用户名: 密码: 验证码:
高效厌氧技术在印染废水处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绍兴污水处理厂负责处理绍兴市、县两级的生活污水和工业废水,日处理能力70万吨。其处理的废水为含8%的市政污水、90%印染废水及2%的其他工业废水的混合印染废水。印染废水又主要来源于碱减量印染废水。混合印染废水具有有机污染物浓度高、pH(9.14-10.21)、COD、色度深、SS(悬浮物)均高及低BOD/COD(有别于其它的印染废水或市政废水)等特点,属难处理的工业废水类。
     在过去的四年里,绍兴污水厂很好地履行了其处理废水的任务,处理出水始终能达到国家排放标准。然而,由于其主体工艺是好氧,由此必须面对好氧工艺本身带来的废水处理高成本问题及制约其发展的瓶颈——剩余污泥处置问题。而厌氧处理技术具有高COD去除率、低污泥产率、可以产生沼气、回收能源等诸多优点,可能成为解决这两个问题的途径。因此,本论文的尝试探讨了将高效厌氧技术在处理绍兴印染废水及污泥减量化中的可行性及其效果。
     该研究的主要结论如下:
     高效厌氧技术的中试研究采用了三类厌氧反应器AnaEG、折流板式ABR和回转式反应器APFR。处理后COD平均消减量分别为494、393、307 mg/L,消减幅度分别为36.0%、28.6%和22.4%。AnaEG反应器处理后BOD平均降低了近100 mg/L;ABR和APFR分别降低了8和61 mg/L。B/C最终都保持0.4左右或略高于0.4,处于易生化降解范围内。经厌氧处理后C:N:P的比例都是明显改观的。硫酸盐还原作用使出水硫化物的增加,产甲烷菌的生长受到严重抑制,各反应器均未大量产生沼气。后续好氧阶段能正常运行。
     一期厌氧池清理改造后,厌氧出水COD均值平均削减了165 mg/L,BOD平均削减了40 mg/L, B/C略有提高。硫酸盐含量削减70 mg/L左右,SS均值降低了81 mg/L。厌氧对TN和TP的削减幅度都不大,C:N:P的比例都有所优化。进出水pH均值分别为9.58、8.51,变化范围明显减小。成本分析表明厌氧工艺的使用使可以污水厂处理总成本降低490万元/年左右。
     AnaEG对TA的降解率为8.5%,说明TA是难于被厌氧降解。GC-MS分析表明经AnaEG处理后,烷烃含量由进水的71.26%下降到出水的19.57%,有机物种类由进水的112降到了64。AnaEG反应器对高级烷烃这类对产甲烷菌等厌氧菌有很强毒性的物质也有很高的降解效率。三种毒性测定方法测定均表明废水毒性很强,AnaEG则可大大减轻废水的毒性。
     卫生填埋场内厌氧消化了一年的颗粒污泥产甲烷活性最高,最适合做接种用的颗粒污泥,其可以加速反应器的启动。扫描电镜分析表明,三个泥样(分别为:填埋场内厌氧消化一年后的泥、消化前即好氧剩余污泥浓缩压滤后的泥及运行了400 d的AnaEG内的颗粒泥)的微生物结构有很大不同,而PCR-DGGE表明三个泥样的菌种类型差异不大,这些颗粒污泥的粒径分布存在着明显的差异。据此提出了填埋场生产颗粒污泥的污泥颗粒化过程的新三步模型。
     在出水TCOD均在排放标准150 mg/L以下的前提下,好氧剩余污泥回流比率可达到好氧处理时剩余污泥量的60%。进水高pH能有效促进剩余污泥减量化。SRT为10 d和25 d的好氧剩余污泥,最大污泥回流比率分别可达60%和40%。好氧和厌氧/兼性菌在污泥产率上的明显差异,是不同pH条件或不同SRT的剩余污泥在减量化时会有不同最大削减量的重要原因。生产应用表明,一期污泥可减量0.24吨干泥/万吨水;二期污泥可减量0.45吨干泥/万吨水。
     从AnaEG内提取的好氧TA降解菌JD-1经生理生化及分子生物学鉴定为铜绿假单胞菌,厌氧TA降解菌JD-2鉴定为蜡状芽孢杆菌。JD-1 24 h内对1000 mg/L TA降解率99%,JD-2 72 h内对1000 mg/L TA降解率98%。GC-MS分析表明厌、好氧降解途径有较大不同。高效兼性厌氧染料脱色菌JD-3也为铜绿假单胞菌,其72 h内可使各类100 mg/L的多种染料完全脱色,染料脱色在缺氧条件下最好。
Shaoxing Wastewater Treatment Plant (SWWTP) is responsible to treat municipal and industrial wastewater with a total treatment capacity of 700, 000 m~3/d. Wastewater of SWWTP is mainly composed of 8% municipal sewage, 90% dyeing and printing wastewater and 2% other industrial wastewater. Being main component of SWWTP’s wastewater originates from the alkali-decomposition processes of dyeing, printing, terylene artificial silk printing and dyeing wastewater (TPD wastewater), it is characterized by high pH (9.14-10.21), COD, color, SS (suspended solids) and low BOD/COD ratio (different from traditional printing and dyeing wastewater and municipal sewage). It belongs to the wastewater hard to be treated.
     In the past 4 years, SWWTP has well performed its responsibility and its effluent can be discharged below the discharging standard. However, WWTP have to be confronted with the sky-high wastewater treatment cost and thinking over the aerobic residual sludge disposal every day because of its predominant aerobic treatment unit. Under the condition of present energy resources are badly needed and deficient greatly of resources, the topic of sustainable development has become people’s concerns. For its potential benefits of superior COD removal, lower sludge production and to cut down energy consumption, along with biogas generation, anaerobic digestion is a well established wastewater treatment technology, with worldwide application.
     The main purposes of this paper were to research the performance of application of advanced anaerobic technology in printing and dyeing wastewater treatment and cutting down the aerobic residual sludge of SWWTP. The key results from these studies are summarized as followings:
     Three kinds of different pilot-scale anaerobic reactors consisting of anaerobic baffled reactor (ABR), anaerobic plug flow reactor (APFR) and AnaEG were operated in the pilot-scale experiment of anaerobic technology. The average value of the diminished COD was 494, 393, 307mg/l or the average ratio of the diminished COD was 36.0%, 28.6% and 22.4%. The diminished BOD of AnaEG was 100 mg/l, while that of ABR and APFR was 8, 61 mg/L. All B/C were about or above 0.40, and were in the scope of easily biodegradation. Component of nutrient material changed very little. The ratio of C: N: P became better. The role of sulfate-reducing increased the concentration of sulfides/H2S in the anaerobic effluent, which heavily inhibited the Methanobacterium sp., and the methane produced little. The effluent of aerobic process after anaerobic could below the discharge standard.
