了大量的成分复杂,浓度高的沼液,这已成为大中型沼气工程发展的制约因素。目前对于沼液处理尽管可以采用还田处理或者是资源化利用的方式,但是这两种消纳方式受到多种条件的制约,尤其受到我国地少人多等实际条件的限制,因此工艺性工程化处理畜禽养殖场沼气工程所产生的大量沼液仍是必然的选择。
     鉴于沼液高氮磷、低C/N比的特点,考虑通过物化的预处理方法,改变其溶液的理化性质,去除或降解难降解的有机物,强化后续的生化处理,使排放废水能够达到《畜禽养殖行业污染物排放标准》(GB18586-2001)规定的要求。开展沼液处理工艺研究,考察铁炭微电解、电解物化处理单元的可行性,考察SBBR及电极-SBBR工艺生化处理单元的可行性,研究“三级微电解-电解”物化处理沼液组合工艺的可行性及处理效能,进行微电解-电极-SBBR组合工艺的处理效能试验研究。
     1、铁炭微电解试验
     铁炭微电解试验选择曝气量、初始pH值、铁炭体积比(Fe/C)和水力停留时间(HRT)作为试验影响因素,经单因素试验结果推荐反应条件分别为:15.0mL/min-L沼液(曝气量)、4-5(初始pH值)、1:1(Fe/C),2.5h(HRT),其COD、NH4+-N、TN、TP的去除率分别为37.22%~44.74%、18.47%~30.42%、20.32%~40.75%、66.01%~87.56%。正交试验表明,各因素对COD去除率的影响程度大小为HRT>曝气量>pH值>Fe/C,对NH4+-N去除率的影响程度大小为Fe/C>HRT>pH值>曝气量,对TP去除率的影响程度大小为曝气量>HRT>pH值>Fe/C。通过综合平衡分析后,铁炭微电解的推荐工作条件是曝气量为15.0L/min-L,初始pH值为4,Fe/C为2:1,HRT为2.5h。微电解的多级串联试验表明,3级反应的去除效果最为合理。通过平行试验证明了微电解处理效果的稳定性。
     填料的扫描电镜发现,用水冲洗过的反应后的填料可以恢复其活性;沉淀物的XRD图谱分析,证实了磷是以FeP04的形式去除的。
     2、电解试验
     电解试验选择极电压、反应时间、初始pH值、极板间距作为试验的影响因素,试验结果表明,在10V(极电压)、3.0h(反应时间)、5.0(pH值)和20mm(极板间距)的条件下,其去除效果最好,COD、NH4+-N和TP的去除率分别为:30.77%~59.00%、6.34%~10.66%和22.91%~44.04%,在此推荐反应条件下,通过变换极板的电极、三维电极、曝气和增加极板数等方式来改变反应的条件,试验结果表明,曝气对于COD、NH4+-N的影响最大,而增加极板数对TP的影响最大,因此最终选择增加曝气作为反应改变的条件。
     3、SBBR及电极-SBBR试验
     历时6周完成了对SBBR及电极-SBBR反应器活性污泥的挂膜驯化,结束时,软性填料上形成了1.2~1.5mm生物膜,镜检发现系统中累枝虫、轮虫等原生动物为优势微生物,且形成了较为密实的菌胶团。SBBR及电极-SBBR的比较试验结果表明,经过电极强化的SBBR工艺,对污染物的去除能力有大幅度的提高。最终依据试验结果,推荐7.0h作为反应的运行周期,其运行工况为:进水→厌氧(1.0h)→曝气(4.0、通电)→缺氧/厌氧(2.0h、通电)→出水→闲置。
     按照确定的运行工况,选择极电压、DO质量浓度、填料密度作为运行的影响因素,试验结果表明,在15V、4~5mg/L和30%的反应条件下,其COD、氨氮和TP的去除率分别为61.57%~69.81%、84.38%~90.69%和54.80~65.26%。在推荐的工艺条件下,运行电极-SBBR工艺稳定运行的30d内,COD和NH4+-N的去除效果较好,其去除率分别维持在70%和80%以上,出水较为稳定,基本都能够达到《畜禽养殖行业污染物排放标准》规定的要求,并且都有一定的抗冲击负荷的能力:对TP的处理效果也较为稳定,但去除效果不理想,平均出水浓度为8.86mg/L,超过了8.00mg/L的限值要求,因此还需进行强化处理。
     4、工艺组合试验
     在微电解、电解处理工艺的基础上,进一步开展了“微电解-电解”物化处理组合工艺的试验研究。该工艺对COD、BOD5、氨氮、TP和SS都有明显的去除效果,BOD5/COD由进水的0.19提高到0.53~0.57,显著的提高了出水的可生化性,出水TP(3.95~7.17mg/L)能够达到GB18586-2001的标准要求,其余与标准之间还存在较大差距。微电解与电解的对比试验表明,按照各自推荐的反应条件,在相同的时间内,微电解的处理效果优于电解,尤其是NH4+-N、TP和SS的去除效果差异性较大,因此选择铁炭微电解作为沼液的预处理方法。
     在此基础上,进行了“三级微电解-电极-SBBR"工艺的组合的试验研究,在COD、氨氮、TP和SS的进水浓度分别为4400.00~6660.00、804.43~1675.95、89.87~175.41和5724~11462mg/L,进水pH值4.3~5.1的情况下,经过运行可知,前8天,各指标的出水浓度分别为231.00~396.00、56.55~79.39、5.82~7.84和89.20~177.30mg/L之间,达到了GB18586-2001规定的400.00、80.00、8.00和200.00mg/L的指标要求。因此将8d作为一个运行周期,用自来水通过反冲洗的方式去除吸附在铁炭填料表面的物质,使铁炭填料活化,然后再继续进行处理。
     本文在单工艺基础上,构建“微电解-电极SBBR"耦合新工艺处理沼液废水,处理效果较好,出水水质能够达到《畜禽养殖行业污染物排放标准》(GB18586-2001)规定的要求,且稳定性较好。
Along with our country's livestock and poultry industry to scale, intensive direction, large and medium-sized biogas project has been rapid development, livestock biogas engineering would has produced large quantity of organic wastewater with complex components and high concentration at the same time generating clean energy in the utilization of waste--biogas slurry, which has become the restricting factors of the development of large and medium-sized biogas project. At present, the biogas slurry disposal methods although cover cropland application or resource utilization, but they are restricted by many conditions, especially by the actual conditions of China's crowded restrictions, so the process of industrialization is the inevitable choice processing large amounts of biogas slurry produced by livestock biogas engineering.
     In view of the fact that biogas slurry consists of the high nitrogen and phosphorus, low C/N ratio, so consider to change physicochemical properties of solution by the physical and chemical pretreatment method, remove or degradate refractory organic compounds, strengthen the subsequent biochemical treatment, so that discharge wastewater could achieve requirements of pollutant discharge standard in Discharge standard of pollutants for livestock and poultry breeding (GB18596-2001). Developing research treatment technology of biogas slurry, Their feasibilities of treatment biogas slurry were researched, including processing unit of micro-electrolysis with iron-carbon and electrolysis, biochemical treatment unit of SBBR and electrode-SBBR.The feasibility and efficiency of "three micro-electrolysis and electrolysis" and "micro-electrolysis-electrode-SBBR" were studied.
     1. micro-electrolysis experiments with iron-carbon
     Aeration, initial pH value, iron-carbon volume ratio and the hydraulic retention time (HRT) were selected as the effective factors of micro-electrolysis experiments with iron-carbon, Through the single factor experiment to determine the reaction conditions recommended were as follows:aeration rate of15.0L/min·L, initial pH value of4, iron-carbon volume ration of1:1, HRT of2.5h., the removal of its COD, ammonia nitrogen,TN and TP respectively was37.22%-44.74%,18.47%~30.42%,20.32%~40.75%,66.01%~87.56%,. The orthogonal experiments showed that each factor on the order of COD removal rate was as follow:HRT> aeration> initial pH value> Fe/C, on the removal rate of ammonia nitrogen was as follow:Fe/C> HRT> initial pH value> aeration, on the removal rate of TP affects the degree of aeration> HRT> initial pH value> Fe/C. Through comprehensive analysis, the commendatory working conditions of micro-electrolysis with iron-carbon were as follows:aeration rate of15.0L/min·L, initial pH value of4, iron-carbon volume ration of2:1, HRT of2.5h. Tests showed that the multilevel series micro-electrolysis, the removal effect of3order reaction was the most reasonable. The parallel tests showed the stability of micro-electrolysis treatment effect.
