用户名: 密码: 验证码:
低温精馏分离~(13)C的耦合传递理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对一氧化碳(CO)低温精馏分离稳定同位素~(13)C这一热量、质量、动量耦合传递体系进行了详细的试验及模拟研究。主要包括低温精馏装置工艺设计及试验测试、新型高效丝网波纹填料的开发及性能测试、低温精馏流程模拟优化及填料内CO汽-液两相流动模拟分析。具体内容如下:
     (一)基于热量衡算、物料衡算、真空计算,设计了一套采用一氧化碳低温精馏分离稳定同位素~(13)C的工艺流程。针对~(13)C低温分离流量小、低温绝热要求高的特殊要求,提出并设计研制了多层绝热的低温精馏塔结构专利技术;开发了高比表面积丝网波纹填料及锯齿形波纹填料专利技术,满足低温精馏分离稳定同位素~(13)C的工艺要求;设计研制了低温精馏分离同位素~(13)C的控制方案,建立了国内第一座采用CO低温精馏分离同位素~(13)C的试验装置。
     (二)采用空气-水冷模实验及对/邻二甲苯二元混合体系热模实验,测试了峰高1.6、2.0、2.5 mm三种规格的高比表面积丝网波纹填料的流体力学性能及传质性能。得到了三种规格填料的Leva压降关联式、Bain-Houzen液泛点关联式、动持液量关联式;通过试验得到了高效规整不锈钢金属丝网规整填料的传质性能数据,可以推广到CO低温精馏分离同位素~(13)C中。
     (三)详细的实验测试结果表明,本文建立的CO低温精馏试验装置当气体动能因子F在0.26-0.53m/s(kg/m3)1/2时,试验每米理论板数为25-28块。试验装置的全回流平衡时间为4天、开车浓缩时间为23-30天、极限浓缩达到15%~(13)C、达到了年产500克10%~(13)C的生产能力。本文开发的新型高比表面积丝网波纹规整填料比传统填料具有更好的分离能力,其单位比表面积分离功和单位比表面积理论板数均超过了国外同类装置的2倍以上。
     (四)通过对~(12)C~(16)O-~(13)C~(16)O-~(12)C~(18)O三元组分同位素体系低温精馏过程的稳态及动态模拟研究,对影响~(13)C同位素分离的因素进行了数值模拟计算。单因素稳态模拟分析表明,塔压的降低、回流比的增加、气体动能因子的降低有利于提高产品丰度。通过均匀实验设计得出,对于建立的精馏塔,蒸发功率为250 W时,优化设计的操作条件为操作压力为54 kPa,回流比为84。而低压力、高回流比有利于降低本试验装置的操作能耗。动态模拟结果表明,增大进料量、增大再沸器功率有利于缩短平衡时间。
     (五)建立了表征波纹填料单元结构的三维物理模型。通过CFD模拟计算表明,在两相逆流的精馏过程中,传统的波纹填料由于结构缺陷表面大部分没有被液体流覆盖,液体在填料表面呈溪流流动。液体分布不均主要内在原因是由填料结构导致,而与填料层的高度无关。数值模拟证实了“雾沫夹带”的现象。本文提出了基于持液量的“传质液泛点”概念,用于确定高比表面积丝网波纹填料的有效传质区间。新开发的锯齿形波纹填料在结构上采用直角三角形通道,比传统波纹填料具有更优良的液体分布性能以及提供更多的汽、液界面。这种具备更高传质效率的锯齿形波纹填料可推广到常规化工精馏塔中,取代传统波纹填料。
In this dissertation, the processes of carbon monoxide (CO) cryogenic distillation for the separation of stable isotopes ~(13)C, in which the momentum, heat, and mass transfer are highly coupled, were systematically studied by experimental test and numerical simulation. The main contents included the system design and experimental test of the cryogenic distillation process, the development and performance measurement on the special packing, the process simulation on the distillation column and the two-phase CFD simulation inside the special packing. The major works were summarized as followings:
     1.A process flow of stable isotopes ~(13)C separation by CO cryogenic distillation was designed after heat calculation, material calculation, and vacuum computation. The technology of multilayer adiabatic rectifying tower was designed and manufactured, meeting up with the adiabatic requirements of small flow, low temperature in distillation; The high specific corrugated gauze packing and corrugated Zigzag-pak were developed, satisfying the requirement of enriching stable isotopes ~(13)c by cryogenic distillation process; Auto-control solution of the cryogenic distillation process was designed and constructed; and the first domestic CO cryogenic distillation pilot for separation isotope ~(13)c was set up.