     After cleaned and remedied, the average value of the diminished COD of anaerobic effluent in No.1 Stage of SWWTP was 165 mg/l. The diminished BOD was 40 mg/l, and the ratio of B/C increased. The diminished SO_4~(2-) was 70 mg/l and SS removed was 81 mg/l. The ratio of C: N: P became better. Influent and effluent pH was 9.58 and 8.51, and the variation range became narrow. According to the cost analysis, the practice of anaerobic in SWWTP would reduce the cost 4.90 million yuan per year.
     The degradation ratio of TA was 8.5% in the AnaEG,which showed that TA is hard to be decomposed under anaerobic conditions. The paper was to evaluate anaerobic treatment efficiency of reducing toxic compounds by gas chromatography mass spectrometry (GC-MS) analysis showed that a main component of the raw effluent was long-chain n-alkanes. Alkanes in the AnaEG could be reduced from 71.26% to 19.57%. The categories of the total organic components reduced from 112 to 64. AnaEG had a better degradation performance on the toxicity of long-chain n-alkanes which is toxicity to Methanobacterium sp. Three different toxicity tests showed that the wastewater had heavy toxicity, and AnaEG could reduce its toxicity.
     The sludge activity of the anaerobic sludge after digestion for one year in landfill was at its peak. It was the fittest seeded granular sludge and its adding could accelerate the star up of the reactor. SEM demonstrated the main microbial species of sludge in the three different sludges (granular sludge of landfill after digestion for 1 year; granular sludge of landfill after digestion for 0 d; granular sludge taken from the pilot-scale EGSB after operation 400 d) had obvious differences. However, denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified 16S rDNA gene fragments demonstrated a high degree of similarity of them. The particle size distribution demonstrated that there were some different between them. Three-step Model for the anaerobic granular sludge formation in sanitary landfill was put forward.
     The inversed sludge ratio of aerobic excess biomass recirculated to ABR could get 60% reduction in sludge production under aerobic conditions with effluent TCOD concentration well below the discharging limit of 150mg/L. High influent pH could promote the minimizing excess sludge production efficiency. The inverse ratio of the aerobic sludge recirculation to anaerobic reactor could reach 60% and 40% individually for the system with aerobic sludge retention time (SRT) of 10 d and 25 d. The distinct difference in sludge yield of aerobic and anaerobic/anoxic processes could explain the reason why it was different for different pH and aerobic SRT. Produce application presented that aerobic excess biomass in No.1 Stage of SWWTP could be reduced by 0.24 ton dry sludge/10,000 ton wastewater; No.1 Stage could reduce 2780 ton wet sludge per day.
     The aerobic TA degradation bacterium JD-1 was Pseudomonas aeruginasa, and anaerobic TA degradation bacterium JD-2 was Bacillus Cereus. JD-1 could degrade 1000 mg/L of TA in 24 h under aerobic conditions, and JD-2 could degrade 1000 mg/L of TA in 72 h. GC-MS analysis showed that their degradation approaches were different. One decolour facultative aerobes bacterium JD-3 isolated from AnaEG was Pseudomonas aeruginasa could degrade many kinds of azo-dyes of 100 mg/L in 72 h. Dyes were decoloured best under anoxic conditions.
引文
[1]黄长盾,杨西昆,汪凯民.印染废水处理[M].北京:纺织工业出版社,1987
    [2]杨波.碱减量印染废水生物处理污泥减量化研究.[博士学位论文].东华大学,2004
    [3] 官 宝 红 , 徐 根 良 , 赵 德 明 , 王 侃 . 对 苯 二 甲 酸 废 水 的 处 理 技 术 [J]. 水 处 理 技术,2002,28(3):129-133
    [4]詹伯君,戴林富.碱减量废水处理技术研究[J].工业用水与废水,2000,31(4):24-27
    [5] 陈 扬 , 同 帜 , 程 刚 , 蒋 涛 . 印 染 废 水 处 理 工 艺 研 究 [J]. 西 北 纺 织 工 学 院 学 报 ,1999,13(2):201-207
    [6]王淦.印染厂碱减量废水处理工业探讨[J].中国给水排水,2000,16(8):21-22
    [7]程国锋,李顺鹏.厌氧生物处理在印染废水中的引用[J].中国沼气,1997,15(1):3-6
    [8]袁洪志.厌氧-好氧并用工艺处理印染废水的研究[J].环境科学与技术,1998,83(4):3941
    [9] Beydilli M I, Pavlostathis S G, Tincher W C. Decolorization and toxicity screening of selected reactive azo-dyes under methanogenic conditions [J].Water Sci. Technol. 1998, 38:225-232
