用户名: 密码: 验证码:
生物质焦油热解特性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦油的处理问题是生物质利用中的瓶颈问题。现有的处理方法中,热裂解法是最具有潜力解决焦油问题的方法,其加热裂解过程能使焦油裂解,增加产气量,使蕴含在焦油中的热量得到利用,避免了二次污染的问题,又不像催化裂解需要较高的成本;又考虑到在生物质热解过程中焦油产量随反应温度的增加而减少。因此,本文确定通过高温热解的方式来解决焦油问题。
     本文选取的稻壳焦油作为研究对象,对其理化特性进行研究,并通过自主设计的实验台对稻壳焦油进行热解,并对热解产物进行理化特性的研究。主要研究内容如下:
     稻壳焦油在丙酮中的溶解性强于在无水乙醇中的溶解性;在稻壳焦油及馏分的GC-MS分析得出其成分以苯酚及其衍生物、多环芳烃及其衍生物及饱和烷烃为主;对稻壳焦油热重分析得出不同加热速度对稻壳焦油热失重并没有显著影响。
     通过自主设计的实验台,对稻壳焦油进行热解实验,结果表明:实验台和热天平的焦油热解率,都随反应温度的上升而增加;与热天平的实验数据相比,实验台的焦油热解率一直低于热天平的数据,原因是,较之于实验台,热天平热解的焦油量小,一定温度下所提供的热量能够更充分地与焦油接触,使其热解率较高;GC-MS分析得出热解产物中含有的主要成分,并以萘、芴、正十六酸、芘和4-乙基-苯酚为例来说明热解产物中成分含量的变化。其中,萘、芴和芘的含量随着反应温度的增加而减少,而正十六酸和4-乙基-苯酚的含量随着反应温度的增加而减少,这是由于随着温度的增加,其分子内桥键发生断裂,发生开环反应,多环芳烃转化为单环物质,而单环物质通过开环反应转化成的链状结构自由基结合其他自由基形成链状物质。
The problem of removing biomass-tar is the bottleneck of the exploitation of biomass. Among these present processing methods, the pyrolysis-method is the most potential method. It can make biomass-tar crack to produce more syngas and exploit thermal energy in biomass-tar sufficiently and also avoid the problem of too high cost of catalysts; it is also considered that the yield of biomass-tar in the pyrolysis decreases with the increasing of reaction temperature. Therefore, this paper tries to overcome the problem of biomass-tar through high-temperature pyrolysis.
     This paper chooses rice husk tar as the studying object to research into its physical and chemical properties and pyrolyzes the rice husk tar to research into the physical and chemical properties of its pyrolyzates. The main content is as follow:
     The solubility of the rice husk tar in Acetone is larger than that in Ethanol. The main components of the rice husk tar and its distillate which can be measured with GC-MS analysis are phenol with its derivatives, polyaromatic hydrocarbons with their derivatives and alkenes with their derivatives. It can be known by thermal gravimetric analysis of the rice husk tar that different heating rates cannot effect its thermal weightlessness.
     Using the laboratory bench from original designation to pyrolyze the rice husk tar, the cracking ratios of the bench and the thermal balance both arise with the increasing reaction temperature; the cracking ratio of the bench is lower than the thermogravimetric data because the application amount of the tar in the experiment with thermal balance is less than that on the laboratory bench, at the same temperature, the heat can touch with the tar more sufficiently, so the cracking ratio is higher; after GC-MS analysis, the main components of pyrolysis products are known, meanwhile, it is chosen as the examples Naphthalene, Fluorene, n-Hexadecanoic acid, Pyrene and Phenol,4-ethyl- to introduce the changes of the content of the components of pyrolysis products. Among these compounds, the contents of Naphthalene, Fluorene and Pyrene increase with the increasing of reaction temperature; the contents of n-Hexadecanoic and Phenol, 4-ethyl- decrease with the increasing of reaction temperature. These are because breakdown of the tar molecular keys in bridge results in ring-open reaction, polyaromatic hydrocarbons converse into single-ring compounds and single-ring compounds converse into chain free racials thorough ring-open reaction, these chain free racials combine with other free racials forming chain compounds.
