用户名: 密码: 验证码:
PTD4-apoptin融合蛋白和达卡巴嗪联用对小鼠黑色素瘤的协同抑制效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑色素瘤高表达抗凋亡蛋白Bcl-2,是黑色素瘤对化疗药物产生耐药的原因之一。Apoptin(凋亡素)是来自鸡贫血病毒的小分子蛋白质,能选择性地诱导肿瘤细胞凋亡而对正常细胞无毒副作用,其诱导凋亡的作用不依赖抑癌基因p53亦不被抗凋亡蛋白Bcl-2所抑制,Bcl-2增高甚至能够增强其凋亡诱导效应。PTD4-apoptin融合蛋白是一种具有透膜能力的能特异性诱导肿瘤细胞凋亡的融合蛋白。达卡巴嗪(Dacarbazine, DTIC)是最早由美国FDA批准的治疗恶性黑色素瘤的一线药物,至今仍作为评价其他药物对黑色素瘤疗效的标准。本实验旨在探讨PTD4-apoptin融合蛋白与化疗药物达卡巴嗪联用对小鼠黑色素瘤细胞B16-F1,人黑色素瘤细胞系A875, SK-MEL-5的细胞毒效应以及对荷黑色素瘤小鼠C57BL/6的抗肿瘤效应,并初步探讨其联用机制。
     MTT法检测达卡巴嗪联合PTD4-apoptin融合蛋白对小鼠黑色素瘤细胞系B16-F1,人黑色素瘤细胞系A875, SK-MEL-5的生长抑制作用,CDI分析药物相互作用的特点。DAPI染色观测药物孵育B16-F1细胞后细胞核形态的变化,AnnexinV-FITC/PI双染法检测细胞凋亡率。Western blotting检测药物孵育B16-F1细胞后Bcl-2和CDK2的表达变化,初步探索两药联合作用的机制。皮下注射B16-F1细胞建立C57BL/6小鼠荷黑色素瘤模型,观察PTD4-apoptin融合蛋白及其与化疗药物达卡巴嗪联用对黑色素瘤的生长抑制作用。肿瘤标本制成石蜡切片后分别做原位免疫组化以及TUNEL染色,观察PTD4-apoptin融合蛋白分布情况及肿瘤细胞凋亡情况。对无瘤C57BL/6小鼠施药后,进行血常规检测,分析药物的骨髓抑制作用。
     体外实验结果表明,PTD4-apoptin融合蛋白与达卡巴嗪均可抑制小鼠黑色素瘤细胞系B16-F1,人黑色素瘤细胞系A875, SK-MEL-5的增殖并呈剂量依赖关系。三种不同浓度的PTD4-apoptin融合蛋白分别与不同浓度的达卡巴嗪联用对三种不同的黑色素瘤细胞的生长抑制作用比达卡巴嗪单药明显增强,CDI分析两药相互作用的性质,CDI<1,表明两者联合有协同效应;在某些浓度联合时CDI<0.7,具有显著的协同效应。DAPI染色和AnnexinV-FITC/PI双染法检测两药联合孵育B16-F1细胞的细胞凋亡事件,结果表明,联合用药后,细胞凋亡程度加强,细胞凋亡率显著升高。Western blotting检测到联合用药后B16-F1细胞中CDK2和Bcl-2的表达均有所升高。
     采用C57BL/6荷瘤小鼠模型进行药物的体内实验,结果表明,PTD4-apoptin融合蛋白能有效抑制小鼠黑色素瘤生长,而PTD4-EGFP融合蛋白与PBS不能。PTD4-apoptin融合蛋白与达卡巴嗪以不同比率联合治疗小鼠黑色素瘤,结果表明“半剂量”联合治疗组或“全剂量”联合治疗组对黑色素瘤的抑制效应显著高于PTD4-apoptin融合蛋白单药治疗组或达卡巴嗪单药治疗组,且“半剂量”或“全剂量”联合治疗组其抑瘤效应无明显差异。TUNEL染色以及原位免疫组化结果显示,PTD4-apoptin融合蛋白单用能够有效透过皮肤进入肿瘤组织,两者联合能引起大量的肿瘤组织细胞凋亡。血常规检测,分析药物的骨髓抑制作用,结果显示,与对照组相比,达卡巴嗪单药治疗组有骨髓抑制作用,PTD4-apoptin融合蛋白及“半剂量”联合治疗组没有骨髓抑制作用,而“全剂量”联合治疗组骨髓抑制作用也明显小于达卡巴嗪单药组。
     PTD4-apoptin融合蛋白能够有效抑制黑色素瘤的生长,与达卡巴嗪联用后对黑色素瘤的生长有协同抑制效应。PTD4-apoptin融合蛋白能够加强达卡巴嗪的抑瘤效应且无骨髓抑制作用。PTD4-apoptin融合蛋白和达卡巴嗪的协同效应可能与CDK2和Bcl-2有关。本研究为临床针对黑色素瘤个体特性进行治疗提供了一个新的思路。
Bcl-2 is an antiapoptotic protein that is generally expressed in melanoma and high level of Bcl-2 expression has been associated with resistance to chemotherapy in melanoma. Apoptin is a small molecule protein derived from chicken anemia virus (CAV), which can selectively induce cell death in tumor cells and transformed cells, but not in normal cells. Apoptin induces cell death independently of the tumor suppressor p53 and can be stimulated by Bcl-2. Recently, it has been identified that CDK2 phosphorylates apoptin's C-terminal Thr-108, which is crucially required for apoptin-induced cell death.
