用户名: 密码: 验证码:
熔融结晶法制备高纯磷酸过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高纯磷酸作为高端的电子化学品,在国内外电子工业中有着广泛的应用。为了制备高品质的高纯磷酸产品,本论文对高纯磷酸的熔融结晶制备技术进行了系统工程的研究,开发出了液膜结晶和静态多级熔融结晶两种制备高纯磷酸的结晶技术,已制备出符合国际标准的高纯磷酸产品。
     本研究中,精确测定了高纯磷酸的基础物性数据,包括常见浓度和温度下的密度与黏度、不同浓度和温度下磷酸晶层的导热系数、理想逐步冻凝状态下磷酸主要杂质组分在晶层和液相中的分配系数,为结晶过程数学模型的建立提供了基础数据。
     分别应用间隙体积法和直接测量法,测定了液膜结晶和静态熔融结晶中的磷酸晶层生长过程和发汗过程的宏观动力学数据。按照粒度无关生长模型建立了晶层生长动力学方程;以温度梯度为推动力建立了发汗过程的动力学方程,同时引入晶层结构参数,对发汗过程的阻力因素进行了深入分析,完善了发汗过程的动力学理论。
     在前人研究工作的基础上,采用热量衡算、边界层传质理论和相平衡,分别建立了液膜结晶动态过程和静态熔融结晶过程的数学模型,取得了良好的拟合结果。在此基础上提出了加晶种温度、原料初始浓度、喷淋密度、降温速率、降温终点温度、发汗终点温度作为关键工艺参数。
     对于熔融结晶过程中研究较少又极为重要的排液过程,创新性地引入分形多孔介质理论,建立了适用于熔融结晶晶层体系的数学模型,取得了很好的拟合结果,得到了晶层的结构和特性参数以及过程的优化参数,该模型还可用于其他物系熔融结晶过程的晶层结构和特性分析。
     在高纯磷酸结晶过程研究、模型建立和模拟等上述研究基础上,分别对液膜结晶和静态熔融结晶的工艺进行了深入的实验研究。实验考察了各种操作工艺参数对产率和分离效果的影响,提出了液膜结晶工艺方案。针对静态熔融结晶中晶层细晶较多,杂质包藏随结晶塔长度而增加的问题,开发了静态多级熔融结晶工艺。该工艺可以有效地消除细晶,提高静态熔融结晶过程的分离效率,从而获得高质量的高纯磷酸产品。
     最后,对液膜结晶和静态多级熔融结晶两种结晶模式关于生产能力和分离效果进行工业化应用的初步技术经济指标分析,最终提出了两种结晶模式联合操作的优化工艺方案,具有工业化应用前景,可以有效地提高了过程的分离效率,产率及整体生产能力。所开发工艺路线达到了废液零排放,能耗低,为绿色环境友好型工艺,具有较大的产业化意义。该技术亦可推广应用于其他熔融结晶制备高纯晶体产品的过程中。
     以上有关研究内容尚未见文献报道。
Hyperpure phosphoric acid, which belongs to high end electronic chemical, has an immense demand in electronic industry and wide market prospect. In order to prepare high quality hyperpure phosphoric acid product, the system engineering investigation on melt crystallization preparing hyperpure phosphoric acid has been performed. By means of two different new crystallization technology-liquid film crystallization (LFC) and static multistage melt crystallization (SMC)-the hyperpure phosphoric acid product, which comes up to the multiplex international standards, has been successfully prepared.
     In this work, the density and viscosity of hyperpure phosphoric acid under common temperatures and concentrations had been accurately measured. The heat conductivity coefficient of phosphoric acid crystal layer under different temperatures and initial concentrations were also measured. In addition, the distribution coefficient of main ion impurities between crystal layer and liquid phase were determined, all these data have built a foundation for mathematical model.