     2.Through the cold mould experiments of air–water and the hot model experiment of p/o-xylene mixed system, the fluid dynamic properties and mass transfer performances were measured for three types of corrugated gauze packing with peak height of 1.6, 2.0, and 2.5 mm respectively. The empirical formulas of Leva pressure drop, Bain-Houzen liquid flooding point, and dynamic liquid holdup were obtained. The mass transfer data of the test packing were also measured by hot model experiments, which can be used in CO cryogenic distillation for the separation of ~(13)C.
     3.Based on the experimental measurements, it is proven that the theoretical plates per meter of the proposed packing are from 25 to 28 with the F-factor of 0.26 to 0.53 m/s (kg/m3)1/2, the balance time are 4 days at total reflux, the startup time of the CO cryogenic distillation column are 23 to 30 days with the ~(13)C concentration up to 15%, and the setup has the capacity of producing 500 g 10% ~(13)C per year. The developed corrugated gauze packing with high specific surface area has better separation ability than the traditional packing with the separation work and the theoretical plates per unit specific surface area being two times higher than those of foreign facilities.
     4.On the basis of steady and dynamic simulations about the cryogenic distillation system with three isotopic components ~(12)C~(16)O-~(13)C~(16)O-~(12)C~(18)O, the influence factors of ~(13)C isotope separation were studied. The single factor analysis by steady-state simulation showed that the product abundance improved with the decreasing of pressure, the increasing of reflux ratio, and the reducing of gas kinetic energy factor. By experimental uniform design, the optimized condition to the established column for the re-boiling power of 250 W was that the operating pressure was 54 kPa and the reflux ratio was 84. Low pressure, high reflux ratio is helpful for reducing this experimental column’s energy consumption. Through the dynamic simulation, it was found that with the increasing of feed rate and re-boiling, the balance time of enrichment was shorter.
     5. 3-D physical models were established for the corrugated packing applied in the experiments. Through the CFD simulations, it is shown that in the process of distillation with countercurrent flow, the surfaces of traditional corrugated packing were not moistened by liquid due to the structural defect, and most of the liquid flow as streams in the packing channels. Liquid misdistribution is probably caused by the packing structure, irrespective with the packing height. Through the CFD simulations, the existence of entrainment phenomenon was also proven. The concept of mass transfer liquid flooding point based on liquid holup was proposed in this study, which was better to define the effective mass transfer ranges of structured packing with high specific surface areas. The newly proposed zigzag corrugated packing has right-triangle channels in structure, resulting in more superior performances in liquid distribution and higher wetting surface areas than the traditional corrugated packing. With the advantages of high mass transfer efficiency, the zigzag-pak may be widely used in conventional chemical columns to replace the traditional corrugated packing.
引文
[1] Braden B, Lembcke B, Kuker W, et a1. ~(13)C-breath tests current state of the art and future directions[J]. Dig Liver Dis, 2007, 39(9): 795-805.
    [2] Bilal R, Khaar B, Qureshi T Z, et a1. Accuracy of non-inva-sive ~(13)C-Urea breath test compared to invasive tests for Heli-cobacter pylori detection[J]. J Coll Physicians Surg Pak, 2007, 17(2): 84-88.
    [3] Bluck L J, Coward W A. Measurement of gastric emptying by the ~(13)C-octanoate breath test-rationalization with scintigra-phy[J]. Physiol Meas, 2006, 27(3): 279-289.
    [4] Uchida M, Shimizu K. ~(13)C-acetic acid is more sensitive than ~(13)C-octanoic acid for evaluating gastric emptying of liquid enteraI nutrient fonnula by breath test in conscious rats[J]. Biol Pharm Bull, 2007, 30(3): 487-489.
    [5] Schneider A, Caspary W F, Saich R, et a1. ~(13)C-methacetin breath test shortened: 2-point-measurements after 15 minutes reliably indicate the presence of liver cirrhosis[J]. J Clin Gastroenterol, 2007, 41(1): 33-37.
    [6] Johns T F, London H. Enrichment of isotopes ~(13)C and 18O, G/R 661[R]. Harwell: AERE, 1951.