     PTD4-apoptin protein harbors penetrating membrane capacity and tumor-selective cell death activity. Dacarbazine (DTIC) is mainstay of treatment for malignant melanoma. In this study, we investigated the cytotoxic effect of PTD4-apoptin protein alone and combined with dacarbazine on mouse B16-F1 and human A875 and SK-MEL-5 melanoma cells in vitro and by means of an mouse B16-F1 melanoma model in vivo, and preliminarily investigated the mechanism of the combination.
     B16-F1, A875 and SK-MEL-5 cells were cultured in PTD4-apoptin protein or/and DTIC in vitro. Cell viability was analyzed by MTT assay and the nature of drug interaction was analyzed by the coefficient of drug interaction (CDI). B16-F1 cells were incubated with PTD4-apoptin protein or/and DTIC, cell morphological changes, flow cytometric analysis and the expression of Bcl-2 and CDK2 were analyzed. For in-vivo therapeutic experiments, C57BL/6 mice bearing B16-F1 melanoma were treated with PTD4-apoptin protein or/and DTIC in different strategies. The inhibitory effect on the tumor growth was observed and the apoptosis were investigated. The experiments for determining possible side effects by PTD4-apoptin and/or dacarbazine were carried out in tumor-free C57BL/6 mice. The blood parameters were measured and compared with normal values.
     In vitro, PTD4-apoptin protein alone could inhibit the growth of B16-F1, A875 and SK-MEL-5 cells in a dose-dependent manner, and it combined with DTIC produced synergistic inhibitory effect on the growth of the three cell lines (CDI<1). The DAPI staining and the Annexin-V/PI staining assay indicated that PTD4-apoptin protein combined with dacarbazine achieved the most prominent apoptotic-inducing effect in B16-F1 melanoma-derived tumor cells. The level of CDK2 and Bcl-2 expression in B16-F1 cells increased after incubation with 2-drug combination.