    
     The macroscopic crystal layer growth and sweating kinetic data of LFC and SMC have been determined by intermittent volume method and direct measurement method, respectively. The crystal later growth kinetic equations were established with size-independent growth rate model; the sweating kinetic equations were established with the temperature gradient as driving force. In addition, we analyzed the resistance factors during sweating process and completed the sweating kinetics theory by introducing the paratmeters of layer structure.
     On the basis of predecessors’work, the liquid film crystallization dynamic model and static melt crystallization model have been established by heat balance calculation, boundary layer mass transfer theory and phase equilibrium. The models obtained good fitting results on two melt crystallization modes. We selected the seed ing temperature, material initial concentration, sprinkle density, cooling rate, cooling endpoint temperature and sweating endpoint temperature as the key technological parameters.
     On the seeping, which is distinctly important in melt crystallization research, the mathematical model which applied to melt crystallization crystal layer system had been established and a good fitting result had been obtained by introducing fractal porous media theory; the structure and characteristic parameters of crystal layer can also be obtained from the model. This mathematical model can be applied to the analysis of crystal layer structure and characteristic in other melt crystallization cases.
     Based on the above investigation of hyperpure phosphoric acid crystallization process, model establishment and simulation, crystallization and sweating kinetic researches, we had in-depth studied the LFC and SMC technology. The effects of operation conditions on the crystallization process and separation effect were investigated in detail by both experiments and model simulation, and the optimal operation strategy of LFC was established. In order to solve the problem of too much fine crystal in crystal layer and impurities parceled increasing with length, the static multi-step melt crystallization technology was developed. The hyperpure phosphoric acid can be obtained by this technology for the fine crystal had been effectively eliminated.
     On the basis of above research, we compared LFC and SMC on production capacity and separation efficiency with the method of elementary technical and economic index analysis. As a conclusion, we proposed the combining operation technology of two crystallization modes and optimized process scheme, which effectively increased the separation efficiency, yield and production capacity. In addition, this technology has achieved the zero release of liquid waste and low energy consumption, which believe to be a green-environment friendly technology. This combining melt crystallization technology has important significance for industrialization and can also be spread and applied to other hyperpure crystal product preparation with melt crystallization method, too.
     No same report to above study results have been published in literature up to date.
引文
[1]赵海燕,李德高,高纯电子化学品技术研发现状及必须解决的基本问题,云南化工,2009,36(5) :27~31
    [2]刘飞,李天祥,解田,李白玉,高纯磷酸生产工艺及展望,磷肥与复盐,2009,24(2) :19~20
    [3]欧阳贻德,唐正娇,王存文,王卫国,陈文利,磷酸的制备与研究进展,现代化工,2009,29(3):22~26.
    [4] Masatomi T, Hikita S, Kijima S, Manufacture of high-purity phosphoricacid, Japanese Patent, JP3043741, 2000
    [5]梅毅,杨亚斌,马航等,一种用黄磷直接制取电子级磷酸的方法,中国专利,CN101531353A,2009
    [6]石川贤一,横井敬三,竹内宏介等,高纯度磷酸及其制备方法,中国专利,CN1717366,2006
    [7]殷宪国,电子级磷酸制备中杂质的吸附与膜分离技术进展,硫磷设计与粉体工程,2010,5:11~14
    [8]党乐平,磷酸结晶过程及湿法磷酸净化工艺研究:[博士学位论文],天津大学化学工程,2007
    [9]卫宏远,党乐平,结晶法净化湿法磷酸的方法,中国专利,1730385A,2006
    [10]李天祥,解田,刘飞等,一种电子级磷酸的生产方法,中国专利,1850590A,2006
    [11] Yamazaki Y, Tabei S, Negishi K, Manufacture of high-purity phoephorie acid, Japanese Patent, JP03193614, 1991
    [12] Yamazaki Y, Sara K, Mumnmtml N, Preparation on fhigh-purity phosphoric acid, Japanese Patent, JP03237009, 1991
    [13]崛田清史,久保田冬彦, HOTTA Kiyoshi, KUBOTA Fuyuhiko, Method for Purification of Phosphoric Acid and Ployphosphoric Acid, World Patent, WO00/40507.