引文
1董玉平,王理鹏,邓波.国内外生物质能源开发利用技术山东大学学报(工学版). 2007,37(3):1~3
    2陆豫,冼萍,理河,周航.我国开发生物质能源前景广阔.中国建材网.2006,9:78~89
    3闫丽珍,闵庆文,成升魁.中国农村生活能源利用与生物质能开发.资源科学. 2005,1:8~13
    4邓立新.生物质的洁净转化和综合利用.化学教育. 2004,2:10~12
    5秦育红,冯杰,李文英.生物质气化影响因素分析.节能技术.2004,7:3~5
    6陈冠益,高文学,颜蓓蓓.生物质气化技术研究现状与发展.煤气与热力. 2006,26(7):20~25
    7米铁,唐汝江,陈汉平.生物质气化技术及其研究进展.化工装备技术. 2005,26(2):50~55
    8钟浩,谢建,杨宗涛.生物质气化技术的研究现状及其发展.云南师范大学学报. 2001,21(1):41~45
    9刘国喜,庄新姝,夏喜光.生物质气化的热利用.农村能源. 2000,3(2):16~19
    10 T . A . Miline, R . J . Evsns. Biomass Gasification " Tars" : Their Nature, Formation and Conversion. NERL Technical Report(NERL/TP-570- 25357). November. 1998,6:78~82
    11 D. Dayton. A Review of the Literature on Catalytic Biomass Tar Report Destruction. NERL Milestone Completion Report(NERL/TP-510-32815). December. 2002:70~78
    12周劲松,王铁柱.生物质焦油的催化裂解研究.燃料化学学报. 2003,31(2):144~148
    13 D. I. Lopamudra, J. Krzysztof. A Review of the Primary Measure for Tar Elimination in Biomass Gasification Processes. Biomass and Bioenergy. 2003,(24):125~170
    14孙云娟,蒋剑春.生物质气化过程中焦油的去除方法综述.生物质化学工程. 2006,40(2):39~188
    15 J. J. Hos, M. J. Groeneveld, W. P. M. Van Swaaij. Gasification of Organic SolidWastes in Co-current Moring Bed Reactors . In Proceedings of the 1GT Symposium on Energy from Biomass and Wastes. 1980,4:333~351
    16 E. Kurkela, P. Stahlberg. Air Gasification of Peat, Wood and Brown Coal in a Pressuriaged Fluidized Bed Reactor. Carbon Conversion, Gas Yield Sand Tar Formation. Fuel Processing Technology. 1992,31(1):1~22
    17赖艳华,吕明新,马春元,施明恒.两段气化对降低生物质气化过程焦油生成量的影响.燃烧科学与技术. 2002,8(5):11~111
    18李延吉,冯磊,李润东,杨天华,朱明.生物质热裂解试验制焦油特性研究.基础研究. 2007,12(5):53~81
    19华振明,高忠爱,祁梦兰.固体废弃物的处理与处置.北京:高等教育出版社. 1993:75~79
    20 A. M. Cunliffe, P. T. Williams. Composition of Oils Derived from the Batch Pyrolysis of Tyres. Anal. Appl. Pyrolysis. 1998,44:131~152
    21吴文广,罗永浩,陈祎,陆方.生物质焦油净化方法研究进展.工业加热. 2008,37(2):15~149
    22 D. I. Lopamudra, K. J. Ptasinski, F. J. J. G. Janssen. A Review of the Primary Measures for Tar Elimination in Biomass Gasification Processes. Biomass and Bioenergy. 2003,24:125~140
    23 H. Boerrigter, S. V. B. Van. Paasen, P. C. A. Bergman.“OLGA”Tar Removal Technology. The Energy Research Centre of the Netherlands, Netherlands, ECN- C-05-009. 2005:1~58
    24 A. V. Bridgwater. The Technical and Economic Feasibility of Biomass Gasification for Power Generation. Fuel. 1995,74:631~653
    25 P. Hasler, T. Nnssbaumer. Gas Cleaning for IC Engine Applications from Fixed Bed Biomass Gasification. Biomass and Bioenergy. 1999,16:385~395
    26 J. D. Bentzen, R. M. Hummelshoj, D. B. Elmegaar. Low Tar and High Efficient Gasification Concept. In Proceedings of the Conference ECOS, University of Twente, Netherlands. 2000:97~108
    27 D. B. Colomba. Modeling Intra- and Extra-Particle Processes of Wood Fast Pyrolysis. AICHE. 2002,48:2386~2397
    28 I. Narvaez, A. Oria, M. P. Aznar. Biomass Gasification With Air in an Atmospheric Bubbling Fluidized Bed: Effect of Six Operational Variables on the Quality of the Produced Raw Gas. Industrial and Engineering ChemistryResearch. 1996,35(7):2110~2120