    [10] Brown D, Laboureur P. The degradation of dyestuffs: Part I-Primary degradation under anaerobic conditions[J].Chemosphere.1983, 12( 3):397-404
    [11] Van der Zee F P, Lettinna G, Field J A. Azo dye decolourisation by anaerobic granular sludge[J]. Chemosphere. 2001,44(5): 1169-1176
    [12] Brown M A, DeVito S C. Predicting azo dye toxicity[J]. Crit. Rev. Env. Sci. Tec. 1993, 23(3): 249-324
    [13] Pinheiro H M, Touraud E, Thomas O. Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewater [J]. Dyes Pigments. 2004, 61(2): 121-139
    [14] Razo-Flores E, Luijten M, Donlon B A, lettinna G, Field J A. Complete biodenradation of the azo dye azodisalycilate under anaerobic conditions[J]. Environ. Sci. Technol. 1997, 31(7):2098-3103
    [15] Beunink J, Rehm H J. Coupled reductive and oxidative degradation of 4-chloro-2-nitrophenol by a co-immobilized mixed culture system [J]. Appl. Microbiol. Biotechnol. 1990,34:108-115
    [16] Razo-Flores E, Luijten M, Donlon B, Lettinga G, Field J. Biodegradation of selected azo dyes under methanogenic conditions[J]. Water Sci. Technol. 1997, 36 (6-7): 65-72
    [17] Willeetts J R M, Ashholt N J. Understanding anaerobic decolourization of dye waste-water: mechanism and kinetics[J]. Water Sci. Technol. 2000, 42(1): 409-415
    [18] Kuai L, Devreese I, Vandevivere P, Verstraete W. GAC-amended UASB reactor for the stable treatment of toxic textile wastewater[J]. Environ. Technol. 1998, 19(11):1111-1117
    [19] 竺建荣,杨艳茹,安仁虎,钱易.厌氧 UASB-好氧工艺处理染料废水的研究[J].环境科学,1994, 15(4): 31-34
    [20] 安仁虎,钱易,顾夏声.厌氧过程在厌氧-好氧工艺处理染料工业废水[J]].环境科学研究,1994, 7(3): 36-39
    [21] 洪义国,郭俊,工敏妮,许玫英,孙国萍.具有广谱偶氮还原能力柠檬酸菌AzoR-2 的分离鉴定和还原特性研究[J]. 环境科学,2007,28(6):1397-1403
    [22] 刘正芹.两类染料厌氧生物可降解性的研究[J]. 青岛大学学报(工程技术版),2005,20 (2):29-33
    [23]吴云涛,储金宇,吴春笃,李龙海,刘在进. 两种生物反应器处理偶氮染料废水的比较[J]. 水处理技术.2007,33(5):41-44
    [24]杨琦,席宏波,文湘华,钱易.酸性媒介黄GG生物降解性能的试验研究[J]. 环境污染治理技术与设备.2006(1):50-54
    [25]刘兴旺,戴友芝.厌氧生物法处理活性染料废水的研究[J].湘潭大学自然科学学报.2005,27(2):116-119
    [26] 沈东升,冯孝善.我国印染废水处理技术的现状和发展趋势[J].环境污染与防治,1996,18(1):26-28
    [27] 刘建荣,吴国庆,牛志卿,李兴.磁态厌氧流化床处理印染废水[J]. 中国环境科学,1996,16(1):64-67
    [28] 杨琦,文湘华,施汉昌,钱易.3 种偶氮染料厌氧生物降解性能的试验研究[J]..环境科学2004,第 25 卷,增刊
    [29] Pasti M B, Crawford D L. Relationships between the abilities of streptomycetes to decolorize three anthron-type dyes and to degrade lignocellulose [J]. Con. J. Microbiol. 1991, 37(12):902-907
    [30]宋文华,颜慧,胡国臣,戴树桂,庄源益,温孚江,郑成超.蒽醌染料及中间体脱色优势菌的特性研究和基因定位[J].环境化学,1999,(03):263-210
    [31] 林晓华,董新姣.青霉菌 XS 对活性艳-兰 KN-R 脱色研究[J].四川环境,2002,21(4):5-12
    [32]董晓丽,周集体,王竟. 蒽醌染料降解菌 XL-1 活细胞色素及降解产物的紫外可见光谱分析[J]. 光谱学与光谱分析,2003, 23(2):340-341
    [33] Itoh K, Kitade Y, Yatome C. Oxidative biodegradation of an anthraquinone dye,pigment violet 12, by Coriolus versicolor[J].Environ. Contam. Toxicol. 1998, 60(5):786-790
    [34] Ribbons D W, Evans W C. Oxidative metabolism of phthalic acid by soil Pseudomonads[J]. Biochem. J. 1960, 76(6): 310-318.
    [35] Englehardt G, Wallnofer P R, Rast H G, Fiedler F. Metabolism of o-phthalic acid by different gram-negative and gram-positive soil bacterial[J]. Arch. Microbiol. 1976, 109(1-2): 109-114.
    [36] Aftring R P, Chalker B E, Taylor R F. Degradation of phthalic acids by denitrfying,mixed cultures of bacterial[J]. Appl. Environ. Microbiol. 1981,41(5): 1177-1183.
    [37]佟宏,白毓谦.对苯二甲酸的微生物降解[J].环境科学学报 1990,10(4):464-470
    [38]冯杨阳,陈俊,刘波,陈英文,郑国洋,陆建华,沈树宝. 一株对苯二甲酸降解菌的鉴定及其降解特性[J].化工学报.2006,57(8):1968-1973
    [39] 于 俊林, 藤 田 早 苗. 对 苯 二 甲酸 降 解 微生 物 的 驯化 及 筛 选 [J]. 天 津工业 大 学 学报.2004,23(2):48-50
    [40]杨期勇,陈季华,孙选举,奚旦立.涤纶碱减量废水中对苯二甲酸的好氧生物降解性能研究[J].环境污染治理技术与设备.2006,7(7):38-42
    [41]邹惠仙,马文漪.微生物降解对苯二甲酸的动力学研究[J].科学通报,1983, 28(22):1374-1377
    [42]齐文钰.精对苯二甲酸生产废水厌氧处理微生物特性的研究[J].中国沼气,1992, 10(4) : 5-10
    [43]Fajardo J P, Gupot H, Macarie, Monroy O. Inhibition of anaerobic digestion by terephthalic acid and its aromatic by products[J]. Wat. Sci. Tech, 1977, 36(6-7): 83-90
    [44] Chidambara Raj C B, Ramkumar N. Biodegradation of Acetic, Benzoic, Isophthalic, Toluic and Terephthalic Acids Using a Mixed Culture: Effluents of PTA Production[J]. Process Saf. Environ.: Transactions of the Institution of Chemical Engineers[C]. Part B, 1997, 75(4): 245-256.
    [45] 李刚,申立贤.精对苯二甲酸生产废水处理技术[J].中国沼气,1995, 13(4):1-6.