     In vivo, PTD4-apoptin protein could penetrate into the tumors via the epidermal tissue of the mice and effectively inhibited the growth of tumor in C57BL/6 mice. The inhibitory effect were enhanced in "half dose" or "full dose" combination treatment group, and the apoptotic cells in combined treatment group were more than that in either single treatment group. Analyzing the bone marrow suppression of dacarbazine and/or PTD4-apoptin protein in C57BL/6 tumor-free mice, the results showed that the dacarbazine treatment alone revealed bone-marrow suppression. PTD4-apoptin protein alone and "half-dose" drug combination both had no detectable bone marrow suppression. In contrast, "full dose" drug combination had, but less in comparison to the treatment of dacarbazine alone. One of the potential mechanisms may be that the apoptosis-induced activity of apoptin was enhanced by high CDK-2 and Bcl-2 expression and the high Bcl-2 expression exerting resistance to chemotherapy in melanoma was avoided by changing the properties of Bcl-2 from an anti-apoptotic to a proapoptotic molecule.
     In conclusion, PTD4-apoptin protein combined with the chemotherapy drug dacarbazine showed synergistic inhibitory effects on the growth of mouse melanoma B16-F1 cells in vitro and in vivo, and of human melanoma A875 and SK-MEL-5 cells in vitro. As important, PTD4-apoptin was shown to enhance the anti-tumor activity induced by dacarbazine without side effects on bone marrow suppression. One of the potential mechanisms may be related with Bcl-2 and CDK2. Our preclinical observations indicate that a combinatorial therapy based on PTD4-apoptin protein and dacarbazine is a promising novel anti-cancer strategy.
引文
1 Garbe C, Leiter U. Melanoma epidemiology and trends. Clin. Dermatol 2009; 27:3-9.
    2 MacKie RM, Hauschild A, Eggermont AM. Epidemiology of invasive cutaneous melanoma. Ann Oncol 2009; 20 Suppl 6:vi1-7.
    3 Kasper B, D'Hondt V, Vereecken P, Awada A. Novel treatment strategies for malignant melanoma:a new beginning? Crit Rev Oncol Hematol 2007; 62:16-22.
    4 Trinh VA. Current management of metastatic melanoma. Am J Health Syst Pharm 2008; 65(24 Suppl 9):S3-8.
    5 Agarwala SS. Current systemic therapy for metastatic melanoma. Expert Rev Anticancer Ther 2009; 9:587-95.
    6 Hauschild A, Dummer R, Ugurel S et al. Combined treatment with pegylated interferon-alpha-2a and dacarbazine in patients with advanced metastatic melanoma:a phase 2 study. Cancer 2008; 113:1404-11.
    7 Eggermont AM, Kirkwood JM. Re-evaluating the role of dacarbazine in metastatic melanoma:what have we learned in 30 years? Eur J Cancer 2004; 40:1825-1836.
    8 Lillehammer T, Engesaeter BO, Prasmickaite L et al. Combined treatment with Ad-hTRAIL and DTIC or SAHA is associated with increased mitochondrial-mediated apoptosis in human melanoma cell lines. J Gene Med 2007; 9:440-51.
    9 Noteborn MHM. Proteins selectively killing tumor cells. Eur J Pharmacol 2009; 625: 165-173.
    10 Noteborn MH, Todd D, Verschueren CA et al. A single chicken anemia virus protein induces apoptosis,1994. J. Virol.68:346-351.
    11 Rohn JL, Noteborn MH. The viral death effector apoptin reveals tumor-specific processes. Apoptosis 2004; 9:315-322.
    12 Zhang YH, Leliveld SR, Kooistra K et al. Recombinant Apoptin multimers kill tumor cells but are nontoxic and epitope-shielded in normal-cell-specific fashion. Exp. Cell Res 2003; 289:36-46.
    13 Backendorf C, Visser AE, De Boer AG et al. Apoptin:therapeutic potential of an early sensor of carcinogenic transformation. Annu. Rev. Pharmacol 2008 48; 143-169.
    14 Grimm S, Noteborn MHM. Anticancer genes:inducers of tumour-specific cell death signaling. Trends Mol. Med.2010; 16:88-96.
    15 Maddika S, Mendoza FJ, Hauff K, Zamzow CR et al. Cancer-selective therapy of the future:apoptin and its mechanism of action. Cancer Biol. Ther 2006; 5:10-19.