    [14]朱健,熔融结晶法制备电子级磷酸的方法,中国专利,CN1843900A,2006
    [15]梁雪松,梅毅,杨亚斌等,一种流动层析结晶法制备高纯磷酸的方法,中国专利,CN101759167,2010
    [16] Perry R H, Green D W, Perry's Chemical Engineers' Handbook (7th Edition), New York: McGraw-Hill, 1997, 22~23
    [17]王静康,化学工程手册,北京:化学工业出版社,10-36~10-49
    [18] Ulrich J, et. al, Solid layer melt crystallization, Separation and Purification Methods, 1996, 25(1): 1~ 45
    [19]王静康,张远谋,熔融结晶过程新进展,化工进展,1991,1:35~40
    [20]朱政,熔融结晶法提纯β-甲基萘研究,[硕士学位论文],化学工程,2007
    [21]刘海岛,尹秋响,熔融结晶及其耦合技术研究的进展,化学工业与工程,2004,21(5):367~371
    [22] Bear J, Dynamics of fluids in porous media, Elsevier, NewYork, 1972
    [23]刘伟,范爱武,黄晓明,多孔介质传热与传质理论与应用,科学出版社,北京,2006
    [24]吴金随,孔介质里流多动阻力分析,[硕士学位论文],凝聚态物理,2006
    [25]谢和平,薛秀谦,分形应用中的数学基础与方法,科学出版社,北京,1997
    [26] Falconer K J, The hausdorff dimension of self-affine fractals, Mathematical Proceedings of the Cambridge Philosophical Society, 1998, 103: 339~350
    [27]李栔,朱金兆,朱清科,分形维数的计算方法研究进展,北京林业大学学报,2002,24(2):71~78
    [28] Falconer K J, Techniques in fractal geometry, Chichester: John Wiley&Sons, 1997
    [29]张济忠,分形,清华大学出版社,北京,1995
    [30]孙洪军,赵丽红,分形理论的产生及其应用,辽宁工学院学报,2005,2(2):113~117
    [31] Mandelbrot B B, Fractal:Form, Chance and dimension, San Francisco: Freeman, 1977
    [32] Mandelbrot B B, The fractal geometry of nature, New York: Freeman, 1982
    [33]李世愚,陈运泰,分形断层的隧道效应和平面内剪切断层的跨S波速破裂,地震学报,1993,15(1):9~14
    [34]龙期威,金属中的分形与复杂性,上海科学技术出版社,1999
    [35]王域辉,廖淑华,分形与石油,北京:石油工业出版社, 1994
    [36] Yu B M, Li J H, Some fractal characters of porous media, Fractals, 2001, 9(3): 365
    [37] Yu B M, Cheng P, Fractal models for the effective thermal conductivity of bi-dispersed porous media, Journal of Physics and Heat Transfer, 2002, 16(1): 22
    [38] Yu B M, Cheng P, A fractal model for permeability of bi-dispersed porous media, International Journal of Heat and Mass Transfer, 2002, 45(14): 2983
    [39] Zhang B, Yu B M, Wang H X, Yun M J, A fractal analysis of permeability for power-law fluids in porous media, Fractals, 2006, 14(3): 171
    [40] Cai J C, Yu B M, Zou M Q, Mei M F, Fractal analysis of invasion depth of extraneous fluids in porous media, Chemical Engineering Science, 2010, 65, 5178
    [41] Yu B M, Fractal character for tortuous streamtubes in Porous Media, Chinese Physics Letters,2005, 22(1): 158
    [42] Shou D H, Fan J T, Ding F, A difference-fractal model for the permeability of ?brous porous media, Physics Letters A, 2010, 374: 1201
    [43] Zhu F L, Cui S Z, Gu B H, Fractal analysis for effective thermal conductivity of random ?brous porous materials, Physics Letters A, 2010, 374: 4411
    [44] Yu B M, Li J H, A geometry model for tortuosity of flow path in porous media, Chinese Physics Letters, 2004, 21(8): 1569
    [45] Nelio H, Juan C B, Wagner F S, A three-parameter Kozeny–Carman generalized equation for fractal porous media, Chemical Engineering Science, 2010, 65, 4432~4442
    [46]殷宪国,电子级磷酸工业化战略及其配套技术,硫磷设计与粉体工程,2010,2:15~19
    [47]黄美英,方荣美,李军,梁克中,二甲苯在倾斜晶析塔内纯化过程,重庆大学学报,2008,31(2):212~215