    [46] 韩洪军,刘立凡,衣春敏,孙卫东. UASB-AF 处理高浓度涤纶聚酯废水的试验研究[J].中国沼气,1999,17(3): 13-16
    [47] Kleerebezem R, Pol L W H, Lettings G. Anaerobic biodegradability of phthalic acid isomers and related compounds[J]. Biodegradation. 1999, 10(1):63-73
    [48] Kleerebezem R, Ivalo M, Pol L W H, Lettings G. High rate treatment of terephthalate in anaerobic hybrid reactors[J]. Biotechnol. Progr. 1999, 15(3): 347-357
    [49] 赵洪波.生物膜 A/O 法处理 PTA 废水的试验研究[J].环境科学,1994, 15(6): 47-50,60
    [50] 俞汉青,陈国中.含硫酸盐工业有机废水的处理方法[J]. 工业水处理,1991, 11(5):12-14
    [51] 崔高峰,柯建明,王凯军.COD/S042-值对硫酸盐还原率的影响[J].环境科学,2000, 2(24): 106-107
    [52] 钱泽澎.硫酸盐对厌氧消化的影响[J].中国沼气,1994.12(3):3-6
    [53]Larrry L, Barten. Sulfate-Reducing Bacteria[C].New York,London:Plenum Press,1995
    [54]Choi E, Rim J M. Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment[J]. Water Sci.Technol. 1991,23(7-9):1259-1264
    [55] McCartney D M,Oleskiewicz J A. Competition between methanogens and sulfate reduces: Effect of COD: sulfate ratio and acclimatization[J]. Water Environ. Res.1993,65(1):655-664
    [56] 甄卫东,任南琪,王爱杰,李建政.一株硫酸盐还原菌的分离及生理生态特性的研究[J].地球科学进展,2004,19(增刊):527-532
    [57] 冯颖,康勇,张忠国.硫酸盐生物还原体系的主要影响因素研究[J].水处理技术,2005, 31(3):20-24
    [58]王伟,阮文权,邹华,严群,陈坚,孙志浩.EGSB反应器处理高浓硫酸盐废水[J]. 食品与生物技术学报.2006,25(6):23-28
    [59]张奎,刘海成.产酸脱硫反应器中COD/SO 比对硫酸盐去除率的影响研究[J].科学技术与工程.2007,7(6):1119-112242-
    [60] Schroepfer G L. The anaerobic contact process as applied to packing house wastes [J]. Sewage Ind. Wastes.1955,27(4):460-486
    [61] Young J, Mccarti P L. Treatment of domestic strength wastewater with anaerobic hybrid reactors[J].Water Pollut. Control. Fed. 1969, 41: 160-173
    [62] Lettinga G, van Velsen A F M, Hobma S W, de Zeeuw W, Klapwijk A. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobictreatment[J].Biotech. Bioeng. 1980, 22(4): 699-734
    [63] Iza J, García Pe?a, Arnaldo, Sanz I, Hernando S, Fernández Polanco, Fernando. Anaerobic fluidized bed reactors (AFBR): performance and hydraulic behaviour[J].Anaerobic Digestion.1988, (2):155-163
    [64] Switzenbaum M S,Jewell W J.Anaerobic attached film expanded bed reactor treatment of dilute organics.Proceedings of the 51st Annual WPCF Conference. Anaheim California,1978
    [65] Lettinga G. Anaerobic treatment of sewage and low strength wastewater[C].Proc of the 2nd Int Symp on Anaerobic Digestion,1981
    [66] Kato M T,Field J M,Lettinga G.The anaerobic treatment of low strength wastewater in UASB and EGSB reactors[J]. Water Sci.Technol. 1997, 35( 6):375-382
    [67] Nú?ez L A, Martínez B. Anaerobic treatment of slaughterhouse wastewater in an Expanded Granular Sludge Bed (EGSB) reactor[J]. Water Sci.Technol. 1990, 40( 8):99-106
    [68] Razo F E, Amuldera P, Prenafeta B F, Lettinga G, Field J A.Treatment of anthranilic acid in an anaerobic expanded granular sludge bed reactor at low concentratio[J]. Water Sci.Technol. 1999,40 (8):187-194
    [69]Kato G S,Lettinga G. Anaerobic treatment of low-strength brewery wastewater in expanded granular sludge bed reactor[J].Appl. Biochem. Biotech. 1999,76(1):15-32
    [70] Hack P J F M, Vellinga S H J,Habets L H A. Growth of granular sludge in the BIOPAQ IC-reactors [J]. Technol. Aspects. 1986: 211-215
    [71]毕蕾,吴静,谢宇铭,周红明.内循环厌氧反应器的污泥颗粒化过程[J]. 清华大学学报(自然科学版).2007,47(9):1487-1488
    [72] Guiot S R,Van den Berg L. Performance and biomass retention of an upflow anaerobic reactor combining a sludge blanket and filters[J] .Biotechnol. Lett. 1984(6):161-164
    [73] 曾国揆,张无敌.UBF反应器处理低浓度生活污水的启动研究[J].环境科学与技术.2007,30(3):79-80
    [74] Badnnann A, Beard VL, McCartney P L. Performance characteristic of the anaerobic baffled reactor[J].Water Res.1985, 19( 1):99- 106
    [75]冼萍, 潘正现,邓清华,王孝英.水解酸化——接触氧化工艺处理松脂加工废水[J]. 工业水处理, 2007, 27(03):21-23
    [76]肖仲斌,杨波,王俊波.厌氧折流板反应器处理印染废水[J].环境.2007,01:1101-1102
    [77]Dague R R.Anaerobic activated sludge[J]. J Water Poll. Control. Fed. 1996,38( 2):220-226
    [78]贺延龄.废水的厌氧生物处理[M],北京:中国轻工业出版社,1998
    [79] Liu Y, Xu H L, Yang S F, Tay J H. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor[J].Water Res. 2003(37): 661-673
    [80] Liu Y Q, Liu Y, Tay J H. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Appl, Microbiol, Biot. 2004, 65(2): 143-148
    [81]Tay J H, Xu H L, Teo K C. Molecular mechanism of granulation.I: H+ translocation-dehydration theory [J]. J. Environ. Eng. 2000, 126:403-410
    [82]Teo K C, Xu H L, Tay J H.2000 Molecular mechanism of granulation.II: Proton translocating activity [J]. J. Environ. Eng. 126: 411-418
    [83]Singh R P, Surendra K, Ojha C S P. Nutrient requirement for UASB process: a review [J]. Biochem. Eng. J. 1999, 3(1):35-54
    [84]王凯军,左剑恶,甘海南, 贾立敏. UASB 工艺的理论与工程实践[M],北京:中国环境科学出版社,2000
    [85]赵一章,张辉,唐一,邓宇,连莉文.高活性厌氧颗粒污泥微生物特性和形成机理的研究[J]. 微生物学报,1994,34(1):45-54
    [86]郭晓磊,胡勇有.低浓度污水厌氧污泥颗粒化促进技术研究[J].中国给水排水, 2002,18(4):19-22
    [87]李亚新,岳秀萍.絮凝剂对高速厌氧反应器污泥颗粒化的强化作用[J].环境污染与防治,2004,26(5):333-336
    [88]岳秀萍,李亚新,刘美霞.聚季铵盐对厌氧生化反应器中微生物自身固定化的促进作用[J].化工学报,2004(3):418-421
    [89]许丹东,肖红.发泡多孔性藻朊酸钙胶体在 UASB 反应器生物造粒中的应用研究[J]. 环境科学, 1995(1):39-41
    [90]陈亮,王超.厌氧反应器中污泥迅速颗粒化研究[J].内蒙古环境保护第,2004,16(4):39-43
    [91]王劲松,胡勇有.微生物絮凝剂促进厌氧污泥颗粒化及其机制的研究[J].环境科学学报,2005, 25(3):361-366
    [92]I mai T. Advanced start up of UASB reactors by adding of water absorbing polymer [J]. Water Sci. Technol. 1997, 36(6): 396-402
    [93]Uyanik S, Sallis P J, Anderson G K. The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR) Part I: Process Performance [J].Water Res. 2002, 36(4): 933-943