     The SEM analysis showed that iron and carbon filler washed by water could restore its activity; The analysis of the XRD profiles of sediment showed that phosphorus was removed in the form of FePO4.
     2. electrolysis experiments
     The voltage, reaction time, initial pH value and electrode plate interval were selected as the influential factors of electrolysis experiments, the results showed that there were the best removal effect in the voltage of10V, reaction time of3.Oh, initial pH value of5and electrode plate interval of20mm conditions, COD, ammonia nitrogen and TP removal rates respectively were:30.77%~59.00%,6.34%~10.66%, and22.91%~44.04%. In the reaction conditions recommended, to change the electrode plates, transform three-dimensional electrode, aeration and increase the number of electrode plates, the results showed that aeration was the maximum effect of COD and ammonia nitrogen, and the effect of TP, increasing plate number to the maximum. So the aeration was selected as reaction to change conditions.
     3. the SBBR and the electrode-SBBR experiment
     Lasted6weeks, the attaching biofilm and acclimation of activated sludg were completed on SBBR and electrode-SBBR reactor. The biofilm about1.2~1.5mm was formatted on the surface of soft filler at the end of the attaching biofilm, the microscopic examination showed that the system protozoa was the dominant microorganisms,such as Epistylis, rotifers, and a more dense zoogloea has formated. SBBR and the electrode-SBBR comparison test results showed that SBBR process after enhancing by electrode, could greatly improve the pollutant removal ability. Finally according to the test results,7.Oh was recommended as the running period of reaction, and its operating conditions were:adding wate→anaerobic processing (1.0h)→aeration (4.0h, electricity)→anoxic or anaerobic processing (2.0h,electricity)→effluent dewatering→idle.
     According to the operation condition detemined, voltage, concentration of DO and packing density were selected as the most factor of influencing the operation, the test results showed that it is better in the15V,4~5mg/L and30%conditions, the removal of COD, ammonia and TP was61.57%-69.81%,84.38%-90.69%and54.80%-65.26%respectively. Under the commendatory conditions, the electrode-SBBR stabilized run within30days, COD and ammonia have been better removal effect, the removal rate was maintained at above70%and80%, the effluent were stable, could reach discharge standard requirements of 《Discharge standard of pollutants for livestock and poultry breeding》, electrode-SBBR could stand up to a certain of impact load-The treatment effect on TP was also relatively stable, but the effect was not ideal, the average effluent concentration of8.86mg/L exceeded the limit requirements of8mg/L, so it was the need for strengthening treatment.
     4. process combination
     Based on micro-electrolysis and electrolysis tests, and the physicochemical treatment combination technology" micro-electrolysis and electrolysis" were further researched. The process has obvious effect on COD, BOD5, ammonia, TP and SS removal. BOD5/COD increased from0.19of influent to0.53-0.57of effluent, the biodegradability of the effluent was significantly improved. The TP of effluent (3.95-7.17mg/L) could reach the standard requirements of GB18586-2001,then the rest could not reach standard requirements. The micro-electrolysis and electrolysis test showed that at the same time, the micro-electrolysis treatment effect was better than that of electrolysis according to their respective optimum reaction conditions, especially the effect on ammonia, TP and SS, the disparity of removal rate were very big, therrfore, the micro-electrolysis experiments with iron-carbon was seleted as a method of pretreatment of biogas slurry.
     On this basis, the combined process of "three micro-electrolysis-electrode-SBBR" were studied. The influent concentration of COD, ammonia, TP and SS was4400.00-6660.00,804.43~1675.95,89.87~175.41,5724~11462mg/L respectively, and pH value from4.3to5.1, after running,the results showed that the effluent concentration of each index was231.00~396.00,56.55~79.39,5.82-7.84and89.20~177.30mg/L respectively, pH value of4.3~5.1, reached the requirements specified in GB18586-2001400,8,8and200mg/L at the first eight days.
     Therrfore, eight days would be run as a cycle, the material absorbed on the iron-carbon filler surface was removed by backwashing way with tap water, and then continued processing.
     Based on the single process,a new system of micro-electrolysis-electrode-sequencing batch biofilm reactor(SBBR) technique was constructed for treating biogas slurry,its treatment effect was good,and the effluent could achieve requirements of pollutant discharge standard in Discharge standard of pollutants for livestock and poultry breeding (GB18596-2001),then has better stability.
引文
[1]A.Brian, et al. Fe(0)-Supported Autotrophic Denitrification.Environ.Sci. Technol.1998,32:634-639.
    [2]A M Hayes, J R Flora, J Khan. Electrolytic timulation of denitrification in sand columns [J]. Water Research,1998,32(9):2830-2834.
    [3]Arnold W. A. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles[J]. Environ. Sci.& Technol.,2000,34 (9):1794-1801.
    [4]Andreottola G, Bortone G, Tilche A. Experimental validation of a simulation and design model for nitrogen removal in sequencing batch reactors [J]. Water Sci Tech,1997,35(1):113-120.
    [5]An T C, Zhang W B, Xiao X M, et al. Photoelectrocatalytic degradation of quinoline with a novel three-dimensional electrode-packed bed photocatalytic reactor [J]. Journal of Photochemistry and Photobiology A-Chemistry,2004,161(2-3):233-242.
    [6]Baolin Deng, et al.Hydrocarbon Formation in Metallic Iron/Water Systems. Environ. Science Technology.1997,31:1185-1190.
    [7]Barada Prasanna Dash, Sanjeev Chauhari. Electrochemical denitrification of simulated ground water [J]. Water Research,2005,39:4065-4072.
    [8]Beccari M, Cecchi F, Majone M, et al.Improved biological nutrient removal resulted from the integrated treatment of wastewater and municipal solid waster[J].Annali di Chimica,1998, 88(11-12):773-781.
    [9]Beck F, Schuiz H.Cr-Ti-Sb oxide composite anodes:Electro-organic oxidation[J].Journal of Applied Electro-chemistry,1987,17:914-924.
    [10]Benefield L D, Judkins J F, Weand B L. Process chemistry for water and wastewater treatment[M]. New Jersev:Prentice-Hall, Englewood Cliffs,1982,102.
    [11]Bernet N, Akunna J C, Delgenes JP et al. Combined anercbic-aerobic SBR for the treatment of piggery wastewater [J]. Water Research.1999,34(2):611-619.
    [12]B.Gu, et al. Biogeochemical Dynamics in Zero-valent Iron Columns:Implications for Permeable Reactive Barriers.Environ.Sci.Technol.1999,33:2170-2177.
    [13]Bo Lai, Yuexi Zhou, Ping Yang, et al. Removal of FePO4 and Fe3(PO4)2 crystals on the surface of passive fillers in FeO/GAC reactor using the acclimated bacteria[J]. Journal of Hazardous Materials, 241/242:241-251.
    [14]Bo Lai, Yuexi Zhou, Ping Yang, et al. Degradation of 3,3'-iminobis-propanenitrile in aqueous solution by FeO/GAC micro-electrolysis system [J]. Chemosphere,2013,90(4):1470-1477.
    [15]Bortone G, Gemelli S, Rambaldi A. Nitrification, denitrification and biological phosphate removal in sequencing batch reactors trating piggery wastewater[J]. Wat. Sci Tec.,1992,26(5-6):977-985.
    [16]Brillas E., Bastide R. M., Llosa E.. Electrochemical destruction of aniline and 4-Chloroaniline for wastewater treatment using a carbon-PTFE O2-fed cathod[J].Journal of Electrochemical Society, 1995,142(6):1733-1741.
    [17]C.A.Papadimitriou, D.Petridis, A.I.Zouboulis, et al. Protozoans as indicators of sequential batch processes for phenol treatment;an autoecological approach[J]. Ecotoxicology and Environmental Safety,2013,8:1-9.
    [18]Chang C, Chen H, Huang C, et al. Using sequencing batch biofilm reactor (SBBR) to treat ABS wastewater [J]. Wat. Sci. Tech.,2000,41(4-5):433-440.
    [19]Charlotte Scheuze, et al.Removal of Halogenated Organic Compounds in Landfill Gas by Top Covers Containing Zero-Valent Iron.Environ.Sci.Technol.2000,34:2557-2563.
