用户名: 密码: 验证码:
新型聚丙烯酰胺改性膨润土防渗材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膨润土是当今应用范围较广和经济价值较高的粘土矿物之一。改性膨润土材料是以膨润土作为原料,利用膨润土矿物的层间结构特点及其吸水膨胀、低渗透性能,通过改性剂改善膨润土微观结构和颗粒表面性能,提高了改性膨润土作为功能材料的实际使用效能。目前,改性膨润土在环境污染净化、修复与控制等方面显示出广阔的应用前景和实用价值。
     本文以吉林省刘房子天然钠基膨润土为原料,选用聚丙烯酰胺作为改性剂,采用水溶液聚合法,对膨润土进行插层改性,合成了聚丙烯酰胺改性膨润土材料。即首先利用单体丙烯酰胺插层聚合改性膨润土,制备了聚丙烯酰胺改性膨润土材料,通过简单、正交实验优化了改性膨润土材料的制备条件,对其吸水膨胀、耐热、抗盐性能进行了测试,运用分析仪器表征手段对其形成机理和结构进行了探讨和分析。然后在此研究基础上,针对填埋场防渗材料的研究现状,首次利用改性聚丙烯酰胺直接插层聚合改性膨润土,制备了一种新型聚丙烯酰胺改性膨润土防渗材料,重点是合成了改性聚丙烯酰胺,对聚丙烯酰胺改性过程中的工艺条件进行了讨论,并考察了改性聚丙烯酰胺加入量对改性膨润土防渗材料结构的影响。最后,采用新型聚丙烯酰胺改性膨润土作为防渗材料,以沈阳大辛生活垃圾填埋场渗滤液为处理对象,在静态吸附条件下,探讨了改性膨润土防渗材料对渗滤液中COD的吸附机理;通过动态实验,研究了改性膨润土防渗材料去除垃圾渗滤液中主要污染物的有效性和控制垃圾渗滤液渗透的可行性。主要研究内容及结果如下:
     1、以天然膨润土为原料,采用水溶液聚合法,通过单体丙烯酰胺对膨润土进行插层聚合改性,制备了聚丙烯酰胺改性膨润土材料。
     (1)简单实验结果表明,交联剂用量、引发剂用量、溶解水用量、膨润土用量等都会影响改性土材料的吸水膨胀效果。由正交实验结果得出改性土样品最优制备条件为:交联剂用量(mC/mM确)为2.16×10,引发体系用量(mI/mM)为0.08,溶解水量(mW/mM)为2.3,膨润土用量(mB/mM)为1.2,各因素对改性膨润土吸水膨胀的影响依次是引发剂量>膨润土用量>溶解水用量>交联剂用量。
     (2)在实验条件下,改性膨润土材料样品的吸水倍率(g/g)可达到35.98,比膨润土原土增加近1个数量级;改性膨润土材料样品在一定浓度的NaCl、CaCl2、FeCl3水溶液中吸水倍率(g/g)为7.491~12.22,比原土吸水倍率(g/g)3.595还大,并且不同类型、浓度的盐溶液中的吸液倍率差别不大;改性膨润土材料在20-80℃,1 h内进行吸水膨胀性能测试,吸水倍率数值的变化不大;说明聚丙烯酰胺改性膨润土具有较好的吸水膨胀、耐盐和热稳定性能。
     (3)聚丙烯酰胺改性膨润土形成机理探讨。聚丙烯酰胺的聚合机理为自由基反应。当交联剂N,N'-亚甲基双丙烯酰胺存在时,会发生交联反应,使聚合物具有适度的交联密度,同时与膨润土相互作用,形成聚丙烯酰胺改性膨润土材料。
     (4)聚丙烯酰胺改性膨润土结构分析。X射线衍射(XRD)表征结果说明,由于有反应性单体插入到膨润土的层间聚合后,使得层间距变大的较为明显。但是改性膨润土材料除了001晶面层间距较钠基膨润土有所增大外,其他衍射峰的位置几乎不变,这表明膨润土的基本结构不变;红外(FT-IR)表征结果显示,聚丙烯酰胺改性膨润土同时具有聚丙烯酰胺和膨润土的特征峰,说明聚丙烯酰胺存在于膨润土层间。扫描电镜(SEM)及电子显微表征结果说明,改性膨润土材料中膨润土与聚丙烯酰胺相容性较好,改性膨润土材料存在三维交联的网状结构。初步分析改性膨润土结构如下:一部分丙烯酰胺(AM)嵌入到膨润土层间,通过范德华力和氢键结合到膨润土层间,在发生交联聚合后,膨润土主要担负改性膨润土材料的骨架支撑作用;一部分的丙烯酰胺(AM)则通过与膨润土表面交换阳离子形成氢键结合;最后部分丙烯酰胺在膨润土粒子间生成“自由”聚合物网络,通过聚合物链将膨润土连接、粘结在一起。
     2.在单体丙烯酰胺插层聚合改性膨润土的研究基础之上,以天然膨润土为原料,采用水溶液聚合法,在室温条件下,首次通过改性聚丙烯酰胺对膨润土进行直接插层改性,制备了一种新型聚丙烯酰胺改性膨润土防渗材料。重点对改性聚丙烯酰胺的合成方法、条件进行了研究,结合表征结果讨论了不同改性聚丙烯酰胺加入量对改性膨润土材料结构的影响,并对改性膨润土材料的基本性能进行了测试,主要研究结果如下:
     (1)改性聚丙烯酰胺的合成分两步实现,即首先以丙烯酰胺为单体,以过硫酸铵为引发剂,甲酸钠为链转移剂合成(相对)低分子量的聚丙烯酰胺;然后用甲醛在碱性条件下对低分子量的聚丙烯酰胺羟甲基化,使羟甲基化聚丙烯酰胺和丙烯酰胺在碱性条件下进行缩合反应得到改性聚丙烯酰胺。
     ①通过改变合成体系引发剂、链转移剂的浓度和反应时间,考察其对聚丙烯酰胺分子量的影响程度。实验结果说明,引发剂浓度的变化对聚丙烯酰胺分子量影响效果较为直接,而链转移剂、反应时间的改变对其影响不是十分明显。合成低分子量聚丙烯酰胺的适宜条件为:引发剂浓度为2.5×10-2 mol/L,转移剂浓度为8.0×10-2 mol/L,反应时间3h,所合成低分子量聚丙烯酰胺溶液粘度适中,有利于后续低分子量聚丙烯酰胺的改性操作。
     ②低分子量聚丙烯酰胺与甲醛的羟甲基化反应的适宜条件是n(PAM):n(F) =1:1~1:0.5,反应时间为2 h,反应温度为45℃,pH=9-10。羟甲基化聚丙烯酰胺与单体丙烯酰胺的脱水缩合反应的适宜条件是:反应温度为55℃,n(AM):n(F)=1:1,反应时间为3 h,pH=10.当n(PAM):n(F):n(AM)=1:0.6:0.6时,羟甲基化率为99%。丙烯酰胺的转化率为95%。③在室温下,以N,N'-亚甲基双丙烯酰胺为交联剂,通过氧化还原引发体系引发改性聚丙烯酰胺迅速交联,与膨润土作用制备新型聚丙烯酰胺改性膨润土防渗材料。交联发生在改性聚丙烯酰胺的侧链,主链结构相对稳定,由于酰胺基团的转化发生在侧链,由伯酰胺转化为仲酰胺,活性降低,抗水解能力得到增强。当n(PAM):n(F):n(AM)=1:0.6:0.6时,室温交联聚丙烯酰胺的交联度为67%,可满足改性膨润土材料的实际使用要求,保证改性聚丙烯酰胺交联后可以对膨润土进行有效地粘结;改性聚丙烯酰胺室温交联产物、改性膨润土防渗材料的吸水倍率分别为3.584、3.621g/g,与实验所使用的膨润土吸水倍率3.595 g/g较为接近,保证了新型改性土防渗材料吸水膨胀后整体的稳定性能,避免了开裂现象的产生。(2)通过仪器分析手段对改性膨润土材料的结构进行了表征。比表面积、粒度分布表征结果说明,2#(即聚丙烯酰胺加入量为30%)改性膨润土比表面积较原土增大,粒径分布较好;XRD表征结果说明,聚丙烯酰胺插层使膨润土的层间距变化不大,对膨润土的其它部分的结构及形貌等未产生影响,d001峰的比较尖锐,说明聚丙烯酰胺在膨润土中分散性较好;SEM表征显示改性膨润土表面的不规整程度明显增加;IR、TG分析结果说明膨润土层间存在聚丙烯酰胺,聚丙烯酰胺插层使膨润土层间的结构水消失。