    [48]孙绪江,张军,齐彦伟,符强,降膜结晶法精制对苯二甲酸二甲酯的研究,化学工业与工程,2001,18(1):13~19
    [49]叶青,裘兆蓉,钟秦,精馏-降膜结晶耦合工艺的研究,天然气化工,2006,3:38~41
    [50]甘李军,丁小川,用降膜分步结晶法生产精萘,燃料与化工,2002,33(4):209~211
    [51]林韬,张卫江,肖梦然,韩莉果,付高辉,熔融结晶分离提纯对间硝基氯苯的研究,天津大学学报,2007,40(4):444~448
    [52]贾春燕,尹秋响,王静康等,利用熔融结晶法制取精芴的工艺研究,化工学报,2007,58(9):2266~2269
    [53]张建文,张政,秦霁光,降膜结晶分离技术实验研究,化工冶金,1999,20(1):17~24
    [54]王静康,张元谋,杨志勇,薛履中,王玉德等,具有填料塔板的塔式液膜结晶装置,中国专利,89204218.4,1990
    [55] Gilbert S W, Melt crystallization: process analysis and optimization, AIChE Journal, 1991, 37(8): 1205 ~1218
    [56]田红兵,陈树章,李振花,间歇多级分步结晶过程模拟,化工学报,1993,44 (6):732~738
    [57]张建文,张政,降膜结晶分离过程的数值模拟,清华大学学报,2000,40(12):82~85
    [58]陈彦泽,丁信伟,周一卉,自由降膜传热传质数值模拟技术应用进展,化工科技,2003, 11(4):53~57
    [59] Radhakrishnan K B, Balakrishnan A R, Kinetics of Melt crystallization in falling films, Chemical Engineering Communications, 1999, 171(1): 29~53
    [60]叶青,裘兆蓉,钟秦,降膜熔融结晶过程的数值模拟,化学工程,2006,34(9):17~20
    [61]张政,张建文,工程热物理学报,1996,17(4):193 ~197
    [62] Zhang Z, Zhang J W, Wang B X, Heat Trans fer Science and Technology, Beijing: HigherEducation Press, 1996, 744 ~752
    [63]张建文,张政,降膜结晶分离过程热、质及动量传递的数值模拟(Ⅰ)分区域统一模型,化工学报,2001,52(7):580~586
    [64]张建文,张政,降膜结晶分离过程热、质及动量传递的数值模拟(II)模拟计算,化工学报,2001,52(7):587~592
    [65] Fukui K, Maeda K, Direct numerical simulation of solid-layer crystallization from binary melt, Journal of Crystal Growth, 2002, 235: 633~639
    [66] Myasnikov S K, Melt entrapment and the effective distribution coefficient during the growth of a crystal layer, Theoretical Foundations of Chemical Engineering, 2003, 37(1): 45~50
    [67] Myasnikov S K, Transport of impurities out of a two-phase crystal layer into a melt under the effect of a temperature gradient: mechanisms and kinetics, theoretical foundations of chemical engineering, 2003, 37(2): 137~143
    [68] Taran T A, Nosov G A, Myasnikov S K, Yu A, Kholin, kinetics of crystallization of binary melts of eutectic-forming substances, Theoretical Foundations of Chemical Engineering, 2004, 38(2): 164~168
    [69] Myasnikov S K, Uteshinsky A D, Melt entrapment duringgrowth of crystal layer with nonplanar interface and diffusive transport of captured impurities out of layer pores, Journal of Crystal Growth, 2005, 275: e39~e45
    [70] Wangnick K, Ulrich J, A model for the calculation of the purification efficiency of a solid layer melt crystallization process, Crystal Research and Technology, 1994, 29(3): 349~356
    [71] Scholz R, Wangnik K, Ulrich J, On the distribution and movement of impurities in crystalline layers in melt crystallization processes, Journal of Physics D, 1993, 26(8B): B156~ B161
    [72] Wangnick K, Ulrich J, A model for the calculation of the purification efficiency of a solid layer melt crystallization process, Crystal Research and Technology, 1994, 29(3): 349~356
    [73] Henning S, Ulrich J, Description of the migration of liquid inclsions in growing crystalline layers, Transactions of the IchemE, 1997, 75(Part A): 233~236