    [20]Chatzisymeon E, Dimou A, Mantzavinos D, et al. Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes:1.The case of Ti/IrO2 anode[J]. Journal of Hazardous Materials,2009,167(1-3):268-274.
    [21]CHEN G J, BERGMANN B A, CLASSENJ J, et al. Nutrient recovery from swine lagoon water by Spirodela punctata [J]. Bioresource technology,2002,81:81-85.
    [22]Chiang L C, Chang J E, Wen T C. Indirect oxidation effect in edetrochemical oxidation treatment of landfill leachate[J].Water Research,1995,29(2):671-678.
    [23]ChinaPao-huang, Huang Wen-wang, Chiu Pei-chun.Nitrate Reduction by MetallicRron [J]. Wat Res. 1998,32(8):2257-2264.
    [24]Comninellis C.Electrocatalysis in the electrochemical conversion/combussion of organic pollutants for waste water treatment[J].Electrochemica Acta,1994,39(11-12):1857-1862.
    [25]Dahu Ding, Chuanping Feng, Yunxiao Jin, et al. Domestic sewage treatment in a sequencing batch biofilm reactor(SBBR) with an intelligent controlling sysytem[J]. Desalination,2001,276:260-265.
    [26]Daniel M White, Timothy A Pilon, Craig Wooland. Bilological treatment of cyanide containing wastewater [J]. Water Research,2000,34(7):2105-2109.
    [27]Darsa P S, Cindy G S, Chou C S, et al. Treatment of 1,2-dibromo-3-chloropropane and Niprate-containated Water with Zero-valent Iron or Hydrogen/Palladium Catalysts[J]. Wat. Res.1996, 30(10):2315-2322.
    [28]Dalu J M, Ndamba J. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe) [J]. Physics and Chemistry of the Earth,2003, 28:1147-1160.
    [29]Delaat J, Gallard H, Ancelin S, et al.Comparative study of oxidation of atrazine and acetone by H2O,/UV, Fe(Ⅲ)/UV, Fe(Ⅲ)/H2O2/UV and Fe(Ⅱ) or Fe(Ⅲ)/H2O2 [J]. Chemosphere,1999,39(15): 2693-2706.
    [30]D.H.Phillips,et al.Performance Evaluation of a Zerovalent Iron Reactive Barrier:Mineralogical Characteristics.Environ.Sci.Technol.2000,34:4169-4176.
    [31]Di Iaconi C, Lopez A, Ramadori R, et al. Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR) [J]. Water Research,2002,36:2205-2214.
    [32]Diwen Ying, Juan Peng, Xinyan Xu,et al. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation:A comparative study on a novel sequencing batch reactor based on zero valent iron[J]. Journal of Hazardous Materials,2012,8(229-230):426-433.
    [33]Edgerton. Strategies for dealing with piggery effluent in Australia:the sequencing batch reactor as a solution. Water science Technology,2000,41 (2):123-126.
    [34]E Fockedey, A Van Lierde. Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes [J]. Water Research,2002,36:4169-4175.
    [35]Eum Y, Choi E. Optimization of nitrogen removal from piggery waste by nitrite nitrification [J]. Wat. Sci. Tech.,2002,45(12):89-96.
    [36]Feki F, Aloui F, Feki M, et al. Electrochemical oxidation post-treatment of landfill leachates treated with membrane bioreactor [J]. Chemosphere,2009,75(2):256-260.
    [37]Findlay G Edwards et al. Biologiacal Treatment of Airstreams Contaminated with VOCs:An Overview [J]. Water Science and Technology,1996,34(3-4):565-571.
    [38]Flora J. R. V., Suidan M. T., Islam S., et al. Numerical modeling of a biofilm-electrode reactor used for enhanced denitrification [J]. Water Science and Technology,1994,29(10-11):517-524.
    [39]Francis X.M.Casey, Say Kee Ong, Robert Horton.Degradation andTransformation of Trichloroethylene in Miscible-Displacement Experimentsthrough Zerovalent Metals. Environ. Sci. Technol.2000,34:5023-5029.
    [40]Gandini D, Mahe E, Michaud P A. Oxidation of carboxylic acids at boron-doped diamond edectrodes for wastewater [J]. Journal of Applied Electrochemistry,2000,30(12):1345-1350.
    [41]Gaspar D.J, Lea A.S, Engelhard M.H, et al. Evidence for localization of reaction upon reduction of .carbon tetrachloride by granular iron [J]. Langmuir,2002,18(20):7688-7693.
    [42]Gebrezgabher S A, Meuwissen M P M, Prins B A M, et al. Economic analysis of anaerobic digeston-A case fo green power biogas plant in the Netheerlands[J]. NJAS-Wagen J Life Sci.,2010,57(2): 109-115.
    [43]Grommen R, Verhaege M, Verstraete W. Removal of nitrate in aquaria bu means of electrochemically generated hydrogen gas as electron donor for biological denitrification[J].Aaquacultural engineering, 2006,34,33-39.
    [44]Gosi M, Nicolas K, Psillakis E, et al. Electrochemical oxidation of olive oil mill wastewaters [J]. Water Research,2005,39(17):4177-4187.
    [45]Guohua Chen. Electrochemical technologies in wastewater treatment [J]. Separation and Purification Technology,2004,38:11-41.
    [46]Hao X D, Heijnen J J, van LoosdrechtM C M. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process [J]. Biotechnol Bioeng 2002, 77(3):266-277.
    [47]Hea R C.Intensive livestock farming:global trends, increased environmental concerns, and ethicalsolutions [J].Journal of Agriculture Environmental Ethics.2009,22(2):153-167.
    [48]Hoyun Joeng, Euiso Choi. Practical Aspects of Nitrogen and Phoshorous Removal with floating media SBBR[J]. R. Journay of environmental science and health,2003,38(10):2135-2145.
    [49]Hui-Ming Hung, et al.Kinetics and Mechanism of the Enhanced Reductive Degradation of Nitrobenzene by Elemental Iron in the Present of Ultrasound. Environ. Sci. Technol.2000,34, 1758-1763.
    [50]Hwa K.Yak, Bernd W.Wenclawiak, et al.Reductive Dechlorination of Polychlorinated Biphenyls by Zerovalent Iron in Subcritical water. Environmental Science&Technology.1999,33(8):1307-1310.
    [51]Hyunwoong Park, Chad D Vecitis, Michael R Hoffmann. Electrochemical water splitting coupled with organic compound oxidation:The role of active chlorine Species[J].Phys Chem C.,2009, 113(18):7935-7945.
    [52]Ihara I, Umetsu K, Kanamura K, et al. Electrochemical oxidation of the effluent from anaerobic digestion of dairy manure [J]. Bioresource Technology.2006.97(12):1360-1364.
    [53]Iniesta J, Michaud P A, Cerisola G. Electrochemical oxidation of phenol at boron-doped diamond electrode [J]. Electrochimica Acta,2001,46(23):3573-3578.
    [54]Jackson V. C, Mickelson J. K., Stringer K., et al. Electrosis induced myocardial dysfunction [J]. Journal of Pharmacological Methods,1986,15(4):305-320.
    [55]James Farrell, et al.Investigation of the Long-Term Performance of Zero-Valent Iron for Reductive Dechlorination of Trichloroethylene.Environ.Sci.Technol.2000,34:514-521.
    [56]Jan Kielemoes, et al.Influence of Denitrification on the Corrosion of Iron and Stainless Steel Powder.Environ.Sci.Technol.2000,34:663-671.
    [57]Joseph N.Fiedor, et al.Understanding the Mechanism of Uranium Removal from Groundwater by Zero-Valent Iron Using X-ray Photoelectron Spectroscopy. Environ. Sci. Technol.1998, 32:1466-1473.
    [58]Ju-Hyun Kim, Meixue Chen, Nanohiro Kishida, et al. Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors[J].Water Research,2004, 38:3340-3348.
    [59]Jung Jeng Su, Cheng Ming Kung, Jing Lin, et al. Utilization of Sequencing Batch Reactor for piggery wastewater treatment. Journal of Environmental Science Health, part A:1997,32(2):391-405.
    [60]Jun-Wei Lim, Poh-Eng Lim, Chye-Eng Seng, et al. Simultaneous 4-chlorophenol and nitrogen removal in moving bed sequencing batch reactors packed with polyurethane foam cubes of various sizes[J]. Bioresource Technology,129(2013):485-494.