    16 Noteborn MHM. Apoptin acts as a tumor-specific killer:potentials for an anti-tumor therapy. Cell Mol. Biol.2005; 51:49-60.
    17 Lian H, Jin N, Li X et al. Induction of an effective anti-tumor immune response and tumor regression by combined administration of IL-18 and apoptin. Cancer Immunol. Immunother.2007; 56:181-192.
    18 Olijslagers SJ, Zhang YH, Backendorf C et al. Additive cytotoxic effect of apoptin and chemotherapeutic agents paclitaxel and etoposide on human tumour cells. Basic Clin. Pharmacol. Toxicol.2007; 100:127-131.
    19 Peng DJ, Sun J, Wang YZ et al. Inhibition of hepatocarcinoma by systemic delivery of Apoptin gene to the hepatic asiaglycorprotein receptor. Cancer Gene Ther 2007; 14: 66-73.
    20 Van der Eb MM, Pietersen AM, Speetjens FM et al. Gene therapy with apoptin induces regression of xenografted human hepatomas. Cancer Gene Ther.2002; 9:53-61.
    21 Bagi CM. Targeting of therapeutic agents to bone to treat metastatic cancer. Adv. Drug Deliv. Rev.2005; 57:995-1010.
    22 Liu XY. Targeting gene-virotherapy of cancer and its prosperity. Cell Res.2006; 16: 879-886.
    23 Sun J, Yan Y, Wang XT, Liu XW et al. PTD4-apoptin protein therapy inhibits tumor growth in vivo. Int. J. Cancer 2009; 124:2973-2981.
    24 Selzer E, Schlagbauer-Wadl H, Okamoto I, Pehamberger H, Potter R, Jansen B. Expression of Bcl-2 family members in human melanocytes, in melanoma metastases and in melanoma cell lines. Melanoma Res 1998; 8:197-203.
    25 Plettenberg A, Ballaun C, PammerJ. Humanmelanocytes and melanoma cells constitutively expresss the Bcl-2 proto-oncogene in situ and in cell culture. Am J Pathol 1995; 146:651-659.
    26 Leiter U, Schmid RM, Kaskel P, Peter RU, Krahn G. Antiapoptotic bcl-2 and bcl-xL in advanced malignant melanoma. Arch Dermatol Res 2000; 292:225-32.
    27 Grover R, WIlson GD. Bcl-2 expression in malignant melanoma and its prognostic significance. Eur J Surg Oncol 1996; 22:347-49.
    28 Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol 1999; 17:2941-53.
    29 Jansen B, Wacheck V, Heere-Ress E et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy Lancet 2000; 356:1728-33.
    30 Rohn JL, Zhang YH, Aalbers RI et al. A tumor-specific kinase activity regulates the viral death protein Apoptin. J Biol Chem 2002; 277:50820-27.
    31 Maddika S, Panigrahi S, Wiechec E et al. Unscheduled Akt-triggered activation of cyclin-dependent kinase 2 as a key effector mechanism of apoptin's anticancer toxicity. Mol Cell Biol 2009; 29:1235-48.
    32 Marek Los, Soumya Panigrahi, Iran Rashedi et al. Apoptin, atumor-selective killer. Biophysica Acta 2009; 1793:1335-42.
    33 Xu SP, Sun GP, Shen YX, Peng WR et al. Synergistic effect of combining paeonol and cisplatin on apoptotic induction of human hepatoma cell lines. Acta Pharmaco Sin. 2007; 28:869-878.
    34 Coppee F, Depoortere F, Bartek J et al. Diferential patterns of cell cycle regulatory proteins expression in transgenic models of thyroid tumours. Oncogene 1998; 17: 631-641
    35 Kwon TK, Buchholz MA, Jun DY, Kim YH, Nordin AA. The differential catalytic activity of alternatively spliced cdk2 alpha and cdk2 beta in the G1/S transition and early S phase. Exp Cell Res 1998; 238:128-135.