    29 K. S. Seshadir, Shamsia. Effects of Temperature, Pressure and Carrier Gas on the Cracking of Coal Tar Over a Char Dolomite Mixture and Calcined Dolomite Fixed Bed Reactor. Industrial and Engineering Chemistry Research. 1998,3(37):3860~3887
    30张晓东.生物质热解气化及焦油催化裂解机理的研究.浙江大学博士学位论文. 2003:98~104
    31 D. Sutton, B. Kelleher, J. R. H. Ross. Review of Literature on Catalysts for Biomass Gasification. Fuel Process Technol. 2001,73:155~173
    32 J. Corella, A. Oria, P. Aznar. Biomass Gasification with air in fluidized bed: Reforming of the Gas Composition with Commercial Steam Reforming Catalystic. Ind Eng Chem Res. 1998,37(12):4617~4624
    33 J. Corella, A. Oria, J. M. Toledo. Biomass Gasification with Air in a Fluidized Bed : Exhaustive Tar Elimination with Commercial Steam Reforming Catalysts. Energy and Fuels. 1999,13:702~709
    34 M. P. Aznar. Commercial Steam Reforming Catalysts to Improve Biomass Gasification with Steam Oxygen Mixture Catalytic Tar Removal. Ind Eng Chem Res. 1998,37(1):2668~2680
    35 E. G. Backer, L. K. Mudge. Steam Gasification of Biomass with Nickel Secondary Catalysts. Ind Eng Chem Res. 1987,26(7):1335~1339
    36 J. Arauzo, D. Redlein. Catalytic Pyrogasification of Biomass Evaluation of Modified Nickel Catalysts. Ind Eng Chem Res. 1997,16(36):6~7
    37 S. M. Richardson, M. R. Gray. Enhancement of Residue Hydroproceeding Catalysts by Doping with Alkali Metals. Energy &Fuels. 1997,(11):11~19
    38 D. N. Bangala, N. Abatzogolou, C. Esteban. Steam Reforming of Naphthalene on NiCr/AI2O3 Catalysts Doped with MgO, TiO2 and La2O3. AICHE. 1998,(44):9~27
    39周志军,赖开忠,周俊虎,刘建忠,岑可法.气化过程中焦油催化裂解的影响因素研究. 2005:71~73
    40 J. Hepola, J. Mccarty, G. Krishnan. Elucidation of Behavior of Sulfur on Nickel-Based Hot Gas Cleaning Catalysts. Appl Catal B:Environ. 1999, 20:191~203
    41 A. S. Pekka, Jukka. Kleppalahti, J. Bson. Bredemberg. Catalytic Purification of Tarry Fuel Gas with Carbonate Rocks and Rerrous Materials. Fuel. 1992,71(2):211~218
    42 A. Oria, J. Corella. Rapid pyrolysis of straw at high temperature in Developments in Thermochemical Biomass Conversion, International Conference. Banff. Canada , 20-24 May , 1996 , Proceedings Ed. By A. V. Bridgwater and D. G. B. Boocock, Blackie Academic&Professional, London. 1997,1:61~66
    43 P. Perez, P. M. Aznar, M. A. Caballero. Hot Gas Cleaning and Upgrating with a Calcined Dolomite Located Downst Ream a Biomass Fluidized Bed Gasifier Operating with Steam Oxygen Mixture. Energy and Fuels. 1997,11(6):1194~1203
    44谢威,郭瓦力.生物质焦油在氧化钙上的催化裂解研究.沈阳化工学院学报. 2000,14(3):1~6
    45 H. D. Franklin, W. A. Peters, J. B. Howard. Mineral Matter Effects on the Rapid and Hydropyrolysis of a Bitummcus Coal:Effects on Yields of Char. Tar and Light Gaseous Volatiles. Fuel. 1982,61:155~160
    46 Wornat, lson. Effects of Ion Exchanged Calcium on Brown Coal Tar. Energy and Fuels. 1992,6:136~142
    47王磊,吴创之,陈平,阴秀丽,谢军.生物质气化焦油在高温木炭床上的裂解试验研究.可再生能源. 2005,(5):110~114
    48 K. Tomishige, M. Asadullah, K. Kunimori. Syngas Production by Biomass Gasification Using Rh/CeO2/SiO2 Catalysts and Fluidized Bed Reactor. Catal Today. 2004,89:389~403
    49 L. P. L. M. Rabou. Biomass Tar Recycling and Destruction in a CFB Gasifier. Fuel. 2005,84:577~581
    50王炎昌.生物质气化中焦油的催化转化.郑州大学. 2005:6~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700