    [61]Keum Y S, L i Q X. Reduction of nitroaromatic pesticides with zero-valent iron[J]. Chemosphere, 2004,54(3):255-263.
    [62]Kim K W, Kim Y J, Kim IT, et al. The electrolytic decomposition mechanism of ammonia to nitrogen at an IrO2 anode [J]. Electrochimica Acta,2005,50:4356-^364.
    [63]K.J.Cantrell, D.I.Kaplan.Zero-Valent Iron Colloid Emplacement in Sand Columns.Journal of Environmental Engineering.1997:499-504.
    [64]Kong Yong, Wang Zhi-liang, Wang Yu, et al. Degradation of methyl orange in artificial wastewater through electrochemical oxidation using exfoliated graphite electrode[J].New carbon matherials, 2011,26(6):459-464.
    [65]Kshirsagar M. Aerobic denitrification studies on activated sludge mixed with Thiosphaera pantotropha [J]. Environ. Tech.,1995,16(1):35-43.
    [66]LI M, FENG C, ZHANG Z, et al. Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method[J]. Journal of Hazardous Materials,2009,171 (1-3):724-730.
    [67]Lin S H, Chang C C. Treatment of landfill leachate by combined electro-fenton oxidation and sequencing batch reactor method. Wat. Res.,2000,34:4243-4249.
    [68]Luz E, de-Bashana b, Yoav Bashan. Recent advances in removing phosphorus from wastewater and its future use as fertilizer(1997-2003)[J].Water Research,2004,38 (19):4222-4246.
    [69]Lu Jianbo, Zhu Lei, Hu Guoliang, et al. Integrating animal manure-based bioenergy production with invasive species, control:A case study at Tongren Pig Farm in China [J]. Biomass and Bioenergy, 2010,34(6):821-827.
    [70]Mariner L, Lectz F B.Electro-oxidation of ammonia in wastewater [J]. Journal Appl Electrochem, 1978,8:335-345.
    [71]Matias B., Ariel A., Patrick G, et al. Development of environmentally superior treatment system to reeplace anaerobic swine lagoons in the USA [J]. Bioresource Technology,2007,98:3184-3194.
    [72]Mellor.R.B, Ronnenberg J, Campbell.W.H. Reduction of nitrate and nitrite in water by immobilizedenzymes.N-ature [J].1992,355(2):717-719.
    [73]Mical Prosnansky, Yutaka Sakakibara, Masao Kuroda. High-rate denitrification and SS rejection by biofilm-electrode reactor(BER) combined with microfiltration[J]. Water Research,2002,36(19): 4801-4810.
    [74]M.Kuroda, Watanabe and Y.Umedu. Simultaneous COD Removal and Denitrification of Wastewater by Bio-electro reactors [J]. Wat. Sci. Tech.,1997,35(8):225-230.
    [75]Mohd Hafizuddin Muhamad, Siti Rozaimah Sheikh Abdullan, Abu Bakar Mohamad, et al. Application of response surface methodology for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor(GAC-SBBR)[J]. Journal of Environmental Management,121(2013):179-190.
    [76]Mulkerrins D., Dobson A. D. W., Colleran E. Parameters affecting biological phosphate removal from wastewater. Environment International,2004,30 (2):249-259.
    [77]Munch Elisabeth V. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactor [J]. Wat. Res.,1996,30(2):289-293.
    [78]M X Loukidou, A I Zouboulis. Comparison of two biological treatment processes using attached-growth biomass for sanitary landfill leachate treatment [J]. Environmental Polution,2000,111(2001): 273-281.
    [79]Nam S, Tratnyek PG.Reduction of azo dyes with zero-valent iron[J]. Water Research,2000,34(6): 1837-1845.
    [80]Obaja D, Mace S, Costa J, et al. Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor[J]. Bioresource Technology,2003,87:103-111.
    [81]Oh S Y, Chiu P C, Kim B J, et al. Zero-valent iron pretreatment for enhancing the biodegradability of RDX[J].Chemosphere,2005,39(20):5027-5032.
    [82]Panizaa M, Bocca C, Cerisola G. Electrochemical treatment of wastewater containing polyaromatic organic pollutants [J]. Water Research,2000,34(9):2601.
    [83]Panizza M, Cerisola G. Removal of color and COD from wastewster containing acid blue 22 by electrochemical oxidation [J]. Journal of Hazardous Materials,2008,153(1-2):83-88.
    [84]Patel J., Nakhla G. Interaction of denitrification and P removal in anoxic P removal systems. Desalination,2006,201:82-99.
    [85]P A Wilderer, P Arnz, E Arnold. Water Application of biofilms and biofilm support materials as atemporary sink and source [J]. Air and Soil Pollution,2000,123:147-158.
    [86]Per Halkjaer Nielsen. The significance of microbial Fe(Ⅲ) reduction in the activated sludge process[J]. Water Science Technolog,1997,34(5-6):129-136.
    [87]Polcaro A M, Palmas S, Renoldi F, et al. Three-dimensional electrodes for the electrochemical combustion of organic pollutants [J]. Electrochim Acta,2000,46(2-3):389-394.
    [88]Polcaro A M, Vacca A, Palmas S. Electrochemical Oxidation of Chlorlphenols [J]. J. Appl. Electrochem.,2003,33(10):885-892.
    [89]Prosnanasky M, Sakakibara Y, Kuroda M. High-rate denitrification and SS rejection by bio-film-electrode reactor (BER) combined with microfiltration [J]. Water Research,2002, 36(19):4801-4810.
    [90]Qi P S, Chen Z L, Li H, et al. Pretreatment of refractory dyeing wastewater with the micro-eletrolysis-fenton process[J].China University of Mining and Technology,2008,37 (5):685-689.
    [91]Rajkumar D, Palanivelu K. Electrochemical treatment of industrial wastewater [J]. Journal of Hazardous Materials,2004, B113(1-3):123-129.
    [92]Raghu S, Lee C W, Chellammal S, et al. Evaluation of electrochemical oxidation techniques for degradation of dye effluents-A comparatice approach [J]. Journal of Hazardous Materials,2009, 171(1-3):745-754.
    [93]Ramesh Kumar, Parimal Pal. Turning hazardous waste into value-added products:production and characterization of struvite from ammoniacal waste with new approaches [J]. Journal of Cleaner Production,43(5):59-70.
    [94]Regina Nogueira, Claudia Alves, Maria Matos, et al. Synthesisi and degradation of poly-hydroxybutyrate in sequencing batch biofilm reactor [J]. Bioresoure Technology,2009, (100): 2106-2110.
    [95]Robertson Lasley A. Simultaneous nitrification and denitrification in aerobic chemostat cultures of thiosphaera pantotropha [J]. Applied and Environmental Microbiology,1998,54(11):2812-2818.
    [96]Run-hua CHEN, Li-yuan CHAI, Yun-yan WANG, et al. Degradation of organic wastewater containing Cu-EDTA by Fe-C micro-electrolysis [J]. Transactions of Nonferrous Metals Society of China,2012, 22(4):983-990.
    [97]Sakakibara Y., Flora J.R.V., Suidan M. T., et al. Modeling of electrochemically activated deitrifying biofilms[J]. Water Research,1994,28(5):1077-1086.
    [98]Sakakibara Y, Nakayama T. A novel multi-electrode system for electrolytic and biological water treatments:electric charge transfer and application to denitrification [J]. Water Research,2001, 35(3):768-778.
    [99]Saracco G, Solarino L, Aigotti R, et al. Electrochemical oxidation of organic pollutants at low electrolyte concentrations [J]. Electrochimica Acta,2000,46(2-3):373-380.
    [100]Shan M J,Min Y G, Shen X, et al. Degeneration treatment of wastewater with micro-electrolysis [J]. Harbin Institute of Technology,2008,40 (8):1325-1328.
    [101]S Nakasono, N Matsumoto, H Saiki. Electrochemcial cultivation of thiobacillus ferroxxidans by potential control [J]. Bioelectrochem Bioenerg.,1997,43(1):61-66.
    [102]SU J J, Liu YL, Shu FJ, et al. Treatment of piggery wastewater by contact aerobic treatment (TPWT) process. Journal of Environmental Science Health,1997,32A(1):55-73.
    [103]SU J J, LIU B Y, LIU C Y. Comparison of aerobic denitrification under high oxygen atmosphere by Thiosphaera pantotropha ATCC35512 and Pseudomonas stutzeri SU2 newwly isolated from the activated sludge of a piggery wastewater treatment system [J]. J Appl Microbiol,2001, 90(3):457-462.