    [7]费孟浩.碳-13的分离技术研究及低温精馏过程模拟[D].上海:上海化工研究院,2007: 6-10.
    [8] Edmunds A O, Lockhart I M. Separation of stable isotopes and the preparation of labeled compounds with special reference to ~(13)C, 15N and 18O[C]. proceedings symposium of Isotope Rations as Pollutant Source and Behaviour Indicators, Vienna: IAEA, 1975: 279-282.
    [9] Daniels W R, Edmunds A O, Lockhart I M. Some aspects of the separation and use of the stable isotopes of carbon, nitrogen and oxygen[C]. Stable Isotopes in the Life Sciences, Vienna: IAEA, 1977: 21-23.
    [10] AcamuaнuПЯ, Kaмuc?u?зебǔB A,Οзuaω?uлu EЛ, et al.Пoлyчeниeизoтona C13мeтoлoмpeктификaцииoкиcиyrлepoлa[J]. Isotopenpraxis, 1968, 4(7): 275-277.
    [11] Armstrong D E, Briesmeister A C, Mclnteer B B, et al. A carbon-13 production plant using carbon monoxide distillation, LA-4391[R]. New Mexico: Los Alamos Science Laboratory, 1970.
    [12] Mclnteer B B. Isotope separation by distillation: design of a carbon-13 plant[J]. Sep Sci Technol, 1980, 15(3): 491-508.
    [13] Moody D C, Goldblanti M, Mclnteer B B. Alumina-catalyzed isotope exchange in CO[J]. J Catal, 1981, 67: 240-243
    [14]伊藤一男.关于用低温精密蒸馏法对甲烷碳同位素分离技术的开发[J]. Petrotech, 1993, 16(8): 727-729
    [15]芳贺研一氏.世界最早采用甲烷蒸馏浓缩~(13)C过程的实用化[J].化学装置,2001, 7: 7-11
    [16] R?doi A, Gligan M, Dronca S, et al. ~(13)C enrichment by cryogenic distillation of carbon monoxide on experiment pilot plant[C]. Conference on Isotopic andMolecular Process, Romania: Cluj-Napoca, 1999.
    [17] Shigeru H, Katsuyoshi K, Hiroshi K, et al. Process and apparatus for separation of stable isotope compound: American, 6202440[P]. 2001-03-20.
    [18] Ishikawa T, Okamura N, Ichikawa Y, et al. Design of cold box for oxygen-18 separation unit[J]. Taiyo Nippon Sanso Corp. Quarterly, 2004, 23: 26-30.
    [19] Kambe T, Kihara H, Hayashida S, et al., Development of oxygen-18 separation unit by oxygen distillation[J]. Taiyo Nippon Sanso Corp. Quarterly, 2004, 23: 20-25.
    [20] Kihara H, Kambe T, Hayashida S, et al. Development of oxygen-18 separation process by oxygen distillation[J]. Taiyo Nippon Sanso Corp. Quarterly, 2004, 23: 14-19.
    [21] Dulf E H, Dulf F, Festila C. Operational models of the cryogenic distillation column for (13c) isotope[C]. the Fifth Conference on Isotopic and Molecular Process, Romania: Cluj-Napoca, 2007.
    [22] Croitoru C, Pop F, Titescu G, et al. Studies concerning mass and heat transfer on b7 structured packing[J]. Nucl Technol Radiat, 2004, 2: 53-58.
    [23] Pop F, Piciorea I, Iliescu M, et al. Experimental plant for 18O separation by cryogenic oxygen distillation[G]. Annals of the University of Craiova, Electrical Engineering Series, 2006, 30: 399-403.
    [24] Croitoru C, Pop F, Titescu G. Mass and heat transfer on b7 structured packing in separation of hydrogen isotopes by distillation[C]. the Second Conference on Isotopic and Molecular Process, Romania: Cluj-Napoca, 2001.
    [25] Croitoru C, Pop F, Stefǎnescu I. Analysis of heavy water upgrading plant operation using simulation programs[C]. the 4th Conference on Isotopic and Molecular Process, Romania: Cluj-Napoca, 2005.
    [26] Zakrzewska T G. Analysis of cascade systems for oxygen isotopes separation[C]. the 5th Conference on Isotopic and Molecular Process, Romania: Cluj-Napoca, 2007.