    [74] Guardani R, Neiro S M S, Bulau H, Ulrich J, Experimental comparison and simulation of static and dynamic solid layer melt crystallization, Chemical Engineering Science, 2001, 56: 2371~2379
    [75] Sklyarenko S I, Smirnov I V, Conductivity, viscosity and density of aqueous solutions of orthophosphoric acid, Zhurnal Fizicheskoi Khimii, 1951, 25: 24~28
    [76] MacDonald D I, Boyack J R, Density, electrical conductivity, and vapor pressure of concentrated phosphoric acid, Journal of Chemical and Engineering Data, 1969, 14: 380~384
    [77] Edwards O W, Huffman E O, Viscosity of aqueous solutions of phosphoric acid at 25℃,Chemical Engineering Data Service, 1958, 3: 145
    [78]程能林,胡素文,溶剂手册,第三版,北京:化学工业出版社,2002
    [79]刘光启,马连湘,刘杰,化学化工物性数据手册,第一版,北京:化学工业出版社,2002
    [80] Cate W E, Deming M E, Effect of impurities on density and viscosity of simulated wet-process phosphoric acid, Journal of Chemical and Engineering Data, 1970, 15: 290~295
    [81] Zheng D S, Li J, Zhou K, Luo J H, and Jin Y, Density and viscosity of tributyl phosphate + kerosene + phosphoric acid from (20 to 60)°C, Journal of Chemical and Engineering Data, 2010, 55: 58~61
    [82] Micael G B, Alejandro E B, and Gustavo A I S, Density and viscosity of aqueous solutions of 1,3-Dimethylurea from (288.15 to 333.15) K, Journal of Chemical and Engineering Data, 2010, 55: 989~991
    [83] Turnbull A G, Thermal conductivity of phosphoric acid, Journal of Chemical and Engineering Data, 1965, 10: 118~119
    [84] Basil B L, Zachary T W, Thermal conductivity of phosphoric acid. Journal of Chemical and Engineering Data, 1969, 14: 254~256
    [85] Turnbull A G, Thermal conductivity of phosphoric acid-water mixtures at 25℃, Journal of Chemical and Engineering Data, 1971, 16: 79~83
    [86] Savino J M, Siegel R, An analytical solution for solidification of a moving warm liquid onto an isothermal cold wall, International journal of heat and mass transfer, 1969, 12(7): 803~809
    [87] Wu J S, Yin S X, A micro-mechanism model for porous media, Communications in Theoretical Physics, 2009, 52: 936~940
    [88]龚俊波,6APA制备及反应结晶过程研究,[博士学位论文],天津:天津大学化工学院,2001
    [89] Kasymbekor B A, Myasinkov S K, Malyusov V A, Theoretical foundations of fractional crystallization from outflowing liquid flim, teoreticheskie osnovy khimicheskii tekhnologi, 1984, 18(6): 749~760
    [90] Matsuoka M, Garside J, Non-isothermal effectiveness factors and the role of heat transfer in crystal growth from solutions and melts, Chemical Engineering Science, 1991, 46(1): 183~192
    [91]江建军,液膜结晶过程的研究,[硕士学位论文],天津,天津大学,1988
    [92]郑建平,液膜结晶过程模拟与优化的研究,[硕士学位论文],天津,天津大学,1991
    [93] Shih Y P, Tsay S Y, Analytical solutions for freezing a saturated liquid inside or outside cylinders, Chemical Engineering Science, 1971, 26(3): 809~816
    [94] Tao L C, Generalized numerical solutions of freezing a saturated liquid in cylinders andspheres, AIChE Journal, 1967, 13(1): 165~169
    [95] Tao L C, Generalized solution of freezing a saturated liquid in a convex container, AIChE Journal, 1968, 14(5): 720~721