    [104]Takaaki Maekawa, Chung-Min Liao, Xing-Dong Feng. Nitrogen and phosphorus removal for swine wastewater using intermittent aeration batch reactor followed by ammonium crystallization process [J].Wat. Res.,1995,29(12):2643-2650.
    [105]Takaya N, Catalan-Sakairi M A B, Sakaguchi Y, et al. Aerobic denitrifying bacteria that produce low levels of nitrous oxide [J]. Applied and Environmental Microbiology,2003,69(6):3152-3157.
    [106]Thanos. J. The influences of the electrolyte and the physical conditions on ozone production by the electrolysisi of water [J]. J. Appl. Electrochem.,1984,14:389-399.
    [107]Tissot P, Fragniere M. Anodic oxidation of cyanide on a reticulated three-dimensional electrode[J]. Journal of Applied Electrochemistry,1994,24(6):509-512.
    [108]Tomat R, Rigo A. Electrochemical oxidation of toluene promoted by OH radicals[J].Joumal of Applied Electro-chemistry,1984,14(1):1-8.
    [109]Tomohide Watanabe, Hisashi Motoyama, Masao Kuroda. Denitrification and neutralization treatment by feeding of an acidic wastewater containing copper ion and high-strength nitrate to biolelectro-chemical reactor process [J]. Wat. Res.,2001,35(17):4102-4110.
    [110]Un Ut, Altay U, Koparal A S, et al. Complete treatment of olive mill wastewaters by electrooxidation [J]. Chemical Engineering Journal,2008,139(3):445-452.
    [111]Vlyssides A G, Karlis P K, Rori, et al. Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes [J]. Journal of Hazardous Materials,2002,95(1-2):215-226.
    [112]Votes J P. Removal of nitreogen from highly nitrogenous wastewater [J]. JWPCF,1975,47:394-398.
    [113]Wan Hasnidah Wan Osman, Siti Rozaimah Sheikh Abdullah,Abu Bakar Mohamad, et al. Simultaneous removal of AOX and COD from real recycled paper wastewater using GAC-SBBR[J]. Journal of Environmental Management,121 (2013):80-86.
    [114]Wan Junfeng, Sperandio M. Possible role of denitrification on aerobic granular sludge formation in sequencing batch reactor [J]. Chemosphere,2009,75(2):220-227.
    [115]Wang C T, Hu J L, Chou W L, et al. Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode [J]. Journal of Hazardous Materials,2008,152(2):601-606.
    [116]Watanabe T, Motoyama H, Kuroda M. Denitrification and neutralization treatment by direct feeding of an acidic a bio-electrochemical reactor process [J]. Water Research,2001,35(17):4102-4110.
    [117]Wen-wu Liu, Xue-yan Tu, Xiu-ping Wang,et al. Pretreatment of coking wastewater by acid out, micro-electrolysis process with in situ electrochemical peroxidation reaction [J]. Chemical Engineering Journal,2012,200-202:720-728.
    [118]White G C. The Handbook of Chlorination and Alternative Disinfectants [M].(2nd ed).New York:Van Nostrand Reunhold,1999:1153-1202.
    [119]Woods N G, Sock SM. Daigger G T. Phosphorus recovery technology modeling and feasibility evaluation for municipal wastewater treatment plants [J]. Environ Tech,1999,20:663-680.
    [120]Wobus A, Roske I. Reactors with membrane-grown biofilms:their capacity to cope with fluctuating inflow conditions and with shock loads of xenobiotics [J]. Wat. Res.,2000,34(1):279-287.
    [121]Wolfgang F.Wiist, et al.Combined Zero-and First-Order Kinetic Model of Degradation of TCE and cis-DCE with Commercial Iron [J]. Environ.Sci.Technol.1999,33:4304-4309.
    [122]Xiaohui Guan, Xiaohui Xu, Min Lu,et al. Pretreatment of Oil Shale Retort Wastewater by Acidification and Ferric-Carbon Micro-Electrolysis [J]. Energy Procedia,2012,17:1655-1661.
    [123]Yang D, James D E. Electrochemical oxidation for landfill leachate treatment [J]. Waste Management,2007,27(3):380-388.
    [124]Yanli Lv, Yanqiu Wang, Mingjun Shan, Xue Shen,et al. Denitrification of coking wastewater with micro-electrolysis[J]. Journal of Environmental Sciences,2011,23(6):S128-S131.
    [125]Yetilmezsoy K, Sapci-Zengin Z. Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer [J]. J Hazard Mater,2009,166(1):260-269.
    [126]Young-Hun Kim, et al.Dechlorination of Pentachlorophenol by Zero Valent Iron and Modified Zero Valent Irons.Environ.Sci.Technol.2000,34:2014-2017.
    [127]Yoo Hyungseok, Ahn Kyu-Hong. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification via nitrite in an intermittently-aertes reactor [J]. Wat. Res.,1999,33(1): 145-154.
    [128]Yoram B, Jaap V. A typical polyphosphate accumulation by the denitrifying bacterium Paracoccus denitrificons[J].Applied and Environment Microbilogy,2000,66:1209-1212.
    [129]Y.-H. Ahh, I.-S. Hwang and K.-S. Anammox and partial denitritation in anaerobic nitrogen removal from piggery waste [J]. Water Science & Technology,2004,49(5-6):145-153.
    [130]Y Sakakibara, K Araki, T Tanaka, et al. Deitrification and neutralization with an electrochemical and biology reactor [J]. Wat Sci. Tech.,1994,30(6):151-155.
    [131]Z.Feleke, Y.Sakakibara. A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide [J]. Water Research,2002,36(12):3092-3102.
    [132]Zhang Lehua, Jia Jinping, Zhu Youchun. Electrochemically improved biodegradation of municipal sewage [J]. Biochemical Engineering Journal,2005,22:239-244.
    [133]Zhang Zhaoji, Li Yuanyuan, Chen Shaohua, et al. Simultaneous nitrogen and carbon removal from swine digester liquor by the Canon process and denitrification [J]. Bioresource Technology,2012,114: 84-89.
    [134]Zhou M H, Fu W J, Gu H Y, et al. Nitrate removal from groundwater by a novel three-dimensional electrode biolfilm reactor [J]. Electrochimica Acta,2007 (52):6052-6059.
    [135]Zhou Minghua, Wang Wei, Chi Meiling. Enhancement on the simultaneous removal of nitrate and organic pollutants from groundwater by a three-dimensional bio-electrochemical reactor [J]. Bioresource Technology,2009,100:4662-4668.
    [136]Zhu X P, Ni J R, Lai P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes [J]. Water Research,2009,43(17): 4347-4355.
    [137]柴晓娟,李根民,刘吏平.沼液的浸种技术[J].土壤肥料,2009,(9):36.
    [138]蔡固平,葛晓霞,张蕴辉,等.新型内电解铁屑过滤塔在印染废水工业化规模处理中的应用[J].环境工程,2003,31(36):21-23.
    [139]曹玉成,张妙仙,单胜道,等.畜禽养殖污物沼液生态处理装置和方法[P],2009,专利号:200810120398.
    [140]曹玉成,张妙仙,单胜道MBBR处理猪场废水厌氧消化液的研究[J].环境工程学报.2008,2(5):591-594
    [141]曹宏斌,李玉平,陈燕丽,等.电解-生物耦合技术处理酸性红A染料废水[J].环境工程学报,2003,3(6):570-574.
    [142]曹宏斌,李玉平,徐红彬,等.电催化还原-生物降解耦合处理硝基苯废水[J].环境科学,2004,25(增刊):95-07.
    [143]操卫平.猪场废水厌氧消化液后处理生物脱氮新技术研究[D].成都:四川大学,2004.
    [144]车玲.电化学法处理TNT废水及机理研究[D].成都:四川大学,2005.
    [145]陈武,杨昌柱,梅平.三维电极电化学方法处理印染废水实验研究[J].工业水处理2004,24(8):43-45.
    [146]陈玉成,杨志敏,郭玲等.电极-SBBR对集中型沼液的脱氮除铜研究[J].农业工程学报,2012,28(3):215-218.
    [147]陈超,徐风花,高立洪,等.规模化沼气工程沼液中微生物的细菌种群分析与功能初探[J].中国沼气,2012,30(6):7-12.