    [94]Uyanik S, Sallis P J, Anderson G K. The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR) part II: compartmentalization of bacterial population [J].Water Res. 2002, 36(4): 944-955
    [95]Wirtz R A, Dague R R. Enhancement of granulation and start-up in the anaerobic sequencing batch reactor [J]. Water Environ. Res. 1996, 68(5):883-892
    [96]Yu H Q, Tay J H, Herber H P. The role of calcium in sludge granulation during UASB reactor start-up[J]. Water Res. 2001, 35(4):1052-1060
    [97]Kalogo Y, Seka A M, Verstraete W. Enhancing the start-up of a UASB reactor treating domestic wastewater by adding a water extract of Moringa oleifera seeds[J]. Appl. Microbiol. Biotechnol. 2001, 55(5), 664-651
    [98] Show K Y, Wang Y, Foong S F, Tay J H. Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors [J]. Water Res. 2004, 38(9): 2292-2303
    [99]韩剑宏,倪文,江翰.投加硬硅钙纤维粒对 UASB 低温运行的影响[J].中国给水排水,2003,19(10):14-17
    [100]艾晓玲.硬硅钙石二次粒子在污水处理中的应用初步研究[博士学位论文].北京:北京科技大学,2003
    [101]周律,王宝泉,于泮池.投加颗粒活性炭加快 UASB 反应器内颗粒化进程的研究[J].中国给水排水,1996,12(5):16-19
    [102]Yu H Q, Tay J H, Fang H H P. Effect of added powdered and granular activated carbons on start-up performance of UASB reactors[J]. Environ. Technol. 1999, 20 (10):1095-1102
    [103]Morgan J W,Evison L M, Forster C F. Upflow sludge blanket reactor: the effect of bio-supplements on performance and granulation[J]. J. Chem. Technol. Biotechnol. 1991, 52(2):243-255
    [104]Huishoff Pol. The phenomenon of granulation of anaerobic sludge: [Ph.D. Thesis].The Nether lands: Agricultural University Wageningen, 1989
    [105]Yoda. Granular sludge formation in the anaerobic expanded microcarrier process[J]. Water Sci. Technol. 1989, 21(4-5):109-120
    [106]王林山,吴允,张勇,王升荣.UASB 反应器中加入惰性载体促进颗粒污泥生成[J].环境导报,1996,(3):12-15
    [107]谭慧杰.改性 PAM 和粉煤灰对污泥颗粒化的促进作用[J].山西科技,2005, (1):119-120
    [108] Park J E, Kim J O, Lee W B, Lee S T, Lee J J. UASB performance in presence of algae and synthetic media[J]. Water Sci. Technol. 1997, 36(12):125-133
    [109]肖本益,王瑞明,贾士儒.二价金属离子对 UASB 颗粒污泥的影响[J].中国给水排水,2002(6):26-28
    [110] Yu H Q, Fang H H P, Tay J H. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminum chloride [J].Chemosphere. 2001, 44(1):31-36
    [111] Jeong H S, Kim Y H, Yeom S H, Song B K, Lee S I. Facilitated UASB granule formation using organic–inorganic hybrid polymers[J].Process Biochem. 2005, 40 (1): 89-94
    [112] De Beer D, O’Flaharty V, Thaveesri J, Lens P, Verstraete W. Distribution of extracellular polysaccharides and flotation of anaerobic sludge [J]. Appl. Microbiol. Biotechnol. 1996, 46(2):197-201
    [113] Pereira M A, Roest K, Stams A J M, Mota M, Alves M, Akkermans A D L. Molecular monitoring of microbial diversity in expanded granular sludge bed(EGSB) reactors treating oleic acid[J]. FEMS Microbiol. Ecol. 2002, 41 (2):95-103
    [114]Noyola A, Mereno G. Granulation production from raw waste actived sludge [J]. Water Sci. Technol., 1994, 30(3): 339-345
    [115]陈梅雪.印染废水生物处理中共代谢脱色行为及组合工艺研究[博士学位论文].北京:中国科学院生态环境研究中心,2001
    [116]董春娟,吕炳南,刘淑彦.废水厌氧生物处理中的共基质代谢和种间协同代谢作用[J].给水排水,2002,25(12):30-32
    [117] 刘 壮 , 杨 造 燕 , 王 暄 . 厌 氧 快 速 吸 收 有 机 物 的 启 动 能 源 研 究 [J]. 中 国 给 水 排水,2000,16(5):1-4
    [118]Macarie H,Guyot J P. Use of ferrous sulphate to reduce the redox potential and allow the start-up of UASB reactors treating slowly biodegradable compounds: Application to a wastewater containing 4-methylbenzoic acid [J]. Environ. Technol. 1995, 16(12): 1185-1192
    [119] Liu Y, Xu H L, Show K Y, Tay J H. Anaerobic granulation technology for wastewater treatment[J]. World J. Microbiol. Biotechnol. 2002(18): 99113
    [1] 国家环保局.《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版,2002
    [2]贺延龄,废水的厌氧生物处理[M].北京:中国轻工业出版社,1998
    [3] Jwell W J. Anaerobic sewage treatment[J]. Environ. Sci. Technol. 1987,21(1):14-21
    [4]张寿宝,徐香.紫外分光光度法测定水中对苯二甲酸[J].中国环境监测,1999,15(1):38-39
    [5]王红丹,沈林.化纤废水中对苯二甲酸的导数紫外光度法测定[J].仪化科技,1993, 8(1):4-7
    [6] Ahn Y, Lee Y J, Kim H S, Park S. Monitoring of specific methanogenic activity of granular sludge by confocal laser scanning microscopy during start-up of thermophilic upflow anaerobic sludge blanket reactor[J]. Biotechnol. Lett. 2002,22 (20): 1591-1596
    [7] 俞毓馨, 环境工程微生物检验手册. 北京:中国环境科学出版社,1990,182-18
    [8] Uyanik S, Sallis P J, Anderson G K. The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part II: compartmentalization of bacterial populations[J]. Water Res. 2002,36(4): 944-955
    [9] Batstone D J, Keller J, Blackall L L. The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass[J]. Water Res. 2004, 38 (6):1390-1404
    [1] 国家环保局.《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版,2002
    [2] 张自杰,林荣忱. 排水工程(下册) [M].北京:中国建筑工业出版社(第四版),2000
    [3] 蒋展鹏,师绍琪,买文宁,顾夏声.有机物好氧生物降解性二氧化碳生成量测试法的研究[J].环境科学,1996,17(3):11
    [4]孙立新,蒋展鹏, 师绍其. ATP 法测定有机物好氧生物降解性的研究[J].环境科学,1996, 17(1):1
    [5] 郑平,胡宝兰,徐向阳. 厌氧氨氧化菌好氧代谢特性的研究[J].浙江大学学报(农业与生命科学版),2000, 26, 521-526
    [6] Strous M, Kuenen J G, Jetten M S M. Key Physiology of Anaerobic Ammonium Oxidation[J]. Appl. Environ. Microb. 1999, 65(7), 3248-3250
    [7] 阮文权,邹华,陈坚. 厌氧氨氧化混培菌的获得及其运行条件[J].重庆环境科学,2002, 24(6):30-33
    [8] 胡勇有,邹怀庆,陈柱. 厌氧氨氧化菌的培养与驯化研究[J]. 华南理工大学学报(自然科学版).2002,30(11):160-164
    [9] Charpentier J, Martin G, Wacheux H, Gilest P. ORP regulation and activated sludge: 15 years of experience[J]. Wat. Sci. Technol. 1998, 38(3): 197-208
    [10] 胡家骏,周群英.环境工程微生物学[M].北京:简等教育出版社,1988