    [27] Kim J H, Lee D H, Lee E S, et al. A comparison study between batch and continuous process simulation for the separation of carbon-13 isotope by cryogenic distillation[J]. Korean Chem Eng Res, 2007, 45(1): 57-66.
    [28] Hoffmann A, Ausner I, Repke J U, et al. Fluid dynamics in multiphase distillation processes in packed towers[J]. Comput Chem Eng, 2005, 29: 1433–1437.
    [29] Fard M H, Zivdar M, Rahimi R, et al. CFD simulation of mass transfer efficiency and pressure drop in a structured packed distillation column[J]. Chem Eng Technol, 2007, 30(7): 854–861.
    [30] Nobuaki E, Hiroshi K, Koichi A. Heat and mass transfer model approach to optimum design of cryogenic air separation plant by packed columns with structured packing[J]. Sep Purif Technol, 2002, 29: 141–151.
    [31] Sun Z M, Yu K T, Yuan X G, et. al. A modified model of computational mass transfer for distillation column[J]. Chem Eng Sci, 2007, 62: 1839-1850.
    [32] Carmen M R, Mihai C, Ion C, et al. Measurement and control system of the cryogenic process for tritium separation using SCXI1100[C]. Conference on Isotopic and Molecular Process, Romania: Cluj-Napoca, 1999.
    [33] Kaucsar M, Cosma V, Axente D, et al. Aspects regarding computer control of 15N separation plant[C]. the Second Conference on Isotopic and Molecular Process, Romania: Cluj-Napoca, 2001.
    [34] Dulf E H, Stegaru A, Buzdugan T. Monitoring and control system for (13c) isotope cryogenic separation column[C]. the Fifth Conference on Isotopic and Molecular Process, Romania: Cluj-Napoca, 2007.
    [35] Huber M, Meier W. Sulzer Columns for Vacuum Rectification and Mass Transfer[R]. Sulzer Technical Review, 1975, 1: 3-16.
    [36] Yu K L, Yuan X J, Dong G Q. Three-dimensional temperature distribution and local transfer coefficient of cooling in a packed column[C]. HTD, 1992, 197: 215-221.
    [37]张鹏.加压下规整填料塔内流体流动和传质特性的研究及其计算流体力学模拟[D].天津:天津大学,2002.
    [38] Hodson J S, Fletcher J R, Porter K E. Fluid mechanical studies of structured distillation packings[J]. Institution of Chemical Engineers Symposium Series on Distillation and absorption, 1997, 2(142): 999-1007.
    [39]陈强.喷射式并流填料塔板结构单元中流体力学行为和填料层内三维流场数值模拟的研究[D].天津:天津大学,1998.
    [40]王金戌.喷射式并流填料塔板上液相流场及其对精馏过程影响的研究[D].天津:天津大学,1998.
    [41] Petre C F, Larachi F, Iliuta I. Pressure drop through structured packings: Breakdown into the contributing mechanisms by CFD modeling[J]. Chem Eng Sci, 2003, 58(1): 163-177.
    [42] Larachi F, Petre C F, Iliuta I. Tailoring the pressure drop of structured packings through CFD simulations[J]. Chem Eng Process, 2003, 42(7): 535-541.
    [43] Van G C. Using computational fluid dynamics to calculate transversal dispersion in a structured packed bed[J]. Comput Chem Eng, 1998, 22(S1): 767-770.
    [44] Van Baten I M, Krishna R. Liquid-phase mass transfer within KATAPAK-SR○structures studied using computational fluid dynamics simulations[J]. Catal Today, 2001, 69(1/4): 371-377.
    [45] Van Baten I M, Krishna R. Radial and axial dispersion of the liquid phase within a KATAPAK-SR○structure: experiments vs CFD simulations[J]. Chem Eng Sci, 2001, 56(3): 813-821.
    [46] Van Baten I M, Krishna R. Gas and liquid phase mass transfer within KATAPAK-SR○structures studied using CFD simulations[J]. Chem Eng Sci, 2002, 57(9): 1531-1536.
    [47] Higler A P, Krishna R, Ellenberger J. Counter-current operation of a structured catalytically packed-bed reactor: Liquid phase mixing and mass transfer[J]. Chem Eng Sci, 1999, 54(21): 5145-5152.