    [148]陈裕武.电化学氧化法与生物流化床技术组合工艺处理酚醛树脂废水的研究[D].南京:南京理工大学,2008.
    [149]陈金銮,施汉昌,徐丽丽.pH值对氨氮电化学氧化产物与氧化途径的影响[J].环境科学,2008,29(8):2277-2281.
    [150]常风民,王启宝,周岳溪,等SBBR处理腈纶生产废水的实验研究[J].环境科学与技术,2012,35(9):117-120.
    [151]邓良伟,陈子爱,袁心飞,等.规模化猪场粪污处理工程模式与技术定位[J].养猪,2008,6:21-24.
    [152]邓良伟,谭小琴,李建.利用秸秆堆肥过程处理猪场废水的研究[J].农业工程学报,2004,20(6):255-258.
    [153]邓良伟,蔡昌达,陈铬铭,等.猪场废水厌氧消化液后处理技术研究及工程应用[J].农业工程学报,2002,18(3):92-94.
    [154]邓良伟,郑平,李淑兰,等.添加原水改善SBR工艺处理猪场废水厌氧消化液性能[J].环境科学,2005,26(6):105-109.
    [155]邓良伟,郑平,陈子爱.Anarwia工艺处理猪场废水的技术经济性研究[J].浙江大学学报(农业与生命科学版),2004,20(6):255-259.
    [156]邓良伟,陈子爱,李淑兰,等.缩短厌氧消化时间改善猪场废水厌氧消化液好氧后处理性能的可行性[J].环境科学学报,2008,28(3):502-509.
    [157]邓良伟,谭小琴,李建.利用秸秆堆肥过程处理猪场废水的研究[J].农业工程学报.2004,20(6):255-258.
    [158]邓良伟,操卫平,孙欣,等.原水添加比例对猪场废水厌氧消化液后处理的影响[J].环境科学,2007,28(3):588-593.
    [159]邓良伟.猪场废水处理新工艺研究[D].杭州:浙江大学,2007,42-45.
    [160]邓小晖,张海涛,曹国民.芬顿试剂处理废水的研究与应用进展[J].上海化工,2007,32(8):1-5.
    [161]邓仕槐,张小平.生物技术在畜禽废水处理中的生物学效应研究[D].雅安:四川农业大学,2006,11-15.
    [162]窦艳艳,周健,韩懿,等.DO对SBBR反应器污泥减量效能的影响[J].中国给谁排水,2011,27(21):15-18.
    [163]杜金.混凝法预处理大中型猪场废水厌氧发酵液的研究[D].武汉:华中农业大学,2006.
    [164]段然,王刚,杨世琦,等.沼肥对农田土壤的潜在污染分析[J].吉林农业大学学报,2008,30(3):310-315.
    [165]董照锋,马榜劳,李琳,等.核桃施用沼肥的效果试验[J].浙江农业科学,2013,(3):278,179.
    [166]范建伟,张杰.活性污泥膜分离技术在畜禽废水处理中的应用[J].工业用水与废水,2002,33(3):39-40.
    [167]范伟平,曹惠军,张俊.微电解-白腐菌生物降解-絮凝沉降系统用于染料废水的处理[J].南京化工大学学报,2001,23(4):25-32.
    [168]冯雅丽,张茜,李浩然,等.铁炭微电解预处理高浓度高盐制药废水[J].环境工程学报,2012,6(11):3855-3860.
    [169]冯玉杰,李晓岩,尤宏,等.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002.
    [170]冯玉杰,崔玉虹,孙丽欣,等.电化学废水处理技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报,2004,36(4):450-455.
    [171]高锋.厌氧消化-SBR工艺处理养猪场废水及工艺最优化的研究[D].长沙:湖南大学,2005.
    [172]高婷,晏荣军,裘俊红,等.微绿球藻去除沼液氮、磷研究[J].浙江化工,2012,43(11):34-37.
    [173]耿树平,刘宏菊,罗威,等.铁炭微电解工艺处理采油废水的研究[J].环境工程学报,2012,6(1):242-245.
    [174]龚珊.序批式生物膜法对生活污水脱氮除磷的试验研究[D].西安:长安大学,2008.
    [175]郝桂玉.电极生物膜SBR反硝化脱氮试验研究[D].济南:山东师范大学,2003.
    [176]郝火凡,胡晓明.高氮垃圾渗滤液SBBR生物脱氮工艺特性研究[J].水处理技术,2009,35(9):48-51.
    [177]韩巍,唐文浩,黄种买,等.猪场废水化学强化SBR生物除磷技术探讨[J].环境科学与管理,2006,31(3):90-92.
    [178]韩卫清.电化学氧化法处理生物难降解有机物化工废水的研究[D].南京:南京理工大学,2007.
    [179]胡敬,蔡铎昌,何代平.铁炭内电解法处理含酚废水[J].西华师范大学学报,2006,27(1):106-108.
    [180]胡香云,周朝昕,杨祥.Fe-C微电解-SBR活性污泥法处理奥里油废水[J].安徽化工,2007,33(5):54-56.
    [181]何晓曼.铁炭微电解预处理环己酮生产废水技术研究[D].重庆:重庆大学,2008.
    (182]何慧.微电解/BAF联用工艺处理丝线印染废水的实验研究[D].南昌:南昌大学,2008.
    [183]何国建,刘晓波.三维电极法处理印染废水[J].化工环保,2004,24(2):124-127.
    [184]黄辉,刘杰,赵浩,等.浮萍放养体系对污水氮磷的净化效果[J].农业环境科学学报,2007,26(5):242-245.
    [185]黄辉.浮萍混养体系对养猪场废水厌氧消化液的处理效果[J].安徽农业科学.2008,36(31):13831-13832.
    [186]黄游.电极生物膜-SBR联合法处理城市污水的研究[D].广州:广东工业大学,2004.
    [187]黄民生,高廷耀.电极生物膜法反硝化的实验研究[J].上海环境科学,1996,15(6):25-27.
    [188]黄显怀,鲍立宁,马利民.电极生物膜法处理水中硝酸盐氮的试验研究[J].哈尔滨工业大学学报,2003,35(12):1486-1488.
    [189]贾保军.多相催化电解处理硝基苯和苯酚废水[D].大连:大连理工大学,2006.
    [190]黄海明,傅忠,肖贤明,等.氨氮废水处理技术效费分析及研究应用进展[J].化工进展,2009,28(9):1642-1646.
    [191]蒋山泉,翟俊,肖海文,等.序批式生物膜(SBBR)工艺同步脱氮除磷研究[J].四川大学学报(工程科学版),2008,1(40):64-68.
    [192]姜文腾,林聪.大中型沼气工程厌氧残留物综合利用探究[J].猪业科学,2008,(4):84-87.
    [193]靳红梅,常志州,叶小梅,等.江苏省大型沼气工程沼液理化特性分析[J].农业工程学报,2011,27(1):291-296.
    [194]李雪寒.我国南方大中型沼气工程的发展模式[D].南昌:江西农业大学,2012.
    [195]李轶,刘庆,张玉龙,等.沼肥对保护地土壤酶及其呼吸强度的影响[J].中国土壤与肥料.2007,(5):23-25.
    [196]李改莲.畜禽飞边厌氧发酵液产品的开发及其防虫特性试验研究[D].郑州:河南农业大学,2004.
    [197]李黎.城市生活来及渗滤液生物强化预处理研究[D].重庆:重庆大学,2008.
    [198]李金页,郑平.乌粪石沉淀法在废水除磷脱氮中的应用[J].中国沼气,2004,22(1):6-10.
    [199]李淑兰,张志国,邓良伟.饲料植物处理猪场厌氧废液的效果研究[J].中国沼气,2009,27(2):15-17.
    [200]李淑兰.猪场废水厌氧消化及后续处理技术研究[D].中南林学院,2003.
    [201]李雯,王三反,孙震.铁炭微电解预处理化工有机废水研究[J].净水技术,2008,27(5):53-55.
    [202]李文涛,范金霞,李文哲,等.牛粪发酵沼液对立枯丝核菌的抑制作用[J].农业工程学报,2013,29(3):207-212.
    [203]李春程.微电解-Fenton法处理含油乳化液[J].环境工程,2008,26(3):51-53.
    [204]李志祥.铁炭微电解处理CBT与AMA混合农药废水试验研究[J].安徽农业科学,2008,36(18):7735-7737.