    [11] 贺延龄.废水厌氧生物处理[M].北京:中国轻工业出版社,1998
    [12] 官宝红.活性污泥法处理碱减量印染废水的研究[博士学位论文].浙江大学,2001
    [13] 杨景亮, 赵毅, 任洪强, 罗人明, 刘三学.废水中硫酸盐生物还原技术研究[J].环境科学研究, 1999, 12(3): 6-9
    [14] Choi E, Rim J M. Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment[J]. Wat. Sci. Technol. 1991, 23 (7-9): 1259-1264
    [15] PosTgate J R. The Sulfate Reducing Bacteria[M].U K: Cambridge University Press.1984
    [16]沈同,王镜岩.生物化学(上册)[M].第二版.北京:高等教育出版社,2000
    [1] 于静洁,顾国维,张志峰.废水中起始惰性溶解有机物的测定[J].环境污染与防治.2005,27(5):395-397
    [1] Park T J, Lee Y W, Lee Y W. Catalytic supercritical water oxidation of wastewater from terephthalic acid manufacturing process[J]. J.Supercrit. Fluid. 2003, 26(3):201-213
    [2] 王秀萍.印染废水中对苯二甲酸的测定及其对水质和生化效果的表征[J].化工科技,2000,8(1): 47-49
    [3]王红丹,沈泳.化纤废水中对苯二甲酸的导数紫外光度法测定[J].上海环境科学,1992, 11(2): 21-23
    [4] Buerge I J, Poiger T, Muller M D, Buser H R. Caffeine, an anthropogenic marker for wastewater contamination of surface waters[J]. Environ. Sci. Technol. 2003,37(4): 691-700
    [5] Buerge I J, Poiger T, Muller M D, Buser H R. Combined sewer overflows to surface waters detected by the anthropogenic marker caffeine[J]. Environ. Sci. Technol. 2006,40(13):4096-4102
    [6] Peeler K A, Opsahl S P, Chanton J P. Tracking anthropogenic inputs using caffeine, indicator bacteria, and nutrients in rural freshwater and urban marine systems[J]. Environ. Sci. Technol. 2006, 40: 7616-7622
    [7] McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat I M, Marchant R, Smyth W F. Microbial decolourisation and degradation of textile dyes[J]. Appl. Microbiol. Biotechnol. 2001,56(1-2): 81-87
    [8] Qian Y, Wen Y, Zhang H. Efficiency of pre-treatment methods in the activated sludge removal of refractory compounds in coke-plant wastewater[J]. Water Res. 1994,28(3): 701-710
    [9] Yu H Q, Gu G W, Song L P. The effect of fill mode on the performance of SBRs treating various wastewaters[J]. Bioresour. Technol. 1996, 58(1): 49-55
    [10] Fang H H P, Yu H Q. The effect of hydraulic retention time on acidogenesis of simulated dairy wastewater[J]. J. Environ. Eng. 2000. 126 (9):1245-1249
    [11] Shijin Ren, Paul D Frymier. Continuous toxicity of biological wastewater treatment system influent using a bioluminescent reporter bacterium water environment federation[A].74th Annual Conference & Exposition[C].Atlanta, Georgia, U.S.A.,2001:540-555
    [12] Love N G,Bott C B. A review and needs survey of upset early warning devices. Alexandria (VA): Water Environment Research Foundation, 2000
    [13] Dalzell D J B, Alte S, Aspichueta, E, De la Sota A, Etxebarria J, Gutierrez M, Hoffmann C C, Sales D, Obst U, Christofi NA.Comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge[J]. Chemosphere , 2002, 47(5): 535-545
    [14] Ren S J. Assessing wastewater toxicity to activated sludge: recent research and developments[J]. Environ. Int. 2004, 30(8): 1151-1164
    [15] Prato E, Di Leo A, Biandolino F, Cardellicchio N. Sediment toxicity tests using two species of marine amphipods: Gammarus aequicauda and Corophium insidiosum[J]. Bull of Environ Contam Toxicol. 2006,76(4):629-636
    [16] Sponza D T, I??k M. Toxicity and intermediates of C.I. Direct Red 28 dye through sequential anaerobic/aerobic treatment[J]. Process Biochem. 2005,40(8): 2735–2744
    [17] 符成泽.发光细菌法和硝化速率法测定污水毒性的可行性研究[硕士学位论文].上海: 同济大学.2006
    [18] Ai-Ju L, Fan-Xiang K, Xiao-Ii S, Yang Y, Zhou Y. Toxicity assessment of contaminated sediments after dredging[J]. Bull of Environ Contam Toxicol. 2006,77(6): 905-911
    [19] Speece R E. Anaerobic Biotechnology for Industrial Wastewaters[M]. Archae Press, Nashville, Tennessee, USA. 1996
    [1] Qian Y. Appropriate processes and technology for wastewater treatment and reclamation in China[J]. Water Sci. Technol. 2000, 42(12): 107-114
    [2] Liu Y. Chemically reduced excess sludge production in the activated sludge process[J]. Chemosphere. 2003, 50(1):1-7
    [3] Abbassi B, Dullstein S, Rabiger N. Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs: experimental and theoretical approach[J]. Water Res. 2000, 34(1):139-146
    [4] Egemen E, Corpening J, Nirmalakhandan N. Evaluation of an ozonation system for reduced waste sludge generation[J]. Water Sci. Technol. 2001, 44(2-3): 445-452
    [5] Roman H J, Burgess J E, Pletschke B I. Enzyme treatment to decrease solids and improve digestion of primary sewage sludge[J]. Afr. J. Biotech. 2006, 5(10): 963-967
    [6] Tiehm A, Nickel K, Zellhorn M, Neis U. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J]. Water Res, 2001,35(8): 2003-2009
    [7] Chen G H, An K J, Saby S, Brois E, Djafer M. Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process (OSA process)[J]. Water Res. 2003, 37(16): 3855-3866
    [8]Liu Y, Chen G H, Paul E. Effect of the S0/X0 ratio on energy uncoupling in substrate-sufficient batch culture of activated sludge[J]. Water Res.1998, 32 (10): 2883-2888
    [9] Yang X F, Xie M L, Liu Y. Metabolic uncouplers reduce excess sludge production in an activated sludge process[J]. Proc. Biochem. 2003, 38(9): 1373-1377
    [10] Lapinski J, Tunnacliffe A. Reduction of suspended biomass in municipal wastewater using bdelloid rotifers[J]. Water Res. 2003, 37(9): 2027-2034
    [11] Rosenberger S, Kruger U, Witzig R, Hu Y J. Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater[J]. Water Res. 2002, 36(2): 413-420
    [12] Lettinga G, Rebec S, and Zeeman G. Challenge of psychrophilic anaerobic wastewater treatment[J].Trends in Biotechnol. 2001, 19 (9): 363-370