    [48] Nusselt W. Die oberflaechenkondensateion des Wasserdampfes[J], Zeitschrift Vereines Detachers Ingenieure, 1916, 60: 54l-546, 569-575.
    [49] Kapitza P L. Wave flow of thin viscous liquid films[J]. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki,1948, 18: 3-18.
    [50] Benjamin T B. Wave formation in laminar flow down an inclined plane[J]. J Fluid Mech, 1957, 2(2): 554-574.
    [51] Yih C S. Stability of liquid flow down an inclined plane[J]. Phys Fluids, 1963, 6(3): 321-334.
    [52] Pierson F W, Whitaker S. Some theorefical and experimental observations of the wave structure of falling liquid films[J]. Ind Eng Chem Fundam, 1977, 16(4): 401-408.
    [53] Benney D J. Long waves on liquid films[J]. J Math Phys, 1966, 45(3): 150-155.
    [54] Nakaya C, Takaki R. Non-linear stability of liquid flow down an inclined plane[J]. J Phys Soc Jpn, l 967, 23(3): 638-645.
    [55] Nakaya C. Long waves on a thin fluid layer flowing down an inclined plane[J]. Phys Fluids, 1975, 18(11): 1407-1412.
    [56] Dukler A E. The role ofwaves in two-phase flow: some new understanding [J]. Chem Eng Edu, XI, 1977: 108-138.
    [57] Wasden F K, Dukler A E, Insights into the hydrodynamics of free falling wavy films[J]. AICHE J, 1989, 35(2): 187-195.
    [58] Wasden F K, Dukler A E. A Numerical study of mass transfer in free falling wavy films[J]. AICHE J, 1990, 36(9): 1379-1390.
    [59] Yu L Q, Wasden F K, Dukler A E. Nonlinear evolution of waves on falling films at high Reynolds numbers[J]. Phys Fluids, 1995, 7: 1889-1902.
    [60] Jayanti S, Hewitt G F, Hydrodynamics and heat transfer of wavy thin film flow[J]. Int J Heat Mass Tran, 1997, 40(1): 179-190.
    [61] Miyara A. Numerical simulation of wavy liquid film flowing down on a vertical wall and an inclined wall[J]. Int J Therm Sci, 2000, 39(9-11): 1015-1027.
    [62] Ueda L, Tanaka H. Measurements of velocity, temperature and veloeity fluctuation distributions in falling liquid films[J]. Int J Multiphas Flow, 1975, 2(3): 261-272.
    [63] Mudawar I, Houpt R. Measurement of mass and momentum transport in wavy-1aminar falling liquid films[J]. Int J Heat Mass Tran, 1993, 36(17): 4151-4162.
    [64] Charles H B, King C J. Gas-liquid mass transfer with a tangentially moving interface: Part 1, Theroy[J]. AICHE J, 1967, 13(4): 628-644.
    [65] Wang C Y. Liquid film flowing slowly down a wavy incline[J]. AIChE J, 1981, 27(3): 207-212.
    [66] Mickaily E S, Middleman S, Allen M. Viscous flow over periodic surfaces[J]. Chem Eng Commun, 1992, 117(1): 401.
    [67] Pozrikidis C. The flow of a liquid film along a periodic wall[J]. J Fluid Mech, 1988, 188: 275-300.
    [68] Zhao L, Cerro R L. Experimental Characterization of Viscous Film Flows over Complex Surfaces[J]. Int J Multiphas Flow, 1992, 18(4): 495-516.
    [69] Shetty S, Cerro R L. Flow of a Thin Film over a Periodic Surface[J]. Int J Multiphas Flow, 1993, 19(6): 1013-1027.
    [70] Shetty S, Cerro R L. Spreading of Liquid Point Sources over Inclined Solid Surfaces[J]. Ind Eng Chem Res, 1995, 34(11): 4078-4086.
    [71] Shetty S, Cerro R L. Fundamental Liquid Flow Correlations for the Computation of Design Parameters for Ordered Packings[J]. Ind Eng Chem Res, 1997, 36(3): 771-783.
    [72] Shetty S, Cerro R L. Spreading of a Liquid Point Sources over a Complex Surface[J]. Ind Eng Chem Res, 1998, 37(2): 626-635.
    [73] Negny S, Meyer M, Prevost M. Simulation of velocity fields in a falling film with a free interface flowing over a wavy surface[J]. Comput Chem Eng, 1998, 22(S1): S921-S924.