    [205]李志刚,周健,张法国,等.SBBR处理老龄化垃圾渗滤液的自养脱氮效能[J].中国给水排水,2012,26(17):27-30.
    [206]李庭刚,陈坚.电化学氧化法处理高浓度垃圾渗滤液的研究[J].上海环境科学,2003,22(12):892-897.、
    [207]李伟东,.赵东风.电催化氧化法处理垃圾渗滤液中氨氮的研究[J].工业用水与废水,2006,37(6):42-44.
    [208]李亚峰,赵娜,班福忱,等.三维电极法处理硝基苯废水[J].沈阳建筑大学学报(自然科学版),2009,25(1):148-151.
    [209]李彦超,吴银宝.施用沼液对杂交狼尾草产量和土壤养分含量的影响[J].农业环境科学学报,2007,26(4):1527-1531.
    [210]李妍,席运官,徐欣.浮萍净化与资源化利用沼液初步研究[J].安徽农业科学,2012.40(34):16739-16740,16774.
    [211]李勇.电化学凝聚-生物炭滤池联合法处理废水技术及应用研究[D].广州:广东工业大学,2003.
    [212]黎圣,张英慧,徐文,等.ABR/氧化沟/膜生物反应器处理垃圾渗滤液[J].西安文理学院学报(自然科学版),2009,12(1):48-51.
    [213]梁晶,王俊.沼液在植保中的应用技术[J].安徽农学通报,2007,13(18):56-58
    [214]梁顺文,王伟,陈建湘,等.复合厌氧反应器-SBR工艺处理粪渣废水[J].中国给排水,2003,19(5):16-19.
    [215]林积秀.沼液在防治柑枯红蜘蛛上的应用[J].中国沼气。2006,23(2):34-36.
    [216]刘建国.猪场废水IC厌氧-三沟式氧化沟工艺技术研究[D].南京:东华大学,2003.
    [217]刘国栋.铁炭微电解-MAP沉淀-生化联合处理垃圾渗滤液的研究[D].合肥:合肥工业大学,2009.
    [218]刘唯伟.微电解-厌氧生物滤池法处理猪场厌氧废液的试验研究[D].武汉:华中农业大学,2006.
    [219]刘帅霞,高玉梅,李瑞国.SBBR工艺处理有机农药的生产性试验[J].环境工程,2009,27(3):7-8.
    [220]罗晓,张凤琴,王婷.微电解法预处理制药废水的研究进展[J].河北工业科技,2008,25(5):36-40.
    [221]吕汶霖.沼液农用对小麦产量、品质及土壤质量的影响研究[D].成都:四川农业大学,2011.
    [222]吕江维,刘佳,沈宏,等.溶解氧对电极生物膜反硝化性能的影响[J].哈尔滨工业大学学报,2011,43(2):24-29.
    [223]鲁风芹,孙文,李兴盼.铁炭微电解法预处理印染废水[J].青岛科技大学学报(自然科学版),2012,33(3):273-276.
    [224]孟海玲,董红敏,黄宏坤.膜生物反应器用于猪场污水深度处理试验[J].农业环境科学学报,2007,26(4):1277-1281.
    [225]孟刚,邹小兵,郑泽根,等.铁炭微电解-亚铁还原氧化法处理花菁废水的研究[J].感光科学与化学.2002,20(4):303-312.
    [226]马磊,何松波,李敬美,等Ti/SnO2-RuO2-Sb电极氧化处理五氯苯酚模拟废水的研究[J].安全与环境学报,2012,12(1):20-23.
    [227]倪亮,孙广辉,罗光恩,等.沼液灌溉对土壤质量的影响[J].土壤,2008,40(4):608-611.
    [228]倪骏.城市生活有机垃圾厌氧发酵后的沼液处理[D].昆明:昆明理工大学,2005.
    [229]倪宝云SBBR法处理城市污水的试验特性研究[D].太原:太原理工大学,2010.
    [230]欧阳玉祝.铁屑微电解-共沉淀法处理含钒废水[J].化工环保,2002,22(3):165-168.
    [231]欧阳超,尚晓,王欣泽,等.电化学氧化法去除养猪废水中氨氮的研究[J].水处理技术,2010,36(6):111-115.
    [232]彭剑凤,宋永会,袁鹏,等SPRR工艺回收养猪废水营养元素研究[J].农业环境科学学报,2007,26(2):2173-2178.
    [233]彭人勇,程宝珍.Fe/C微电解一絮凝沉淀法处理电镀废水中铜的研究[J].环境工程学报,2012,6(2):501-504.
    [234]秦宇,方芳,郭劲松.pH值对SBBR自养脱氮系统效能及功能菌数量的影响[J].中国给水排水,2012,28(17):37-39.
    [235]邱俊,朱乐辉,裴浩言,等.Fe/C微电解-超声波/Fenton氧化-活性炭吸附处理仲丁灵农药废水[J].环境污染与防治,2009,31(4):53-56.
    [236]任拥政,章北平,张晓星,等.铁炭微电解对造纸黑液的脱色处理[J].水处理技术,2006,32(4):68-70.
    [237]荣宏伟,彭永臻,张朝升,等.曝气量对SBBR生物除磷的影响研究[J].中国给水排水,2008,5(24):72-76.
    [238]荣宏伟,张朝升,彭永臻,等.DO对SBBR工艺同步硝化反硝化的影响研究[J].环境科学与技术,2009,8(32):16-19..
    [239]时文中,华杰,朱国才,等.电化学法处理高盐苯酚废水的研究[J].化工环保,2003,23(3):129-133.
    [240]史一鸣.稻田生态系统消解沼液的潜力及风险评估[D].杭州:浙江大学,2010.
    [241]苏远波,李清彪,王远鹏,等IrO2-RuO2/Ti电极处理含氰含银电镀废水[J].化学反应工程与工艺,2009,25(6):560-565.
    [242]孙艳波,周少奇,李伙生,等.SBR法处理垃圾渗滤液与粪水的混合液[J].中国给排水.2009,25(7):5-8.
    [243]孙洪伟,彭永臻,时晓宁,等.高氮渗滤液缺氧/厌氧UASB-SBR工艺低温深度脱氮[J].中国化境科学,2009,29(2):207-212.
    [244]孙红营.电化学方法处理含油废水及焦化废水的研究初探[D].上海:同济大学,2008.
    [245]孙颖,李敬苗,王继斌.三维电极电解处理线路板含铜废水[J].电镀与环保,2012,32(2):35-36.
    [246]宋国梁,邓良伟.高氨氮厌氧消化液后处理技术研究[J].中国沼气,2006,25(2):7-10.
    [247]宋灿辉,肖波,胡智权,等UABS/SBR/MBR工艺处理生活垃圾焚烧厂渗滤液[J].中国给排水,2009,25(2):62-64.
    [248]宋召胜.铁屑活性炭综合处理电镀废水[J].电镀与环保,1998,18(6):31-32.
    [249]寿亦丰,蔡昌达,林伟华,等.杭州灯塔养殖总场沼气与废水处理工程的技术特点[J].农业环境保护,2002,21(1):29-32.
    [250]田建慧,马宏瑞.成对-三维电极电解染料废水[J].水处理技术,2012,38(1):114-117.
    [251]王金花.沼气发酵生态系统与残留物综合利用技术研究[D].北京:中国农业大学,2005.
    [252]王远远.蔬菜废弃物沼气发酵工艺条件及沼气发酵残余物综合利用技术的研究[D].上海:上海交通大学,2008.
    [253]王磊刚.垃圾填埋场渗滤液处理技术探讨[J].工业安全与环保,2009,35(1):35-38.
    [254]王延峰,李亚峰.微电解-H202处理印染废水的试验研究[J].工业安全与环保,2009,35(2):9-10.
    [255]王兆龙,王珩,张银超.“微电解-芬顿氧化-UASB-接触氧化”在萘普生医药废水处理中的应用[J]. 盐城工学院学报(自然科学版),2009,22(2):32-35.
    [256]王卫平,朱凤香,陈晓,等.浇灌沼液对鲜食大豆产量、品质及土壤质量的影响[J].浙江农业科学,2013(3):276-278.
    [257]王鹏,刘伟藻,方汉平.垃圾渗沥液中氨氮的电化学氧化[J].中国环境科学,2000,20(4):289-291.
    [258]王天慧,李延国,李建军,等.沼液生产浓缩复合液肥生产技术及设备的研究[J].农机化研究,2013,(3):242-248.