    [13] Tiwari M K, Guha S, Harendranath C S, Tripathi S. Influence of extrinsic factors on granulation in UASB reactor [J]. Appl. Microbiol. Biotechnol. 2006, 71(2): 145-154
    [14] Jeong H S, Kim Y H, Yeom S H, Song B K, Lee S I. Facilitated UASB granule formation using organic–inorganic hybrid polymers [J].Proc. Biochem. 2005, 40(1): 89-94
    [15] El-Mamouni R, Leduc R, Guiot S R. Influence of synthetic and natural polymers on the anaerobicgranulation process[J].Water Sci. Tech. 1998, 38(8-9):341-347
    [16] Show K Y, Wang Y, Foong S F, Tay J H. Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors[J]. Water Res. 2004, 38(9): 2293-2304
    [17] Yu H Q, Fang H H P, Tay J H. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminum chloride [J].Chemosphere. 2001, 44(1):31-36
    [18] Yu H Q, Tay J H, Fang H H P. Effects of added powdered and granular activated carbons on start-up performance of UASB reactors[J]. Environ. Technol. 1999, 20:1095-1101
    [19] Goodwin J A S, Wase D A J, Forster C F. Pre-granulated seeds for UASB reactors: How necessary are they? [J].Bioresour. Technol. 1992, 41(1):71-79
    [20] Xu H L, Tay J H. Anaerobic granulation with methanol-cultured seed sludge[J]. J. Environ. Sci. Health Part A. 2002, 37(1): 85-94
    [21] Liu Y, Xu H L, Show K Y, Tay J H. Anaerobic granulation technology for wastewater treatment[J]. World J Microbiol. Biotechnol.2002, 18(2): 99-113
    [22] ?degaard H, Paulsrud B, Karlsson I.Wastewater sludge as a resource: Sludge disposal strategies and corresponding treatment technologies aimed at sustainable handling of wastewater sludge[J]. Water Sci. Technol. 2002, 46 (10): 295-303
    [23] 国家环保局.《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版,2002
    [24] Laguna A, Ouattara A, Gonzalez R O, Baron O, Famá G, El Mamouni R, Guiot S, Monroy O, Macarie H. A simple and low cost technique for determining the granulometry of upflow ananerobic sludge blanket reactor sludge[J]. Water Sci. Tech.1998,40(8):1-8
    [25]俞毓馨,环境工程微生物检验手册,北京,中国环境科学出版社,1990
    [26] Ahn Y, Lee Y J, Kim H S, Park S. Monitoring of specific methanogenic activity of granular sludge by confocal laser scanning microscopy during start-up of thermophilic upflow anaerobic sludge blanket reactor[J]. Biotechnol. Lett. 2002, 22(20): 1591-1596
    [27] Uyanik S, Sallis PJ, Anderson G K. The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part II: compartmentalization of bacterial populations[J]. Water Res. 2002,36(4): 944-955
    [28] Batstone D J, Keller J, Blackall L L. The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass[J]. Water Res. 2004,38(6):1390-1404
    [29] Curtis T P, Craine N G. The comparison of the diversity of activated sludge plants[J]. Water Sci. Technol., 1998, 37(4-5): 71-78
    [30] Tam K, Yang C H, Matsumoto M R, Crowley D E, Sheppard J D. Comparison of PCR-DGGE and selective plating methods for monitoring the dynamics of a mixed culture population in synthetic brewery wastewater[J]. Biotechnol. Prog. 2005, 21(3):712 -719
    [31] Guan B H, Wu Z B, Wu Z C, Xu G L, Tan T. Biodegradability of terephthalic acid in terylene artificial silk printing and dyeing wastewater[J]. J. Environ. Sci.–China. 2003, 15 (3):296-301
    [32] Guan B H. Stability of expanded granular sludge bed process for terylene artificial silk printing and dyeing wastewater treatment [J]. J. Environ. Sci.–China. 2005, 17(3): 419-424
    [33] Curtis T P, Craine N G. The comparison of the diversity of activated sludge plants[J]. Water Sci. Technol. 1998, 37(4-5): 71-78
    [34] Nübel U, Garcia-Pichel F, Kühl M, Muyzer G. Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats[J]. Appl. Environ. Microbiol. 1999, 65(2):422-430
    [35] Jena S, Jeanmeure L F C, Dhamwichukorn S, Wright P C. Carbon substrate utilisation pofile of a high concentration effluent degrading microbial consortium[J]. Environ. Technol. 2006, 27(8): 863-873
    [36] Thompson J D, Gibson T J M, Plewniak F, Jeanmougin F, Higgins DG. The clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Res. 2000, 25(24): 4876-4882
    [37] Kowalchuk G A, Stephen J R, De Boer W, Prosser J I, Embley T M, Woldendorp J W. Analysis of ammoniaoxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments[J]. Appl. Environ. Microbiol. 1997, 63(4): 1489-1497
    [38] Jackson C R, Roden E E, Churchill P F. Denaturing gradient gel electrophoresis can fail to separate 16S rDNA fragments with multiple base differences[J]. Mol. Biol. Today. 2000, 1(2): 49-51
    [39] Sekiguchi H, Tomioka N, Nakahara T, Uchiyama H. A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis[J]. Biotechnol. Lett. 2001, 23(15):1205-1208
    [40] Zhang X, Yan X, Gao P, Wang L, Zhou Z, Zhao L. Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system[J]. J. Microbiol. Methods. 2005,60(1):1-11
    [41] Wentzel M C, Moosbrugger R E, Sam-soon P A L N S, Ekama G A, Marais v, G R. Tentative guidelines for waste selection, process design, operation and control of upflow anaerobic sludge bed reactors[J]. Water Sci Technol, 1994, 30 (12): 31-42
    [42] Liu Y, Xu H L, Yang S F, Tay J H. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor[J]. Water Res. 2003, 37(3): 661-673
    [43] Van Loosdrecht M C M, Henze M. Maintenance, endogeneous respiration, lysis, decay and predation[J]. Water Sci. Technol. 1998, 39(1): 107-117