    [74] Hirt C W, Nichols B D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries[J]. J Comput Phys, 1981, 39(2): 201-206.
    [75] Ataki A, Bart H J. Experimental study of rivulet liquid flow on an inclinedplate[C]. International Conference on Distillation & Adsorption, Baden-Badenm, Gemany, 2002.
    [76] Brauner N, Maron M D. Characteristics of inclined thin films waviness and the associated mass transfor[J]. Int J Heat Mass Tran, 1982, 25(1): 99-109.
    [77] Onda K, Takeuch H, Okumoto Y. Mass transfer coefficients between gas and liquid phases in packed columns[J]. J Chem Eng Jpn, 1968, 1(1): 56.
    [78] Bravo J L, Fair J R. Generalized correlation for mass transfer in packed distillation columns[J]. Ind Eng Chem Process Des Dev, 1982, 21(1): 162.
    [79] Bravo J L, Rocha J A, Fair J R. Mass transfer in gauze packings[J]. Hydrocarbon Procss, 1985, 64(1): 91.
    [80] Bravo J L, Rocha J A, Fair J R. A comprehensive model for the performance of columns containing structured packings[J]. Inst Chem Eng Symp Ser, 1992, 128: A489.
    [81] Rocha J A, Bravo J L, Fair J R. Distillation columns containing structured packings: A comprehensive model for their performance 1: Hydraulic models[J]. Ind Eng Chem Res, 1993, 32(4): 641.
    [82] Rocha J A, Bravo J L, Fair J R. Distillation Columns Containing Structured Pacings: A Comprehensive Model for Their Performance 2: Mass-Transfer Model[J]. Ind Eng Chem Res, 1996, 35(5): 1660-1667.
    [83] Oluji? ?, Kamerbeek A B, Graauw J. A Corrugation Geometry Based Model for Efficiency of Structured Distillation Packing[J]. Chem Eng Process, 1999, 38(4-6): 638-695.
    [84] Fair J R, Seibert A F, Behrens M. Structured packing performance- experimental evaluation of two predictive models[J]. Ind Eng Chem Res, 2000, 39(6): 1788.
    [85] Bellit R.填料塔分析与设计[M].徐维勤,译.北京:化学工业出版社,1993.
    [86] Billet R. Packed towers, Weinheim: VCH, 1995.
    [87] Billet R, Schultes. Prediction of mass transfer columns with dumped and arranged packings: updated summary of the calculation method of Billet and Schultes[J]. Trans AIChE, 1999, 77(6): 498-504.
    [88]喻冬秀,程江,杨卓如.填料塔的理论研究[J].石油化工设备,2003,32(4):46-50.
    [89] Nawrocki P A, Xu Z P, Chuang K T, Mass transfer in structured corrugated packing[J]. Can J Chem Eng,1991,69(12): 1336-1343.
    [90] Adisorn A, Paitoon T. Mechanistic model for prediction of structured packing mass transfer performance in CO2 absorption with chemical reactions[J].Chem Eng Sci, 2000, 55(18): 3651-3663.
    [91] Adisorn A, Amit C, Paitoon L, Mathematical modeling of mass-transfer and hydrodynamics in CO2 absorbers packed with structured ackings[J]. Chem Eng Sci, 2003, 58(17): 4037-4053.
    [92] Nandakumar K, Shu Y, Chuang K T. Predicting geometrical properties ofrandom packed beds from computer simulation[J]. AICHE J, 1999, 45(11): 2286.
    [93] Wen X, Shu Y, Nandakumar K. Predicting liquid flow profile in randomly packed beds from computer simulation[J]. AICHE J, 2001, 47(8): 1770.
    [94] Wen X, Shu Y, Nandakumar K. Generalized approach to pressure drop predictions in packed beds based on detailed geometry of the packing[J]. J Inst Eng Singapore, 2003, 43: 6-13.
    [95] Szulczewska B, Zbicinski I, Gorak A. Liquid flow on structured packing: CFD simulation and experimental study[J]. Chem Eng Technol, 2003, 26(5): 580-584.
    [96] Yin F H, Sun C G, Afacan A. CFD modeling of mass-transfer processes in randomly packed distillation columns[J]. Ind Eng Chem Res, 2000, 39(5): 1369-1380.