     (3)由改性膨润土浸泡实验结果可知:半限制状态下,改性膨润土在自来水中浸泡1d后,其体积膨胀率就达到182%,然后曲线总体呈上升趋势。但随后体积膨胀率的增长速度变缓,最高为190%;改性膨润土防渗材料经过22 d浸泡,仍保持整体膨胀无离析、无碎块的出现,具有一定的耐久性、稳定性。
     3.采用新型聚丙烯酰胺改性膨润土作为防渗材料,选用沈阳大辛填埋场的垃圾渗透液为处理对象,利用静态吸附实验对新型聚丙烯酰胺改性膨润土防渗材料吸附渗滤液的吸附机理进行了探讨。结果表明,改性膨润土对有机污染物的吸附性能效果明显好于膨润土原土,对含高浓度有机物的垃圾渗滤液的COD最大去除率可达30.73%;由等温吸附曲线可知,改性膨润土吸附过程可用Freundlich模型进行适宜地描述,等温吸附曲线方程为y=O.4211x-1.3787, R2=0.9921;改性膨润土在静态吸附条件下,对COD的吸附去除作用以物理吸附为主。在动态实验下,抗渗性能测试结果表明,改性膨润土防渗性能较好,渗透系数可以达到1.04×10-7 cm/s满足固体废物填埋场的防渗材料国家标准1.0×10-7 cm/s的使用要求。在动态实验过程中,改性膨润土对COD、氨氮、重金属离子去除效果较好,吸附作用较强,COD、氨氮最大去除率分别达到81%、91%, TFe、Zn2+和TCr的最大去除率分别达到71%,58%,73%。实验结果验证了新型聚丙烯酰胺改性膨润土防渗材料具有优良的抗渗、截污性能。
Bentonite is a kind of clay mineral. It has high economic value and has been applied widely today. With bentonite as the main raw material, using its multi-layered structure, water swellability and low permeability, and by improving its microstructure and particle surface properties with modifiers, its practical application efficiency as a functional material can be enhanced. Therefore, it has high application value and a wide prospect in purification, remediation and control of environmental pollution.
     In this paper, with the Na-base bentonite from JiLin Liufangzi as raw material and with polyacrylamide as modifier, the polyacrylamide modified bentontites are synthesized by aqueous solution intercalation polymerization. Firstly, bentontite is modified by the intercalation polymerization with acrylamide as monomer to prepare polyacrylamide modified bentonite material. The preparation conditions are optimized by simple and orthogonal experiments; its water swelling, thermal stability and salt resistance are measured, and the structural characteristics and formation mechanism of the modified bentonite are researched with analytical instruments. Based on this research and according to the present research situation of sanitary landfill impermeable materials, a new type of polyacrylamide modified bentonite impermeable material is synthesized by direct intercalation polymerization of modified polyacrylamide. The focal point of study is synthesis of modified polyacrylamide, the processing conditions of modified polyacrylamide are discussed and the effect of quantity of the modified polyacrylamide on structure of the modified bentonite impermeable material is investigated. Finally, with leachate of Shenyang Daxin landfill as the treatment object and with new type polyacrylamide modified bentonite as impermeable material, the adsorption mechanism of the modified bentonite impermeable material for COD of leachate is investigated at the static adsorption conditions, and the effectiveness of removing pollutants and feasibility of controlling penetration of the modified bentonite impermeable materials for the leachate are investigated. Main contents and the results are as follows:
     1 With Na-base bentonite as raw material, by solution intercalation polymerization of acrylamide monomer, a type of polyacrylamid modified bentonite was prepared.