    [44] Kaprelyants A S, Kell D B. Do bacteria need to communicate with each other for growth? [J]. Trends Microbiol. 1996, 4(6): 237-242
    [45] Saiki Y, Imabayashi S, Iwabuchi C, Kitagawa Y, Okumura Y, Kawamura H. Solubilization of excess activated sludge by self-digestion[J]. Water Res. 1999, 33(8):1864-1870
    [46] Griffith P. The rate of death and predation in activated sludge systems incorporating anoxic zones. Proc. BNR3, 1997,85-93. IAWQ Brisbane
    [1] Roman H J, Burgess J E, Pletschke B I. Enzyme treatment to decrease solids and improve digestion of primary sewage sludge[J]. Afr. J. Biotech. 2006,5(10): 963-967
    [2] Yang X F, Xie M L, Liu Y. Metabolic uncouplers reduce excess sludge production in an activated sludge process[J]. Proc. Biochem. 2003, 38(9):1373-1377
    [3] Lapinski J, Tunnacliffe A. Reduction of suspended biomass in municipal wastewater using bdelloid rotifers[J]. Water Res. 2003, 37(9):2027-2034
    [4] Rosenberger S, Kruger U, Witzig R, Manz W, Szewzyk U, Kraume M. Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater[J]. Water Res. 2002, 36(2):413-420
    [5] Zhu H, Chen J H. Study of hydrolysis and acidification process to minimize excess biomass production[J]. J.Hazard.Mate. 2005, 127(1-3):221-227
    [6] De Souza Araújo L, Catunda P F C, Van Haandel A C. Biological sludge stabilisation Part 2: Influence of the composition of waste activated sludge on anaerobic stabilization[J]. Water SA. 1998, 24(3):231-236
    [7] Chu C P, Lee D J. Effect of pre-hydrolysis on floc structure[J]. J. Environ. Manag. 2004, 71(3):285-292
    [8] Jean D S, Chang B V, Liao G S, Tsou G W and Lee D J. Reduction of microbial density level in sewage sludge through pH adjustment and ultrasonic treatment[J]. Water Sci. Technol. 2000, 42(9) :97-102
    [9] Watts S, Hamilton G, Keller J. Two-stage thermophilic-mesophilic anaerobic digestion of waste activated sludge from a biological nutrient removal plant[J]. Water Sci. Technol. 2006,53(8) 149-157
    [10] 国家环保局.《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版,2002
    [11] American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF).Standard Methods for the Examination of Water and Wastewater. 20th edn, Washington D.C., USA, 1999
    [12] Saby S, Sibille I, Mathieu L, Paquin J L, Block J C. Influence of water chlorination on the counting of bacteria with DAPI (4′,6-diamidino-2-phenylindole) [J]. Appl. Environ. Microbiol.1997, 63(3): 1564-1569
    [13] Saiki Y, Imabayashi S, Iwabuchi C, Kitagawa Y, Okumura Y, Kawamura H. Solubilization of excess activated sludge by self-digestion[J]. Water Res. 1999, 33(8):1864-1870
    [14] Razo-Flores E, Luijten M, Donlon B, Lettinga G, Field J. Biodegradation of selected azo dyes under methanogenic conditions[J]. Water Sci. Technol. 1997,36(6-7): 65-72
    [15] Yemashova N, Kalyuzhnyi S. Microbial conversion of selected azo dyes and their breakdown products[J]. Water Sci. Technol. 2006,53(11):163-171
    [16] Yuan H, Chen Y, Zhang H, Jiang S, Zhou Q, Gu G. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions[J]. Environ. Sci. Technol. 2006, 40(6): 2025-2029
    [17] Cai M, Liu J, Wei Y Enhanced biohydrogen production from sewage sludge with alkaline pretreatment[J]. Environ. Sci. Technol. 2004, 38(11):3195-3202
    [18] Uyanik S, Sallis P J, Anderson G K. The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part I: process performance[J]. Water Res. 2002, 36(4) 933-943
    [19] Neves L, Ribeiro R, Oliveira R and Alves M M. Enhancement of methane production from barley waste[J]. Biom. Bioen. 2006, 30(6):599-603
    [20] Van Loosdrecht M C M, Henze M. Maintenance,endogeneous respiration, lysis, decay and predation[J]. Water Sci. Technol. 1998, 39(1): 107-117
    [21] Kaprelyants A S, Kell D B. Do bacteria need to communicate with each other for growth? [J]. Tren. Microbiol. 1996, 4(6): 237-242
    [22] Griffith P. The rate of death and predation in activated sludge systems incorporating anoxic zones. Proc. BNR3 85-93. IAWQ Brisbane,1997
    [23] Copp J B, Dold P L. Comparing sludge production under aerobic and anoxic conditions[J]. Water Sci. Technol. 1998, 38(1):285-294
    [24] Herbert H H P, Li Y Y, Chui H K. Performance and sludge characteristics of UASB process treating propionate-rich wastewater[J]. Water Res. 1995, 29(3):895-898
    [1] 邹惠仙, 马文漪.微生物降解对苯二甲酸的动力学研究[J].科学通报,1983, 28(22): 1374-1377
    [2] 戴树桂,宋文华,庄源益,颜慧,陈晓军. 偶氮染料定量结构-生物降解关系(QSBR)研究[J]. 环境化学, 1998,17(2): 115-119
    [3] 钟文辉. 2, 4 一二氯酚的微生物降解及其相关基因的克隆.浙江大学博士论文.2001,杭州
    [4] 陈英旭. 芳香烃化合物的微生物降解及基因工程菌的构建.浙江大学博士论文.2003,杭州
    [5] 东秀珠, 蔡妙英, 等.常见细菌系统鉴定手册.科学出版社.2001,北京
    [6] Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual.(20d ed),New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA ,1989
    [7] 韩如肠, 闵航, 陈美慈, 赵宇华.嗜热厌氧纤维素降解细菌的分离、鉴定及其系统发育分析.微生物学报.2002, 42(2):138-144
    [8] Edwards U, Rogall T, Blocker H, Emde M, Bottger E C. Isolation and direct complete nucleotide determination of enire genes.characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989, 17(19):7843-7853
    [9] Altschul S F, Gish W, Miller W, Myers E W, and Lipman D J. Basic local alignment search tool [J]. J. Mol. Biol. 1990, 215(3): 403-410
    [10] Zhang J, and Madden T L. Power BLAST: a new network BLAST application for interactive or automated sequence analysis and annotation [J]. Genome Res.1997, 7(6): 649-656

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700