    [259]王伟楠,杨改河,任广鑫,等.叶面喷施沼液对苹果树营养生长或果实品质的影响[J].西北农林科技大学学报(自然科学版),2008,36(11):151-156.
    [260]王永广.微电解技术在工业废水处理中的研究与应用[J].环境污染治理技术与设备,2002,3(4):69-73.
    [261]王紫薇铁炭微电解-厌氧工艺处理农药废水的研究[D].合肥:合肥工业大学,2009.
    [262]王韬,李鑫钢,孙津生,等.电生物反应器降解含Cr6+和Zn2+的高浓度苯酚废水[J].水处理技术,2006,32(11):54-57.
    [263]王鳌杰.新型SBBR脱氮除磷试验研究[D].重庆:重庆大学硕十学位论文,2006.
    [264]王丽丽.沼气产业化基本理论与大中型沼气工程资源配置优化研究[D].长春:吉林大学博士学位论文,2012.
    [265]吴飞龙,叶美锋,林代炎.沼液综合利用研究进展[J].能源与环境,2009,(1):94-95.
    [266]吴东雷,郑平铁炭法处理味精废水试验研究[J].环境科学与技术,2004,27(4):34-35.
    [267]吴佳.沼液对美国香豌豆生长发育、抗旱性及土壤肥力的影响[D].西安:西北农林科技大学,2012.
    [268]吴未红,袁兴中,曾光明,等.电极-生物膜法处理铜酸洗废水[J].中国环境科学,2005,25(2):236-240.
    [269]肖仙英,陈中豪,陈元彩.微电解法在漂白废水脱色中的应用[J].中国造纸,2004,23(6):5.
    [270]肖凯军,王新,银玉容.三维电极-电Fenton耦合法降解硝基苯废水[J].华南理工大学学报(自然科学版),2010,38(8):131-135.
    [271]徐洁泉.集约化猪场粪便污水沼气发酵综合处理系统的生产实验[J].中国沼气,1991,(3):26-29.
    [272]徐耀鹏UASB、SBR、稳定塘组合工艺处理高浓度养殖废水研究[D].成都:成都理工大学,2011.
    [273]徐铮勇,杨朝晖,曾光明,等.序批式生物膜反应器(SBBR)处理高氨氮渗滤液的脱氮机理研究[J].环境科学学报,2006,26(1):55-60.
    [274]夏虹,李娟,张永刚.电化学氧化-内电解耦合预处理高浓度制药废水[J].天津工业大学学报, 2011,30(1):55-57.
    [275]项红珍,陈玉成,陈庆华,等.电极-SBBR处理含铜有机污水[J].环境工程学报,2012,6(12):4383-4386.
    [276]辛明秀,赵颖,周军,等.反硝化细菌在污水脱氮中的作用[J].微生物学通报,2007,34(4):773-776.
    [277]闫肖茹,王建中,张萍,等.二维与三维电极法处理苯酚废水试验研究[J].山西能源与节能,2010,(6):62-64.
    [278]杨剑,邓超冰,冼萍,等.SBR处理猪场废水厌氧消化液脱氮工艺的优化[J].环境科学与技术,2009,32(1):174-177.
    [279]杨健,杨嬗,吴敏.酒精废水厌氧消化液的后续处理试验[J].中国给排水,2003,19(13):117-119.
    [280]杨健,郑广红.微电解预处理难降解有机废水的研究进展[J].工业用水与废水,2008,39(5):1-5.
    [281]杨文玲,杨会龙,徐智策,等.阿奇霉素废水铁炭微电解研究[J].河北科技大学学报,2012,33(1):89-92.
    [282]杨玉峰.铁炭微电解组合工艺预处理高浓度难降解有机废水的研究[D].杭州:浙江工业大学,2009.
    [283]杨义飞,陈双双,赵飞飞.SBR中活性污泥培养驯化的研究[J].环境科学与管理,2011,36(7):102-104.
    [284]杨晓瑞.利用含酚废水驯化活性污泥过程的研究[J].创新技术,2010,(4):15-16.
    [285]杨晓燕,陈雷,陆雪梅,等.微电解-芬顿法预处理吡虫啉农药生产废水[J].南京工业大学学报:自然科学版,2008,30(3):30-33.
    [286]杨朝晖,高锋,曾光明,等.短程硝化反硝化去除高氨氮猪场废水中的氮[J].中国环境科学,2005,25:43-46.
    [287]叶旭君、王兆赛、李全胜.以沼气工程为纽带的生态农业工程模式及效益分析[J].农业工程学报,2000,16(2):24-28.
    [288]易艳红,李小江,孙红松,等.新型SBBR工艺处理低C/N值生活污水的研究[J].中国给水排水,2011,27(3):12-15.
    [289]袁静敏.微电解-Fenton试剂固定化生物技术复合工艺处理染料废水的试验研究[D].长春:吉林大学,2006.
    [290]于季红.三维电极法处理苯酚废水影响因素研究[J].环境保护科学,2010,36(2):53-56.
    [291]于千桂.沼液拌料喂牛效益增[N].北方牧业,2009-1-15(21):11-14.
    [292]余丽娜,宋玉栋,周岳溪,等.三维电极法处理丙烯酸丁酯生产废水的研究[J].环境工程学报,2011,5(5):1025-1028.
    [293]詹慧龙,严昌宇,杨照.中国农业生物质能产业发展研究[J].中国农学通报,2010,26(23):397-402.
    [294]张无敌,宋洪川,韦小岿,等.沼液处理辣椒种子后对生长的影响[J].云南师范大学学报.2002,22(3):24-26
    [295]张小平、张珺.果树喷施沼液防冻技术[J].现代园艺,2008,(1):26.
    [296]张全国,李鹏鹏,倪慎军,等.沼液复合型杀虫剂研究[J].农业工程学报,2006,22(6):157-160.
    [297]张瑞红.基于物化-序批式生物膜工艺处理厨余垃圾厌氧消化液的研究[D].昆明:昆明理工大学,2007.
    [298]张晟,陈玉成.环境试验优化设计与数据分析[M].北京:化学工业出版社,2008:145-156.
    [299]张博.铁炭微电解工艺处理造纸废水的试验研究[D].哈尔滨:哈尔滨工业大学,2007.
    [300]张国治,姚爱莉.藻类对猪粪厌氧废液的净化作用[J].西南农业学报.2000,13(增刊):105-112.
    [301]张瑶,胡翔,李春喜,等.铁炭微电解法降解1-丁基-3-甲基咪唑四氟硼酸盐的研究[J].环境工程学报,2010,4(12):2727-2734.
    [302]张国芳,肖书虎,肖宏康,等.黄连素制药废水的电化学预处理试验[J].环境科学研究,2011,24(1):79-84.
    [303]张辉.内电解-A/O/MBBR/O-混凝沉淀-化学氧化法处理医药废水的试验研究[D].武汉:武汉理工大学,2010.
    [304]张峰,李文奇,冯传平,等Ti/IrO2-Pt电极电化学降解酸性橙Ⅱ染料废水研究[J].水处理技术,2011,37(8):77-80.
    [305]赵文生,邓锡斌,赵勇胜,等.三维电极法预处理山梨酸废水[J].吉林大学学报(地球科学版),2008,38(2):309-312.
    [306]张少峰,胡熙恩.三维电极电解法处理含铅废水[J].工业水处理,2012,32(4):42-45.
    [307]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑出版社,1998,51.
    [308]郑婧.铁炭微电解处理高浓度酒精废水研究[D].哈尔滨:哈尔滨工业大学,2007.
    [309]朱甲明.沼肥对脐橙抗冻试验结果初报[J].江西能源,2000,3:43-44.
    [310]朱殿林,管锡珺,殷其中,等.电解/膜生物反应器组合工艺处理造纸废水[J].中国给水排水,2010,26(1):77-78,82.
    [311]朱春兰,邓仕槐,肖鸿,等.新型SBBR处理畜禽废水脱氮实验研究[J].环境工程学报,2010,4(7):1525-1528.
    [312]祝贞凤.电化学方法处理高浓度有机废水设备的研究[D].青岛:青岛大学,2009.
    [313]周彦锋,邱凌,李自林,等.沼液用于无图栽培的营养机理与技术优化[J].农机化研究,2013,(5):226-227.
    [314]邹丞,黄冲,潘一,等.苯酚废水电化学处理方法研究进展[J].当代化工,2013,42(3):325-327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700