    [96] Longwell P A, A graphical method for solution of freezing problems, AIChE Journal, 1958, 4(1): 53~57
    [97] Savino J M, Siegel R, An analytical solution for solidification of a moving warm liquid onto an isothermal cold wall, International Journal of Heat and Mass Transfer, 1969, 12(7): 803~809
    [98] Guardani R, Belline A, Application of mathematical modeling in a two-component layer crystallization process, Chemical Engineering and Technology, 1997, 20 (7): 495~501
    [99] Guardani R et. al., Experimental comparison and simulation of static and dynamic solid layer melt crystallization, Chemical Engineering Science, 2001, 56 (7): 2371~2380
    [100]卢咏琰,TDI熔融结晶过程研究,硕士,天津大学,2006
    [101] Dang L P, Wei H Y, Zhu Z, Wang J K, The influence of impurities on phosphoric acid hemihydrate crystallization, Journal of Crystal Growth, 2007, 6: 15
    [102] Dang L P, Wei H Y, Wang J K, Effects of ionic impurities on crystal growth and morphology of phosphoric acid hemihydrate during batch crystallization, Industrial and Engineering Chemistry Research. 2007, 46(10): 3341~3347
    [103] Ulrich J, et. al., Solid layer melt crystallization, Separation and Purification Methods, 1996, 25(1): 1~45
    [104] Saeman W C.Crystal-size distributions in mixed suspensions, AIChE Journal, 1956, 2: 107~112
    [105] Randolph A D, Larson M A, Theory of Particulate Processes, New York: Academic Press, 1971
    [106] Juzaszek P, Larson M A, Influence of fines dissolving on crystal size distribution in a MSMPR crystallizer, AIChE Journal, 1977, 23: 460~468
    [107] Jones A C, Hianese A, Mullin J W, Effect of fines destruction on batch cooling crystallization of potassium sulphate, Industrial Crystallization, 1984
    [108] Jones A G, Chianese A, Fines destruction during batch crystallization, Chemical Engineering Communications, 1987, 62: 5~16
    [109] Zipp G L, Randolph A D, Selective fines destruction in batch crystallization, Industrial and Engineering Chemistry Research, 1989, 28: 1446~1448
    [110]丁绪淮,工业结晶,第一版,北京:化学工业出版社,1985
    [111] Mandelbrot B B, The fractal geometry of nature, New York: Freeman, 1982
    [112] Feder J, Fractals, New York: Plenum Press, 1988
    [113] Yu B M,Comments on―rFactal fragmentation, soil porosity, and soil waterproperties: I. Theory‖, Soil Sci. Soc. Am. 2007, 71: 632~639
    [114] Yu B M, Fractal character for tortuous streamtubes in Porous, Media. Chinese Physics Letters, 2005, 22(1): 158~160
    [115] Yu B M, Cai J C, Zou M Q, On the physical properties of apparent two-phase fractal porous media, Vadose Zone J. 2009, 8(1): 177~186
    [116]员美娟,多孔介质中流体的若干流动特性研究,博士,凝聚态物理,2008
    [117]程能林,胡素文,溶剂手册,第三版,北京:化学工业出版社,2002
    [118] William H R, Russell M J, The solubility and freezing-point curves of hydrated and anhydrous orthophosphoric acid, Journal of the American Chemical Society, 1925, 47: 2165~2170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700