     (1) Simple experimental results show that the amounts of crosslinker, initiator, dissolved water and bentonite all affect the swelling effect of polyacrylamide modified bentonite. Optimal preparation conditions obtained by the orthogonal experiment are:the amount of crosslinker (mC/mM) is 2.16×10-4, the amount of initiator (mI/mM) is 0.04, the amount of dissolved water (mW/mM) is 2.3, the amount of sodium bentonite (mB/mM) is 1.2, and the various factors affecting the swelling of modified bentonite in turn are:initiator> bentonite> dissolved water> crosslinker.
     (2) Under experimental conditions, water absorbency of modified bentonite material is up to 35.98(g/g), rising by nearly one order of magnitude than that of the original bentonite; in a certain concentration solution of NaCl, CaCl2, FeCl3, water absorbency (g/g) of modified bentonite material is 7.491~12.22, which is larger than water absorbency (g/g) 3.595 of original bentonite, and the difference of their water absorbency rate in different kinds of salt solution with various concentration degrees is small; the water absorbency test of modified bentonite material at 20~80℃for 1h show that water absorbency changes little, it show that polyacrylamide modified bentonite has good water swellability, salt tolerance and thermal stability.
     (3) Formation mechanism of polyacrylamide modified bentonite. Polymerization mechanism of polyacrylamide is a kind of free radical reaction. When the crosslinking agent N, N-methylene bisacrylamide is present, crosslinking reaction occurs, so that polymer has a moderate crosslinking degree, and together with bentonite forms polyacrylamide modified bentonite.
     (4) Structural analysis of polyacrylamide modified bentonite. X-ray diffraction (XRD) characterization results indicate that the insertion of reactive monomers among the layers of bentonite leads to the significantly increased spacing of layers after polymerization. However, except that the spacing of crystal faced layer 001 in modified bentonite slightly increases than that of Na-base bentonite, the positions of other diffraction peaks hardly change, which indicate that basic structure of bentonite does not change; FT-IR characterization results show that polyacrylamide modified bentonite also has the characteristic IR peaks of polyacrylamide and bentonite, which indicate that there is polyacrylamide among layers of bentonite. Scanning electron microscopy (SEM) and electron microscopy characterization results show that there is a good compatibility between bentonite and polyacrylamide in modified bentonite, and the modified bentonite has a three-dimensional cross-linked network structure. All characterization results indicate that the structure of the modified bentonite is as follows:a part of acrylamide (AM)are embedded into the layers of bentonite and bonded by van der Waals force and hydrogen bond at the layers of bentonite. After cross-linking polymerization, bentonite was mainly responsible for the framework support of modified bentonite while another part of acrylamide (AM) forms hydrogen bonds by exchanging cations with bentonite surface and the last part of acrylamide generates "free" polymer network among bentonite particles and bonded with bentonite by polymer chains.
     2. Based on study on modified bentonite by intercalation polymerization with acrylamide monomer, it is the first time a new type of modified bentonite impermeable material is prepared by direct intercalation polymerization of modified polyacrylamide at room temperature with original bentonite as raw. The synthesis process of modified polyacrylamide is researched, and the effect of quantity of the modified polyacrylamide on structure of the modified bentonite impermeabile material is discussed through the analysis of characterization results. The basic performances of the modified bentonite are also measured. Main research results are as follows:
     (1) Modification of polyacrylamide is achieved in two steps, firstly with acrylamide as monomer, ammonium persulfate as the initiator, sodium formate as chain transfer agent, and then N-methylolated polyacrylamide was prepared by reacting low molecular weight polyacrylamide with formaldehyde under alkaline conditions; and finally the modificated polyacrylamide is synthesized by reacting N-methylolated polyacrylamide and acrylamide in the condensation reaction under alkaline conditions.
     ①By changing the initiator, chain transfer agent concentration and reaction time, this research studies their effect on molecular weight polyacrylamide. The results show that effect of initiator concentration on molecular weight polyacrylamide is more direct, and effect of chain transfer agent concentration and the reaction time on molecular weight polyacrylamide is not very obvious. The optimal conditions for synthesis of low molecular weight polyacrylamide are: initiator concentration is 2.5×10-2 mol/L; chain transfer agent concentration is 8.0×10-2 mol/L; reaction time is 3h. An appropriate viscosity of low molecular weight polyacrylamide solution is favorable to the following modification operation of low molecular weight polyacrylamide.
     ②The suitable hydroxymethylation conditions of low molecular weight polyacrylamide with formaldehyde are:n(PAM):n(F)=1:0.5~1:1, reaction time 2 h, the reaction temperature 40℃, pH=10. The appropriate dehydration condensation conditions of the hydroxymethylated polyacrylamide and acrylamide are:reaction temperature 55℃, n(AM):n(F)=1:1, reaction time 3 h, pH=10. When n(PAM):n(F):n(AM)=1:0.6:0.6, hydroxymethylation rate was 99 % and the conversion rate of acrylamide was 95%.
     ③At room temperature and with N, N'-methylene bisacrylamide as crosslinker, the modified polyacrylamide was crosslinked rapidly by redox system, so a new type of polyacrylamide modified bentonite impermeable material was prepared by direct intercalation polymerization of modificated polyacrylamide and bentonite. The crosslinking points of the crosslinked polyacrylamide are at the side chain while the main chain structure is relatively stable. Because amide groups partly are transformed at crosslinked side chains, which means primary amides are transformed to secondary amides, the activity of the groups are decreased, so resistance to hydrolysis is increased. The crosslinking degree of crosslinked product of modified polyacrylamide (n(PAM):n(F):n(AM)=1:0.6:0.6) at room temperature is 67%, it meets the practical application demand for the modified bentonite materials, and ensures effective bonding of crosslinked modified polyacrylamide with bentonite. Water absorbency of crosslinked product of modified polyacrylamide and polyacrylamide modified bentonite impermeable material is 3.584,3.621 g/g respectively, and it is similar to the water absorbency of bentonite (3.595 g/g) used in this experiment, it ensures stability of the new type of modified bentonite impermeable material and avoids the cracking phenomenon after absorbing water expansion.
     (2) The structure of the modified bentonite is characterized with analytical instruments. The results show that 2#(the amount of modified polyacrylamide is 30%) specific surface area of the modified bentonite is bigger than specific surface area of the original bentonite, distribution of its particle size is better. X-ray diffraction (XRD) results show that spacing of layers of polyacrylamide modified bentonite changed little and the structure and morphology of other parts are not affected, and peak of d001 is sharp, which show that dispersion of polyacrylamide in bentonite is good. SEM characterization results show that the irregularity of surface of modified bentonite significantly increased. IR and TG analysis results show that there is polyacrylamide among layers of bentonite and that the intercalated polyacrylamide made structure water among layers disappear.
     (3) The results from the immersion experiment of modified bentonite show that under half-limit state, if the modified bentonite is immersed in tap water for 1 d, the volume expansion rate will reach 182%, and then curve will show a general rising trend, but then the increasing of volume expansion rate becomes very slow, the maximum is 190%. After 22 d immersion, modified bentonite impermeable material is still in the state of no segregation and no fragments, and the material has good durability and stability.
     3. With Shenyang Daxin landfill leachate as treatment object and a static adsorption test, this research studies adsorption mechanism of the new type polyacrylamide modified bentonite for leachate. The test results show that adsorption efficiency of the modified bentonite for organic pollutants is obviously better than that of the original bentonite. The maximum COD removal rate of leachate containing high concentrations of organic compounds could reach 30.73%.The isothermal adsorption curve show that adsorption process of modified bentonite for COD can be described appropriately with Freundlich model. The equation of the adsorption curve is y=0.4211x-1.3787, R2=0.9921 and the adsorption of modified bentonite for COD at static adsorption is mainly physical adsorption. The dynamic tests show that anti-seepage capability of modified bentonite material is good, the permeability coefficient is 1.04×10-7 cm/s, which meets national standard (1.04×10-7 cm/s) of impermeable materials for landfill. During the dynamic test, the removal effect of modified bentonite for COD, ammonia nitrogen and heavy metallic ions is better, and the adsorption effect is stronger, with the maximum removal rate of COD and ammonia nitrogen being 81% and 91% respectively while the maximum removal rate of TFe, Zn2+ and TCr being 71%,58%, and 73% respectively. The test results indicate that the new type polyacrylamide modified bentonite impermeable material holds excellent impermeability and decontamination performance.
引文
[1]李梦耀,刘建.膨润土的改性研究及其应用[J].长安大学学报(地球科学版).2003(02):76-78.
    [2]李芳蓉.膨润土的改性及其在废水处理中的应用研究[D].西北师范大学,2007.
    [3]Smith C R. Base Exchange Reactions of Bentonite and Salts of Organic Bases[J]. Journal of the American Chemical Society.1934,56(7):1561-1563.
    [4]印万忠,韩跃新.环境工程用矿物材料的应用[C].南宁:第十届全国粉体工程学术会.2004.
    [5]Lee J M, Shackelford C D. Concentration dependency of the prehydration effect for a geosynthetic clay liner[J]. Soils and Foundations.2005,45(4):27-41.
    [6]财经杂志.城市生活垃圾年产生1.5亿吨[Z].2010.
    [7]环境技术网.我国城市生活垃圾处理官方统计资料[Z].2008.
    [8]刘长礼,张云,张胜,等.填埋场粘性土防渗层中强化微生物对垃圾污染物的净化作用[J].地球科学进展.2004(S1):506-510.
    [9]陈云敏,谢海建,柯瀚,等.挥发性有机化合物在复合衬里中的一维扩散解[J].岩土工程学报.2006(09):1076-1080.
    [10]杨赞中,廖立兵,杜洪兵,等.非金属矿物在环境治理中的应用[J].矿物岩石地球化学通报.1999(04):257-260.
    [11]周爱芳,章光.垃圾填埋场防渗材料研究[J].能源与环境.2007(04):84-86.
    [12]Hong-Liang S., Li-Zhong Z. Simultaneous adsorption of organic pollutant and heavy metal onto surfactant-modified organobentonites with Chelating Ligands[J]. Chemical Journal of Chinese Universities-ChinesE.2007,28(8):1475-1479.
    [13]Chen J., Liu Y., Huang L., et al. Influence of calcination temperature on structure and adsorption and photocatalytic activity of titanium oxide pillared bentonite[J]. Chemical Journal of Chinese Universities-Chinese.2008,29(7):1406-1411.
    [14]倪世椿.膨润土概述[J].山西化工.1985,16(4):20-21.
    [15]李钟华,杨文艺,等.膨润土洗涤工艺实验研究[J].非金属矿.1993(6):15-16.
    [16]李中和,张典奎,叶卓麟.陶瓷原料和瓷相分析[M].杭州:浙江大学出版社,1989.
    [17]汪多仁.膨润土的开发应用[J].现代涂料与涂装.2005,05(04):44-46.
    [18]陈集,饶小桐,许源,等.用加碳焙烧法对膨润土改性的研究[J].西南石油学院学报. 2002,24(4):65-67.
    [19]李织宏,王滟,陈集,等.膨润土加碳焙烧改性条件研究[J].天津化工.2006,20(1):24-26.
    [20]杨维,王立东,林森,等.新型改性膨润土制备及其对Cr(Ⅵ)的吸附性能[J].沈阳建筑大学学报(自然科学版).2007,23(6):1004-1008.
    [21]于瑞莲,Ruilian Y.加碳焙烧膨润土处理活性黑染料废水[J].非金属矿.2008,31(1):56-58.
    [22]王铁军,赵勇胜,屈智慧,等.无机改性膨润土防渗层性能研究[J].吉林大学学报(地球科学版).2008(03):463-467.
    [23]张秀兰,栗印环,胡福欣,等.膨润土微波改性及对废水中甲基橙吸附的研究[J].信阳师范学院学报(自然科学版).2008,21(2):266-269.
    [24]李济吾,朱利中,蔡伟建,等.微波作用下表面活性剂在膨润土上的吸附行为特征[J].环境科学.2007,28(11):2642-2645.
    [25]刘学良,刘莺,王进防,等.改性的膨润土或沸石在废水处理中的应用展望[J].环境污染治理技术与设备.2000,1(4):57-61.
    [26]温佩,武文洁,赵立辉,等.膨润土的改性及应用研究进展[J].化工技术与开发.2008,37(2):27-31.
    [27]陆海军.污染物在改良黏土衬里中运移分析及ET封顶层特性探讨[D].大连:大连理工大学,2009.
    [28]黄二良.膨润土预处理城市垃圾渗滤液研究[D].西安:长安大学,2008.
    [29]杨建斌.羟基铁柱撑膨润土的制备及对EDTA-Cu的吸附特性研究[D].西安:西安建筑科技大学,2006.
    [30]Carriazo J, Guelou E, Barrault J, et al. Catalytic wet peroxide oxidation of phenol by pillared clays containing Al-Ce-Fe[J]. Water Research.2005,39(16):3891-3899.
    [31]Matthes W, Madsen F T, Kahr G. Sorption of heavy-metal cations by Al and Zr-hydroxy-intercalated and pillared bentonite[J]. Clays and Clay Minerals.1999,47(5):617-629.
    [32]刘莺,刘学良,王俊德,等.粘土改性条件的研究Ⅰ.膨润土的改性[J].环境化学.2002,21(2):167-171.
    [33]陈延君,王红旗,赵勇胜.改性膨润土作为防渗层材料的性能研究及影响因素分析[J].环境科学研究.2006,19(2):90-94.
    [34]韩丽荣,鲁安怀,郑红,等.有机膨润土吸附垃圾渗滤液中苯酚的研究[J].环境化学.2001,20(5):460-465.
    [35]Bouras O, Bollinger J C, Baudu M, et al. Adsorption of diuron and its degradation products from aqueous solution by surfactant-modified pillared clays[J]. Applied Clay Science.2007, 37:240-250.
    [36]Cai Y B, Li Q, Wei Q F, et al. Journal of Materials Science.2008, vol.43(No.18).
    [37]王忠杰,蔡哗,陈银飞,等.表面活性剂改性的铝交联蒙脱土的表征及催化性能[J].高校化学工程学报.1998(03):64-69.
    [38]Shen Y H. Preparations of organobentonite using nonionic surfactants[J]. Chemosphere. 2001,44(5):989-995.
    [39]Churchman G J. Formation of complexes between bentonite and different cationic polyelectrolytes and their use as sorbents for non-ionic and anionic pollutants[J]. Applied Clay Science.2002,21(3-4):177-189.
    [40]Ashmawy A K, El-Hajji D, Sotelo N, et al. Hydraulic performance of untreated and polymer-treated bentonite in inorganic landfill leachates.[J]. Clays Clay Miner.2002,50(5): 546-552.
    [41]Yue Q Y, Li Q, Gao B Y, et al. Formation and characteristics of cationic-polymer/bentonite complexes as adsorbents for dyes[J]. Applied Clay Science.2007,35(3-4):268-275.
    [42]Lu J, Wu L. Spectrophotometric Determination of Substrate-Borne Polyacrylamide[J]. Journal of Agricultural and Food Chemistry.2002,50(18):5038-5041.
    [43]Inyang H I, Bae S. Polyacrylamide sorption opportunity on interlayer and external pore surfaces of contaminant barrier clays[J]. Chemosphere.2005,58(1):19-31.
    [44]任海贝,李明玉, Hai-Bei R,等.阳离子聚丙烯酰胺复合插层有机膨润土的脱色性能[J].水处理技术.2005,31(12):13-15.
    [45]严瑞瑄.水溶性高分子[M].北京:化学工业出版社,1998:84,168.
    [46]Friedrich. H V. Handbook of waterSoluble Gums and Resins Division. Chapter16[M]. New York:Mcgraw-Hill inc,1980.
    [47]王春燕,吴宗华.沉淀聚合法制备低分子量聚丙烯酰胺[J].福建师范大学学报(自然科学版).2002,18(4):61-63.
    [48]赵献增,朱靖,王冬梅,等.超低分子量聚丙烯酰胺的水溶液聚合[J].河南科学.2004,22(3):338-340.
    [49]张亚峰,宋平安,宾斌,等.新型改性聚丙烯酰胺灌浆材料的制备和性能研究[J].第12次全国化学灌浆学术交流会论文集.2008.
    [50]赵献增,朱靖,王冬梅,等.甲酸钠链转移法合成超低分子量聚丙烯酰胺的研究[J].河南科学.2008,26(2):163-165.
    [51]张亚峰,宋平安,宾斌,等.新型改性聚丙烯酰胺灌浆材料的制备和性能研究[J].中国 建筑防水.2009(7):15-19.
    [52]王久芬,蔡开勇,李德水.沉淀聚合法合成聚丙烯酰胺[J].华北工学院学报.2000,21(04):312-315.
    [53]王春燕,吴宗华.沉淀聚合法制备低分子量聚丙烯酰胺[J].福建师范大学学报(自然科学版).2002,18(04):61-63.
    [54]李伟,孙建中,周其云.适用于酶包埋的高分子载体材料研究进展[J].功能高分子学报.2001,14(03):365-369.
    [55]Pashova S, Slokoska L. Physiological aspects of immobilized Aspergillus niger cells producing polymethylgalacturonase[J]. Process Biochemistry.1999,35(1-2):15-19.
    [56]范振中,娄燕敏,刘庆旺.N,N’-亚甲基双丙烯酰胺的合成[J].精细石油化工进展.2003,04(01):47-49.
    [57]荣庸,姜永禄,李寅,等.辐射制备超级复合吸水材料的方法[P].中国,CN85102156.
    [58]张小红,崔英德,张维刚,等.聚丙烯酸钠/蒙脱石复合高吸水性树脂的合成与性能[J].高分子材料科学与工程.2005(01):88-91.