    36 Lillehammer T, Engesaeter BO, Prasmickaite L e. Combined treatment with Ad-hTRAIL and dacarbazine or SAHA is associated with increased mitochondrial-mediated apoptosis in human melanoma cell lines. J. Gene Med.2007; 9: 440-451.
    37 Yang AS, Chapman PB. The history and future of chemotherapy for melanoma. Hematol. Oncol. Clin. North Am.2009; 23:583-597.
    38 Hauschild A, Dummer R, Ugurel S et al. Combined treatment with pegylated interferon-alpha-2a and dacarbazine in patients with advanced metastatic melanoma:a phase 2 study. Cancer 2008; 113:1404-11.
    39 A.A. Danen-Van Oorschot, A.J. van der Eb, M.H. Noteborn, BCL-2 stimulates Apoptin-induced apoptosis. Adv Exp Med Biol 1999; 457:245-9.
    40 Danen-Van Oorschot AA, Zhang Y, Erkeland SJ, Fischer DF, van der Eb AJ, Noteborn MH. The effect of Bcl-2 on Apoptin in'normal'vs transformed human cells. Leukemia 1999; 13(Suppll):S75-S77.
    41 Danen-Van Oorschot AA umar SM. Fang D, Acs G, Xu X. Nuclear orphan receptor TR3/Nur77 mediates melanoma cell apoptosis. Cancer Biol Ther 2007; 6:405-412.
    42 Zeng H, Qin L, Zhao D et al. Orphan nuclear receptor TR3/Nur77 regulates VEGF-A-induced angiogenesis through its transcriptional activity. J Exp Med 2006; 203:719-729
    43 Wolf M, Eskerski H, Bauder-Wust U, Haberkorn U, Eisenhut M. Alkylating benzamides with melanoma cytotoxicity:experimental chemotherapy in a mouse melanoma model. Melanoma Res.2006;16:487-496.
    1. M.H. Noteborn, G.F. de Boer, D.J. van Roozelaar et al. Characterization of cloned chicken anemia virus DNA that contains all elements for the infectious replication cycle. J.Virol.,1991; 65:3131-3139.
    2. S. Natesan, J.M. Kataria, K. Dhama et al. Anti-neoplastic effect of chicken anemia virus VP3 protein (apoptin) in Rous sarcoma virus-induced tumours in chicken, J. Gen. Virol. 2006; 87:2933-2940.
    3. M.H. Noteborn, C.A. Verschueren, A. Zantema et al. Identification of the promoter region of chicken anemia virus (CAV) containing a novel enhancer-like element, Gene 1994;150:313-318.
    4. M.M. Miller, K.W. Jarosinski, K.A. Schat. Positive and negative regulation of chicken anemia virus transcription, J. Virol.2005; 79:2859-2868.
    5. M.H. Noteborn, D. Todd, C.A. Verschueren et al. A single chicken anemia virus protein induces apoptosis, J. Virol.1994; 68:346-351.
    6. K.V. Phenix, B.M. Meehan, D. Todd, M.S. McNulty. Transcriptional analysis and genome expression of chicken anaemia virus, J. Gen. Virol.1994; 75:905-909.
    7. S. Maddika, F.J. Mendoza, K. Hauff, C.R. et al. Cancerselective therapy of the future: apoptin and its mechanism of action, Cancer Biol. Ther.2006; 5:10-19.
    8. M.H. Noteborn. Chicken anemia virus induced apoptosis:underlying molecular mechanisms, Vet. Microbiol.2004; 98:89-94.
    9. D.W. Heilman, J.G. Teodoro, M.R. Green. Apoptin nucleocytoplasmic shuttling is required for cell type-specific localization, apoptosis, and recruitment of the anaphase-promoting complex/cyclosome to PML bodies, J. Virol.2006; 80:7535-7545.
    10. I.K.H. Poon, C. