用户名: 密码: 验证码:
基于腔调谐正交偏振光回馈理论及稳频回馈位移测量系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交偏振双频激光回馈现象蕴含丰富的激光物理内容。将其用于位移测量是应用推广的基本技术。且回馈位移测量系统具有成本低、精度高等优点。但目前缺乏系统有效的理论来解释正交偏振双频激光回馈的物理机制,回馈位移测量系统也还未考虑稳频来保证测量精度。本文系统的研究了正交偏振双频氦氖激光器光回馈现象的机理,提出了在光回馈存在的情况下稳定激光器频率的方法,并研制了稳频的回馈位移测量系统。
     论文主要内容与研究成果有:(1)建立基于腔调谐的正交偏振光回馈理论模型,该模型在Lamb半经典气体激光器理论基础上,考虑矢量化和双频输出的扩展;利用三腔镜F-P腔的分析方法,将激光回馈效应耦合到谐振腔内研究;采用多光束干涉的叠加方法处理不同回馈水平。模型解释了频率分裂氦氖激光回馈中发现的光强分叉和等光强点处的“驼背”新现象。(2)理论和实验研究了激光回馈效应对激光器增益特性的影响,发现:回馈光对激光谐振腔的调制导致①净增益曲线在无光回馈的高斯型增益曲线基础上叠加周期性的尖峰,该尖峰的带宽由外腔和内腔长的比例决定;②净增益曲线被展宽,氦氖激光器出光带宽变大;③净增益系数值增大,光强调制深度变大。这些是产生频率分裂氦氖激光回馈新现象的物理机制。(3)研究了影响回馈条纹形态的主要因素,发现回馈条纹的幅值随回馈镜反射率的增大而增大,对同一反射率,回馈腔长越长,幅值越大;回馈条纹的相位延迟量由两正交偏振频率间的频差和回馈腔长共同决定,理论分析与实验结果吻合。(4)提出峰值检测和均值比较两种动态稳频的方案,并与静态等光强点稳频方法相结合,给出了回馈位移测量系统的稳频方案,使系统在大范围和非实验室环境下可稳定快速准确的工作。该研究具有实用意义。(5)基于以上研究成果,研制成稳频的回馈位移测量系统,并与Aglient5529A双频激光干涉仪进行了比对。系统指标为:量程100mm,最小测量单位79.106291nm,测量速度范围36μm/s~3cm/s,全程测量标准差小于0.4μm,线性度误差7×10~(-6)左右,动态频率稳定度优于10?7。该系统抗干扰能力强、结构简单、使用方便、非接触式测量,具有良好的应用前景。
The optical feedback effects in orthogonal polarized lasers contain plenty of knowledge of laser physics. Their applications in displacement measurement are the basic technology of metrology field and have the advantage of low cost and high accuracy. However, there is lack of systemic and effective theories to explain the physical principle behind the novel phenomena of optical feedback effects in orthogonal polarized lasers. The frequency stabilization of displacement measuring system is not considered to ensure the measurement accuracy. In this dissertation, the principle on optical feedback effects in orthogonal polarized lasers is systematically studied, the method of stabilized lasers’output frequency when optical feedback effect exists is proposed, and a set of displacement measuring system is developed.
     Main research contents and achievements include: (1) An orthogonal polarized laser feedback theory model based on cavity tuning is created. Lamb’s semi-classical theory’s vectorial and dual-frequency output extension are introduced to describe the orthogonal polarized characters of the laser. The feedback effects are coupled into the inner-cavity of the laser using F-P cavity theory. The multi-beam interference idea is used for different feedback level. This orthogonal polarized laser feedback theory model can explain phenomena, such as the intensity branches and obvious humpback on the opposite side of the two orthogonal polarized frequencies’curves appears, in frequency splitting laser with optical feedback effects. (2) Optical feedback’s effect on lasers’net gain characters is studied theoretically and experimentally. It is discovered that the feedback beam’s modulation on lasers’inner-cavity results in①Periodic waves superpose on Gauss-shape net gain curve of lasers without optical feedback, and the period of these waves are determinate by the proportion between the inner-cavity length and external cavity length.②The net gain curve is broadened which enlarges the bandwidth of lasers output light.③The values of lasers’net gain are increased and bring big modulated depth of lasers intensities. These are physical principles behind the novel phenomena of optical feedback effects in frequency splitting lasers. (3) The main factors that impact the form of feedback fringes are studied. The amplitude of feedback fringes increases as the reflectivity of feedback mirror increasing. For the same reflectivity, the longer the external cavity length is, the greater the amplitude will be. The phase delay between the two orthogonal polarized frequencies is determinate by the frequency difference and external cavity length. The experimental results are in good agreement with theoretical analysis. (4) Two proposals are brought up to stabilize the lasers’frequencies dynamically with feedback effects, peak value detection and mean value comparation. Combined with the static frequency stabilization technology, the final method of feedback displacement measuring system’s frequency stabilization is presented. Then the system can work quickly and accurately in the large-scale and non-laboratory environment. These results have practical significance. (5) Frequency stabilized displacement measuring system with feedback effects is developed. Calibrated with the Aglient5529A interferometer, the specifications of the system are: range is 100mm, the measurement unit is 79.106291nm, measuring speed is 36μm/s~3cm/s , standard deviation of the whole range is < 0.4μm, linearity error is around 7×10~(-6) and dynamic frequency stability is better than 10?7 . This system has strong anti-disturbance ability and simple structure, be easy to use and non-contact measurement, which can bring a good application prospect.
引文
[1] Masahiko F, Keichi K and Roy L. Low frequency intensity fluctuation in laser diode with external optical feedback. Appl. Phys. Lett., 1981, 125: 217-220.
    [2] Lenstra D, Van V M and Jaskorzynska B. On the theory of a single-mode laser with weak optical feedback. Physica. C., 1984, 125: 255-264.
    [3] Jentink H W, Mul F F, Suichies H E, et al. Small laser Doppler velocimeter based on the self-mixing in a diode laser. Appl. Opt., 1988, 27: 379-385.
    [4] Wang W M, Boyle W J O and Grattan K T V. Self-mixing interference in a diode laser: experimental observations and theoretical analysis. Appl. Opt., 1993, 32: 1551-1558.
    [5] Peter J D and Gregg M G. Backscatter-modulated Doppler velocimeter. Appl. Opt., 1984, 23: 2097-2104.
    [6] Churnside J H. Signal-to-noise in a backscatter-modulated Doppler velocimeter. Appl. Opt., 1984, 23: 61-65.
    [7] Wang M and Lai G. A self-mixing interferometer using an external dual cavity. Meas. sci, technol, 2003, 14: 1025-1031.
    [8] Norgia M and Donati S. A displacement-measuring instrument utilizing self-mixing interferometry. IEEE T. Instrum. Meas., 2003, 52(6): 1765-1770.
    [9] Sabina M and Silvano D. Reconstruction of displacement waveforms with a single-channel laser-diode feedback interferometer. IEEE J. Quantum. Electron., 1997, 33: 527-531.
    [10] Wang M and Lai G M. Self-mixing microscopic interferometer for the measurement of microprofile. Opt, Commun., 2004, 238(4-6): 237-244.
    [11] Silvano D, Luca F and Sabina M. A PC-interfaced, compact laser-diode feedback interferometer for displacement measurements. IEEE T. Instrum. Meas., 1996, 45(6): 942-947.
    [12] Alvarado T and Julius J. In-line interferometer for direction-sensitive displacement measurements by optical feedback detection. Appl. Opt., 2005, 44: 7287-7294.
    [13] Suzuki T, Shigeyuki H, Osami S, et al. Self-mixing type of phase-locked laser diode interferometer. Opt. Eng., 1999, 38(3): 543-548.
    [14] Suzuki T, Irisawa T, Yokoyama K, et al. Coaxial type of self-mixing interferometer equipped with a wavelength stabilizing system. Proceeding of SPIE, 2002, 4777: 49-56.
    [15]殷纯永.现代干涉测量技术.天津:天津大学出版社, 1999.
    [16] Churnside J H. Laser Doppler velocimetry by modulating a CO2 laser with backscattered light. Appl. Opt., 1984, 23: 61-65.
    [17] Scalise L, Yu Y, Giuliani G, et al. Self-mixing laser diode velocimetry: application to vibration and velocity measurement. IEEE T. Instrum. Meas., 2004, 53(1): 223-232.
    [18] Jukka H, Leszek K and Risto M. Displacement sensor based on optical feedback interferometry in a GaN laser diode. Opt. Eng., 2005, 44(080504): 1-8.
    [19] King P and Steward G J. Metrology with an optical maser. New Science, 1963, 17: 180.
    [20] Rudd M J. A laser Doppler velocimeter employing the laser as a mixer-oscillator. J. Phys. E, 1968, 1: 723.
    [21] Fork R L and Pollack M A. Mode Competition and Collision Effects in Gaseous Optical Masers. Physical Review, 1965, 139(5A): 1408-1414.
    [22] Torre M S, Masoller C and Mandel P. Transverse-mode dynamics in vertical-cavity suface-emitting lasers with optical feedback. Phys. Rev. A, 2002, 66(053817): 1-9.
    [23] Han D, Wang M and Zhou J. Self-mixing speckle interference in DFB lasers. Opt. Express, 2006, 14: 3312-3317.
    [24] Witomski A, Lacot E and Hugon O. Parametric amplification of frequency-shifted optical feedback. Phys. Rev. A, 2005, 72(023801): 1-8.
    [25] Takaaki M and Kenju O. New route to optical chaos: successive-subharmonic-oscillation cascade in a semiconductor laser coupled to an external cavity. physical review letters, 1985, 55: 17.
    [26] Ko J Y, Kenju O and Tamaki K. Quantum-noise-induced order in lasers placed in chaotic oscillation by frequency-shifted feedback. Phys. Rev. Lett., 2001, 86(18): 4025-4028.
    [27] Peter J R, May L and Caesar S. Direction-sensitive subwavelength displacement measurement at diffraction-limited spatial resolution. Optic. Lett., 2002, 27(1): 25-27.
    [28] Mao W, Zhang S L, Zhang L Q, et al. Study on displacement measurement with optical feedback of dual frequency laser. Acta Physica Sinica, 2006, 55(9): 4704-05.
    [29] Ding Y C, Zhang S L, Li Y, et al. Displacement sensors based on feedback effect of orthogonally polarized lights of frequency-split HeNe lasers. Opt. Eng., 2003, 42(8): 2225-2228.
    [30] Ryoji K, Yusuke A and Kenju O. Ultrahigh-sensitivity self-mixing laser doppler velocimetry with laser-diode-pumped micochip LiNdP4O12 lasers. IEEE Photonic. Tech. L., 1999, 11(6): 706-708.
    [31] Kervevan L, Gilles H, Girard S, et al. Two-fimensional velocity measurements with self-mixing technique in diode-pumped Yb:Er glass laser. IEEE Photonic. Tech. L., 2004, 16(7): 1709-1711.
    [32] Porta P A, Curtin D P, Mcinerney J G, et al. Laser Doppler velocimetry by optical self-mixing in vertical-cavity surface-emitting lasers. IEEE Photonic. Tech. L., 2002, 14(12): 1719-1721.
    [33] Ozdemir S K, Takamiya S, Ito S, et al. Self-mixing laser speckle velocimeter for blood flow measurement. IEEE T. Instrum. Meas., 2000, 49(5): 1029-1035.
    [34] Wang M. Fourier transform method for self-mixing interference signal analysis. Opt. Laser Technol., 2001, 33: 409-416.
    [35] Wong T L, Sabato S L and Bearden A. PHOEBE, a prototype scanning laser-feedback microscope for imaging biological cells in aqueous media. Journal of microscopy, 1995, 177(2): 162-170.
    [36] Kenju O, Ryoji K, Yusuke A, et al. Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser. Opt. Lett., 2002, 27: 1339-1341.
    [37] Lacot E, Day R and Stoeckel F. Laser optical feedback tomography. Opt, Lett., 1999, 24: 744-746.
    [38] Bearden A, Michael P O, Leslie C O, et al. Imaging and vibrational analysis with laser-feedback interferometry. Opt. Lett., 1993, 18(3): 238-240.
    [39] Eric G and Rivest J. Laser range imaging using the self-mixing effect in a laser diode. IEEE T. Instrum. Meas., 1999, 48: 693-699.
    [40] Giuliani G, Pietra S B and Donati S. Self-mixing laser diode vibrometer. Meas. Sci. Technol., 2003, 14: 24-32.
    [41] Wan X J, Zhang S L, Liu G, et al. Self-mixing interference in dual-polarization microchip Nd: YAG lasers. Chin. Phys. Lett., 2004, 21(11): 2175-2178.
    [42] Day R, Lacot E, Stoeckel F, et al. Three-Dimensional sensing based on a dynamically focused laser optical feedback imaging technique. Appl. Opt., 2001, 40: 1921-1924.
    [43] Peek T H, Bolwijn P T and Alkemade C T J. Axial Mode Number of Gas Lasers from Moving-Mirror Experiments. Am. J. Phys., 1967, 35: 820.
    [44] Wang W M, Grattan K T V, Palmer A W, et al. Self-mixing interference inside a single-mode diode laser for optical sensing applications. J. Lightwave Technol., 1994, 12(9): 1577-1587.
    [45] Olsson A and Tang C L. Coherent optical interference effects in external-cavity semiconductor lasers. IEEE J. Quantum Electron, 1981, 17: 1320-1323.
    [46] Jesper M, Bjarne T and Jannik M. Chaos in semiconductor lasers with optical feedback: theory and experiment. IEEE J. Quantum Electron, 1992, 28: 93-107.
    [47]禹延光.激光自混合干涉理论及其位移测量方法的研究[博士学位论文].哈尔滨:哈尔滨工业大学精密仪器及机械系, 2000.
    [48] Tkach R W and Chraplyvy A R. Regimes of feedbac effects in 1.5 um distributed feedback lasers. J. Lightwave Technol., 1986, 4: 1655-1661.
    [49] Petermann K. Laser diode modulation and noise. Netherlands: Kluwer Academic Publishers, 1988.
    [50] Koelink M H, Slot M, Mul F F, et al. Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory. Appl. Opt., 1992, 31: 3401-3408.
    [51] Thierry B, Noel S, Ryad C, et al. Three-dimensional object construction using a self-mixing scanning laser range finder. IEEE T. Instrum. Meas., 1998, 47(5): 1326-1329.
    [52] Liu G, Zhang S L, Zhu J, et al. Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser. Opt, Commun., 2003, 221(4-6): 387-393.
    [53]刘刚.双重光回馈理论及双折射腔中的光回馈[博士学位论文].北京:清华大学精密仪器与机械学系, 2005.
    [54] Bosch T, Servagent N and Donati S. Optical feedback interferometry for sensing application. Opt. Eng., 2001, 40: 20-27.
    [55] Giulian G, Norgia M, Donati S, et al. Laser diode self-mixing technique for sensing applications. J. Opt. A: Pure Appl. Opt., 2002, 4: S283-S294.
    [56] Shimizu E T. Directional discrimination in the self-mixing type laser Doppler velocimeter. Appl. Opt., 1987, 26: 4541-4544.
    [57] Wang W M, Grattan K T V, W J O Boyle, et al. Active optical feedback in a dual-diode laser configuration applied to displacement measurements with a wide dynamic range. Appl. Opt., 1994, 33: 1795-1801.
    [58] Takahashi N, Kakuma S, Ohba R, et al. Active heterodyne interferometric displacement measurement using optical feedback effects of laser diodes. Opt. Eng., 1996, 35: 802-807.
    [59] Deng K and Wang J. Nanometer-resolution distance measurement with a noninterferometric method. Appl. Opt., 1994, 33: 113-116.
    [60] Kubota T, Nara M and Yashino T. Interferometer for measurement displacement and distance. Opt. Lett., 1987, 12: 310-312.
    [61] Donati S and Giuliani G. Laser Diode feedback interferometer for measurement of displacement without ambiguity. IEEE J. Quantum Electron, 1995, 31(1): 113-119.
    [62] Kato J, Yamato J, Kikuchi N, et al. Non-contact optical probing sensor applying optical feedback effects in laser diodes. Measurement, 1991, 9: 146-152.
    [63] James A and Smith G. Laser with optical feedback as displacement sensors. Opt. Eng., 1995, 34(9): 2802-2810.
    [64]丁迎春.非接触式高分辨率位移传感器的研究初步.北京:清华大学精密仪器与机械学系[博士后研究报告], 2003.
    [65] Li L, Zhang S L, Li S Q, et al. The new phenomena of orthogonally polarized lights in laser feedback. Opt, Commun., 2001, 200(1-6): 303-307.
    [66]毛威.正交偏振氦氖激光器强光回馈现象及其位移传感器研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2007.
    [67] Mao W and Zhang S L. Strong optical feedback in birefringent dual frequency laser. Chin. Phys., 2006, 15(2): 340-346.
    [68] Mao W, Zhang S L, Cui L, et al. Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser. Opt, Express, 2006, 14(1): 182-189.
    [69] Mao W, Zhang S L, Zhou L F, et al. Influence of feedback levels on polarized optical feedback characteristics in Zeeman-Birefringence dual frequency lasers. Chin. Phys. Lett., 2007, 24(3): 713-716.
    [70] Mao W and Zhang S L. Effects of optical feedback in a birefringence-Zeeman dual frequency laser at high optical feedback levels. Appl. Opt., 2007, 46(12): 2286-2291.
    [71]李世杰,张书练.应用激光基础.浙江:浙江大学出版社, 1994.
    [72]金国藩,李景镇.激光测量学.北京:科学出版社, 1998.
    [73]周炳琨,高以智,陈家骅等.激光原理.北京:国防工业出版社, 2004.
    [74]张书练,徐亭,李岩等.正交线偏振激光器原理与应用(Ⅰ)--正交线偏振激光的产生机理和器件研究.自然科学进展, 2004, 14: 145-154.
    [75]张书练.正交偏振激光原理.北京:清华大学出版社, 2005.
    [76]杜文华.位移自传感激光器系统的仪器化研究: [博士学位论文].北京:清华大学精密仪器与机械学系, 2005.
    [77]张书练,刘刚,朱钧等.正交线偏振激光器原理与应用(II).自然科学进展, 2004, 14(3): 273-281.
    [78]张书练,杜文华,李岩等.正交线偏振激光器原理与应用(Ⅲ)--精密测量应用原理及技术基础研究.自然科学进展, 2004, 14: 380-389.
    [79]李铎.纳米激光测尺的仪器化及提高测量精度的研究[硕士学位论文].北京:清华大学精密仪器与机械学系, 2008.
    [80]郭继华,神帅,蒋建华等.双折射双频激光器偏振特性的分析.光学学报, 1996, 16(1): 32-36.
    [81]李恭亮,郭继华.晶体光学原理.北京:国防工业出版社, 1997.
    [82]郁道银,谈恒英.工程光学.北京:机械工业出版社, 2002.
    [83]宗晓斌.频率分裂激光器的调谐分析及在任意波片测量中的应用[博士学位论文].北京:清华大学精密仪器与机械学系, 2005.
    [84] Tan Y D and Zhang S L. Orthogonally linearly polarized dual frequency Nd:YAG lasers with tunable frequency difference and its application in precision angle measurement. Chin. Phys. Lett., 2007, 24(9): 2590-2593.
    [85]宗晓斌,朱钧,李岩等.基于激光频率分裂的波片位相延迟测量方法.激光技术, 2003, 27(4): 293-295.
    [86] Zong X B and Zhang S L. Measurement of arbitrary phase retardation of wave plate by laser frequency splitting. Proceedings of the third international symposium on instrumentation science and technology, 2004, 2: 697-701.
    [87] Ropars G and Floch A L. Polarization control mechanisms in vectorial bistable lasers for one-frequency systems. Phys. Rev. A, 1992, 46(1): 623-640.
    [88] Brunel M, Bretenaker F, Floch A L, et al. Tunable optical microwave source using apatially resolved laser eigenstates. Opt. Lett., 1997, 22(6): 384-386.
    [89] Brunel M, Vallet M, Ropars G, et al. Modal analysis of polarization self-modulated lasers. Phys. Rev. A, 1997, 55(2): 1391~1397.
    [90] Vallet M, Brunel M, Ropars G, et al. Theoretical and experimental study of eigenstate locking in polarization self-modulated lasers. Phys. Rev. A, 1997, 56(6): 5121~5130.
    [91] Holzapfel W, Stephan N R and Michael K. High-resolution, very broadband force measurements by solid-state laser transducers. Measurement. 2000, 28(277-291):
    [92] Sargent III M, Scully M O and Lamb W E. Laser Physics.北京:科学出版社, 1982.
    [93] Liu G, Zhang S L, Li Y, et al. Optical feedback characteristics in a dual-frequency laser during laser cavity tuning. Chin. Phys., 2005, 14(10): 1984-1989.
    [94] Mao W, Zhang S L, Zhang L Q, et al. Optical feedback characteristics in He-Ne dual frequency lasers. Chin. Phys. Lett., 2006, 23(5): 1188-1191.
    [95] Fei L G and Zhang S L. Self-mixing interference effects of orthogonally polarized dual frequency laser. Opt. Express, 2004, 12: 6100-6105.
    [96] Liu G, Zhang S L, Li L, et al. A 450 MHz frequency difference dual-frequency laser with optical feedback. Opt, Commun., 2004, 231(1-6): 349-356.
    [97] Liu G, Zhang S L, Li Y, et al. A birefringent cavity He-Ne laser and optical feedback. Chin. Phys., 2004, 13(6): 855-859.
    [98] Mao W, Zhang S L and Fei L G. High-frequency intensity modulation in orthogonal polarized dual frequency lasers with optical feedback. Appl. Opt., 2006, 45(33): 8500-8505.
    [99] Liu G, Zhang S L, Xu T, et al. Optical feedback characteristics of two orthogonally polarized light beams in a HeNe laser during cavity tuning. Acta Physica Sinica, 2005, 54(10): 4701-09.
    [100] Lamb W E. Theory of an optical Maser. physical review, 1964, 134(6A): 1429-1440.
    [101] Zhang S L, Wu M and Jin G. Birefringence tuning double frequency He-Ne laser. Appl. Opt., 1990, 29: 1265-1267.
    [102]张毅.基于激光频率分裂的波片位相延迟测量原理和技术研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2001.
    [103]姜亚南.环形激光陀螺.北京:清华大学出版社, 1985.
    [104] Dovle W M and White M B. Effects of atomic degeneracy and cavity anisotropy on the behavior of a gas laser. Physical Review, 1966, 147(1): 359-367.
    [105] Born M and Wolf E. Principles of optics. Oxford: Pergamon, 1980.
    [106] Dong-sun S, Jong-dae P, John G M, et al. Multiple feedback effects in asymmetric external cavity semiconductor lasers. IEEE J. Quantum Electron, 1989, 25: 11.
    [107]费立刚. He-Ne激光器正交偏振回馈现象及在波片测量中应用的研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2005.
    [108] Lodi V A, Merlo S and Norgia M. Measurement on a micromachined silicon gyroscope by feedback interferometry. IEEE Trans. Mechatronics., 2001, 6: 1-6.
    [109] Osami S, Kazuhiro A and Suzuki T. Sinusoidal-wavelength-scanning interferometer with double feedback control for real-time distance measurement. Appl. Opt., 2002, 41(19): 3906-3910.
    [110] Xiang C and Shulian Z. Multiple selfmixing effect in VCSELs with asymmetric external cavity. Opt, Commun., 2006, 260: 50-56.
    [111]赫光生,雷仕湛.激光器设计基础.上海:上海科学技术出版社, 1979.
    [112]陈耀勤,代柏岩,王春铭等.气体激光器腔片在惰性气体环境中的铟封接.激光与红外, 1981: 78-80.
    [113]王以铭,施昌彦等.测量不确定度评定与表示指南.北京:中国计量出版社, 2000.
    [114]费业泰.误差理论与数据处理.北京:国防工业出版社, 2004.
    [115]施昌彦.现代计量学概论.北京:中国计量出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700