    [59]魏月琳.粘土-丙烯酸胺系超吸水性复合材料研究[D].泉州:华侨大学,2002.
    [60]孙福强,张红,曾桂萍.超强吸水树脂的制备研究[J].广东药学院学报.2005,21(01):4-6.
    [61]高德玉,Rb-海曼,等.聚丙烯酰胺/蒙脱土复合材料结构研究[J].高分子材料科学与工程.2005,21(04):201-204.
    [62]季鸿渐,潘振远,张万喜,等.含膨润土的部分水解交联聚丙烯酰胺高吸水性树脂的研究.[J].高分子学报.1993(05):595-599.
    [63]Zhang J, Wang A. Study on superabsorbent composites. Ⅸ:Synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. [J]. Reactive and Functional Polymers.2007,67(08):737-745.
    [64]栾守杰.吸水膨胀型膨润土/交联聚丙烯酰胺颗粒堵剂.[J].油田化学.2003,20(03):230-232.
    [65]沈上越,范力仁,夏开胜,等.矿物/高分子高吸水保水材料的几个问题[C].中国武汉:2005.
    [66]Jihuai W, Yueling W, Lin Jianming E A. Study on starch-graft-acrylamide/mineral powder superabsorbent composite[J]. Polymer.2003,44(21):6513.
    [67]唐群委,林建明,吴季怀,等.无机层状矿物/聚合物高吸水性复合材料[J].应用化工.2005,34(06):328-331.
    [68]董永全,张林,侯同刚,等.聚丙烯酰胺/蒙脱土纳米复合物-聚乙烯醇共混膜的制备及 其渗透汽化性能[J].高等学校化学学报.2007(12):2422-2426.
    [69]谢奕明,吴季怀.膨润土/聚丙烯酸钠超吸水性复合材料的表征[J].华侨大学学报(自然科学版).2007,28(03):282-286.
    [70]Ogawa M, Nagafusa Y, Kuroda K. Solid-state intercalation of acrylamide into smectites and Na-taeniolite[J]. Applied Clay Science.1992,7(4):291-302.
    [71]刘瑾,唐蜀忠,朱强.氨基化丙烯酸的反相悬浮交联聚合及吸水性能研究[J].石油与天然气化工.2002(05):270-273.
    [72]曹丽云,黄剑锋,熊信柏,等.配位插层聚合法制备膨润土/PAM调湿膜[J].非金属矿.2003(01):30-31.
    [73]任海贝,李明玉.CPAM二次改性有机膨润土的脱色性能研究[J].环境科学与技术.2006,29(3):13-14.
    [74]刘学贵,付建飞,邵红,等.新型交联聚丙烯酰胺/膨润土复合防水材料的研究[J].矿冶工程.2008(05):89-93.
    [75]黄慨.季铵型有机膨润土的制备与表征及其催化性能的初步研究[D].广西大学,2003.
    [76]Monteiro M A F, Ribeiro A P, Machado A T, et al. Brazilian bentonites for geosynthetic clay liners (GCL).[J]. Mater. Sci. Forum.2008,591-593(Advanced Powder Technology Ⅵ): 791-798.
    [77]Mizuno K. Reason of using bentonite as water seepage control material in landfill sites.[J]. Gekkan Haikibutsu.2000,26(3):74-79.
    [78]Botkin D B, Keller E A. Environmental Science:Earth as a Living Planet[M]. N. Y.:John Wiley,1997.
    [79]张峥,李得翔.试论适合我国国情的城市垃圾处理技术[J].污染防治技术.1997(03):161-163.
    [80]赵连梅,刘瑞强.垃圾卫生填埋防渗层的设计概述[J].天津城市建设学院学报.2002,8(2):125-128.
    [81]中国环境保护产业协会城市生活垃圾处理委员会.我国城市生活垃圾处理行业2008年发展综述[J].中国环保产业.2009(6):17-23.
    [82]石磊.我国城市居民生活垃圾分类收集的影响因素及其对策研究[D].中国:2006.
    [83]陈玉成,李章平.城市生活垃圾渗沥水的污染及其全过程控制[J].环境科学动态.1995(04):15-18.
    [84]蒋海涛,周恭明,高廷耀.城市垃圾填埋场渗滤液的水质特性[J].环境保护科学.2002,28(111):11-13.
    [85]师晓春.卫生填埋场防渗层改性研究[D].东北大学,2004.
    [86]郑铣鑫.城市垃圾处理场对地下水的污染[J].环境科学.1989(03):89-92.
    [87]D R. Landfill Failure Survey:a Technical Note.In:Bentley, S.P (ed.), Engineering Geoloy of waste Disposal[M]. Geological Society Publishing House,1995:379-380.
    [88]陈永贵,叶为民,张可能.填埋场粘土类防渗系统研究进展[J].工程地质学报.2008(06):780-787.
    [89]Hartley J G, Black W Z. Transient Simultaneous Heat And Mass-Transfer in Moist, Unsaturated Soils[J]. Journal of Heat Transfer-Transactions of The Asme.1981,103(2): 376-382.
    [90]Mundell J A. Hydraulic Conductivity of Compacted Clays-Discussion[J]. Journal of Geotechnical Engineering-Asce.1987,113(3):279-281.
    [91]Yeh Y J, Lee C H, Chen S T. A tracer method to determine hydraulic conductivity and effective porosity of saturated clays under low gradients[J]. Ground Water.2000,38(4): 522-529.
    [92]Karunaratne G P, Chew S H, Lee S L, et al. Bentonite:kaolinite clay liner.[J]. Geosynth. Int. 2001,8(2):113-133.
    [93]刘阳生,白庆中.膨润土改性天然粘土防渗材料的研究[J].应用基础与工程科学学报.2002(02):143-149.
    [94]史敬华,赵勇胜,洪梅.垃圾填埋场防渗衬里粘性土的改性研究[J].吉林大学学报(地球科学版).2003(03):355-359.
    [95]Doven A G, Pekrioglu A. Material properties of high volume fly ash cement paste structural fill[J]. Journal of Materials in Civil Engineering.2005,17(6):686-693.
    [96]C. L I M, M. M R K. Transport of Phenolic Compounds through A Compacted Organoclay Liner[J]. Wat.Sci.Tech.1998,38:143-150.
    [97]Smith J A, Jaffe P R, Chiou C T. Effect of 10 Quaternary Ammonium Cations on Tetrachloromethane Sorption to Clay from Water[J]. Environmental Science & Technology. 1990,24(8):1167-1172.
    [98]Lo I M C, Mak R K M. Transport of phenolic compounds through a compacted organoclay liner[J]. Water Science and Technology.1998,38(2):143-150.
    [99]刘长礼,王秀艳,张云.城市垃圾卫生填埋场粘性土衬垫的截污容量及其研究意义[J].地质论评.2000(01):79-85.
    [100]宋宝华,邹东雷,陈延君,等.城市废弃物填埋场中有机膨润土的防渗研究[J].环境工程.2004(06):65-68.
    [101]Lee J, Park J. Organoclay as a dual sorbent for organic contaminant and heavy metal.[J]. Prepr. Ext. Abstr. ACS Natl. Meet., Am. Chem. Soc., Div. Environ. Chem.2001,41(1): 296-300.
    [102]邵红,孙伶,李辉,等.改性膨润土预处理垃圾渗滤液试验研究[J].环境科学与技术.2008(12):157-159.
    [103]屈智慧,赵勇胜,王铁军,等.改性膨润土作为反应型材料的双层防渗层性能研究[J].环境科学.2009(06):1867-1872.
    [104]李宪,束一鸣,武良金,等.新型防渗材料GCL的一些特性试验[C].中国西安:2004.
    [105]李良义.一种新型高效的防渗技术—土工合成材料粘土垫层(GCL)[J].2003,治淮(03):42.
    [106]Fox P J, De Battista D J, Chen S H. Bearing capacity of geosynthetic clay liners for cover soils of varying particle size.[J]. Geosynth. Int.1996,3(4):447-461.
    [107]Otlewski H, Dunkel J, Ferner U. Hydraulic sealing medium with water soluble polyacrylamide for landfill liners.[P]. DE, Application:DE97-19724939. 1998-12-24[1998-12-24].
    [108]刘阳生,白庆中,李强,等.新型膨润土防渗卷材的研制及其性能[J].清华大学学报(自然科学版).2000(11):102-105.
    [109]周斌.吸水性树脂吸水率测定方法研究[J].造纸化学品.2003,15(2):32-35.
    [110]中国市政工程西北设计研究院.水处理剂聚丙烯酰胺[S].北京,1998.
    [111]国家质量技术监督局.工业甲醛溶液[S].北京,全国化学标准化技术委员会有机分会,1998.
    [112]中国林科院木材工业研究所.木材胶粘剂及其树脂检验方法羟甲基含量测定法[S].北京,1993.
    [113]周斌.吸水性树脂吸水率测定方法研究[J].造纸化学品.2003,15(02):32-35.
    [114]王鸿禧.膨润土[M].北京:地质出版社,1980.
    [115]上海市环境卫生设计科研所.生活垃圾渗沥水.化学需氧量(COD)的测定.重铬酸钾法[S].1993.
    [116]上海市环境卫生设计科研所.生活垃圾渗沥水.氨态氮的测定.蒸馏和滴定法[S].1993.
    [117]编委会国家环保局水和废水监测分析方法.水和废水监测分析方法[M].北京:中国环境科学出版社,1997:259-260.
    [118]国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    [119]上海市环境卫生设计科研所.生活垃圾渗沥水.pH值的测定.玻璃电极法[S].1993.
    [120]Wenfu L, C Y. Effect of intercalated reactive mica on water absorbency for poly(sodium acrylate) composite superabsorbents.[J]. Eur Polym J.2005,41(07):1605-1612.
    [121]Deyu G, Heimann R B. Structure and mechanical properties of superabsorbent poly(acrylamide)-montmorillonite composite hydrogels[J]. Polym Gels and Networks.1993, 01(04):225.
    [122]Junping Z, Hao C, Aiqin W. Study on superabsorbent composite. Ⅲ. Swelling behaviors of polyacrylam-ide/attapulgite composite based on acidified attapulgite and organo-attapulgite.[J]. Eur Polym.2005,41(10):2434-2442.
    [123]中华人民共和国国家质里监督检验检疫总.高分子防水材料第3部分遇水膨胀橡胶[S].2002.
    [124]中华人民共和国建设部.土工合成材料应用技术规范[S].1998.
    [125]Saeidi A, Katbab A A, Vasheghani-Farahani E, et al. Formulation Design,Optimization, Characterization and Swelling Behaviour of a Cationic Superabsorbent Based on a Copolymer of[3-(Methacryloylamino)propyl] trimethylammonium Chloride and Acrylamide[J]. Polym. Int.2004,53(01):92-100.
    [126]郭新秋,丘坤元,冯新德.过硫酸盐和脂肪胺引发体系的研究[J].中国科学(B辑化学生物学农学医学地学).1986(11).
    [127]冯新德,郭新秋,丘坤元.过硫酸盐和脂肪环胺体系引发机理的ESR研究[J].高分子学报.1987(05).
    [128]郭新秋,丘坤元,冯新德.过硫酸盐和脂肪二元叔胺体系引发烯类聚合的反应与机理的研究[J].中国科学(B辑化学生命科学地学).1989(11).
    [129]M O, K K, C K. Preparation of Montmorillonite-Poly(acrylamide) Intercalation Compounds and the Water Absorbing Property[J]. Clay Sci.1989,07(04):243-251.
    [130]Gungor N, Karaoglan S. Interactions of polyacrylamide polymer with bentonite in aqueous systems[J]. Materials Letters.2001,48(3-4):168-175.
    [131]任强,史铁钧,王华林,等.丙烯酸-丙烯酰胺原位插层共聚制备高吸水性蒙脱土纳米复合材料的研究[J].功能高分子学报.2003,16(04):469-473.
    [132]刘宇光,李晓冰,张成武.丙烯酰胺/蒙脱土嵌入及聚合机理的研究[J].哈尔滨商业大学学报(自然科学版).2003(03):332-335.
    [133]赵献增,朱靖,邓小华.调节沉淀聚合法制备不同分子量的聚丙烯酰胺[J].黑龙江大学自然科学学报.1989(02):53-57.
    [134]Information S. Spectral Database for Organic Compounds SDBS[Z].2010.
    [135]邹新禧.超强吸水剂[M].北京:化学工业出版社,1994:203-204.
    [136]吴平霄.黏土矿物材料与环境修复[M].北京:化学工业出版社,2004.
    [137]夏海萍,柯家骏.膨润土对重金属离子的吸附动力学[J].中国有色金属学报. 1995(04):51-53.
    [138]Zuhairi. W Y W. Sorption capacity on lead, copper and zinc by clay soils from South Wales, United Kingdom[J]. Environmental Geology.2003,45(2):236-242.
    [139]Li Q, Yue Q Y, Su Y, et al. Two-step kinetic study on the adsorption and desorption of reactive dyes at cationic polymer/bentonite[J]. Journal of Hazardous Materials.2009, 165(1-3):1170-1178.
    [140]于瑞莲,胡恭任.苯酚在滩涂沉积物上的吸附特性[J].生态环境.2004,13(4):535-537.
    [141]彭书传,王诗生,陈天虎,等.凹凸棒石吸附水溶性染料的热力学研究[J].硅酸盐学报.2005,33(8):1012-1017.
    [142]张春丽,任广军,宋恩军,等.TiO_2柱撑膨润土对染料茜素红的吸附行为[J].应用化学.2006(03):305-308.
    [143]Anirudhan T S, Suchithra P S. Adsorption characteristics of humic acid-immobilized amine modified polyacrylamide/bentonite composite for cationic dyes in aqueous solutions[J]. Journal of Environmental Sciences-ChinA.2009,21(7):884-891.
    [144]Anirudhan T S, Suchithra P S, Radhakrishnan P G. Synthesis and characterization of humic acid immobilized-polymer/bentonite composites and their ability to adsorb basic dyes from aqueous solutions[J]. Applied Clay Science.2009,43(3-4):336-342.
    [145]Halim A A, Aziz H A, Johari M A M, et al. Removal of ammoniacal nitrogen and COD from semi-aerobic landfill leachate using low-cost activated carbon zeolite composite adsorbent[J]. International Journal of Environment and Waste Management.2009,4(3-4): 399-411.
    [146]邓国志,何宗健.絮凝法强化处理垃圾渗滤液的试验研究[J].中国资源综合利用.2003(3):32-34.
    [147]于瑞莲,胡恭任,Ruilian Y,等.复合HDTMAB-膨润土处理垃圾渗滤液[J].中国矿业.2005,14(11):79-81.
    [148]李志伟,孙力平,吴立.PAC和PAM复合混凝剂处理垃圾渗滤液的研究[J].中国给水排水.2009,25(23).
    [149]P W, E C, J A C A. Modelling bentonite-water interactions at high solid/liquid ratios: swelling and diffuse double layer effects.[J]. Applied Clay Science.2004,26(1-4):249-257.
    [150]Hamdi N, Srasra E. Interaction between clay soils and acidic wastewater:Textural and structural evolution[J]. Surface Engineering and Applied Electrochemistry.2008,44(2): 146-153.
    [151]方道斌,郭睿威,哈润华.丙烯酰胺聚合物[M].北京:化学工业出版社,2006.
    [152]Lo I M C. Organoclay with soil-bentonite admixture as waste containment barriers[J]. Journal of Environmental Engineering.2001,127(8):756-759.
    [153]王铁军.固体废物填埋场防渗层改良研究[D].长春:吉林大学,2008.
    [154]Renou S, Givaudan J G, Poulain S, et al. Landfill leachate treatment:Review and opportunity[J]. Journal of Hazardous Materials.2008,150(3):468-493.
    [155]Justin M Z, Zupancic M. Combined purification and reuse of landfill leachate by constructed wetland and irrigation of grass and willows[J]. Desalination.2009,246(1-3): 157-168.
    [156]Entry J A, Sojka R E. The efficacy of polyacrylamide and related compounds to remove microorganisms and nutrients from animal wastewater[J]. Journal of Environmental Quality. 2000,29(6):1905-1914.
    [157]Liang Z, Liu J. Control factors of partial nitritation for landfill leachate treatment[J]. Journal of Environmental Sciences.2007,19(5):523-529.
    [158]Xiao Y, Yang Z, Zeng G, et al. Bacterial diversity in sequencing batch biofilm reactor (SBBR) for landfill leachate treatment using PCR-DGGE[J]. Huanjing Kexue/Environmental Science.2007,28(5):1095-1101.
    [159]Qu X, He P, Laurent M, et al. Effect of temperature on methanogenic pathway during household waste anaerobic digestion by stable carbon isotopic signature of CH4[J]. Huanjing Kexue/Environmental Science.2008,29(11):3252-3257.
    [160]Mehmood M K, Adetutu E, Nedwell D B, et al. In situ microbial treatment of landfill leachate using aerated lagoons[J]. Bioresource Technology.2009,100(10):2741-2744.
    [161]Lu B, Yang K, Zhou P, et al. Factors effecting shortcut nitrification for treatment of advanced stage landfill leachate[J]. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology.2006,38(6):931-933.
    [162]Wu L, Peng Y, Wang S, et al. Effect of free ammonia on the short-cut nitrification of the municipal landfill leachate[J]. Huanjing Kexue/Environmental Science.2008,29(12): 3428-3432.
    [163]Wu L, Peng Y, Wang S, et al. Effect of carbon source on the short-cut nitrification of the mature municipal landfill leachate[J]. Beijing Gongye Daxue Xuebao/Journal of Beijing University of Technology.2009,35(4):516-521.
    [164]Zhang W, Zhao Y. Research on in situ ammonium removal in leachate recirculation[C]. Baltimore, MD, United states:Battelle Memorial Institute,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700