    [97]邓修,吴俊生.化工分离工程[M].北京:科学出版社,2002: 41-42.
    [98]李虎林,李良君,陈仙送,等. CO低温精馏法分离稳定性同位素中原料气的净化工艺:中国, 200510030036.5[P]. 2007-04-04.
    [99]李虎林,袁家均,李良君,等.一种同位素低温精馏装置:中国,201010196785.6[P]. 2010-09-15.
    [100]李虎林,袁家均,许保云,等.一种锯齿形波纹填料及其应用:中国,201010610058.X[P]. 2011-04-13.
    [101] Henry Z, Kister. distillation design[M]. New York: McGraw-Hill, 1992: 445.
    [102] Sherwood T K, Shipley G H, Holloway F A L. Flooding velocities in packed columns[J]. Ind Eng Chem, 1938, 30(7): 765-769.
    [103] Li H L, Ju Y L, Li L J, et al. Separation of isotope ~(13)C using high-performance structured packing[J]. Chem Eng Process, 2010, 49(3): 255-261.
    [104] Martin Z, Stoffaustausch in der Sulzer-Gewebepackung[J]. Chem lng Tech, 1973, 45(2): 67-74.
    [105] Billet R. Packed towers in processing and environmental technology[M]. Weinheim: VCH, 1995: 78-79.
    [106]陈大昌,卢励生.不锈钢网波填料塔水精馏扩试[R].上海:上海化工研究院, 1979.
    [107]钟授富.丝网波纹填料用于氨精馏研究[R].上海:上海化工研究院,1980.
    [108]姜永悦.水精馏法生产氧-18稳定同位素专用填料研究[D].上海:上海化工研究院,2004.
    [109]袁维新.化学交换法生产稳定同位素氮-15三塔级联技术的研究[R].上海:上海化工研究院,2005.
    [110]李虎林,李良君,李思宁,等.低温精馏分离稳定同位素碳-13——回顾与展望[J].低温与特气,2008, 6: 9-15.
    [111]李虎林,巨永林,李良君,等.低温精馏分离稳定同位素~(13)C模拟优化研究[J].原子能科学技术,2009, 43(S1): 54-58.
    [112] Johns T F. Vapor pressure ratio of C12O16 and C13O16[G]. Proc Phys Soc, 1953, 66: 808-809.
    [113] Johns T F. Vapor-pressure differences between some of the isotopic species of carbon monoxide, methane, and oxygen, GP/R-2166[R]. Gt.Brit: Atomic Energy Research Establishment, 1957: 53.
    [114] Din F. Summarized proceedings of a meeting on low temperature distillation[J]. J Appl Phys, 1957, 8(11): 436-441.
    [115]化学工业部第四设计院.深冷手册[M].北京:化学工业出版社,1973: 29-30.
    [116]吉林化学工业公司设计院.化工工艺算图,第二册物性数据计算[M].北京:化学工业出版社,1979: 122-123.
    [117]李思宁.低温精馏分离稳定同位素~(13)C的模拟研究[D].上海:上海化工研究院, 2009: 34-37.
    [118] Li H L, Ju Y L, Li L J, et al. Research on the mass production of ~(13)C[J]. Jlabelled compd radiopharm, 2010, 53(5-6): 342-245.
    [119]王树楹.现代填料塔技术指南[M].北京:中国石化出版社,1998: 324-328.
    [120]袁家均,李虎林,许保云,等. ~(13)C同位素低温精馏过程动态模拟[J].同位素,2010, 23(4): 197-201.
    [121]许保云,李虎林,袁家均,等.轻同位素分离级联系统的简捷设计[J].同位素, 2010, 23(4): 193-196.
    [122]李虎林,李良君,杜晓宁,等.采用CO低温精馏分离稳定同位素的工艺及装置:中国,200910197588.3[P]. 2007-05-16.
    [123] Li Hulin, Ju Yonglin, Yuan Jiajun, et al. Computer simulation methods in isotopes production[C]. 17th workshop on the synthesis and applications of isotopes and isotopically labelled compounds, Bad Soden: IIS-CED, 2010.
    [124] Li Hulin, Ju Yonglin, Yuan Jiajun, et al. Computer simulation in the engineering of ~(13)C separation[C].第二届全国同位素制备及应用研讨会,重庆:中国核学会同位素分会,2010:38-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700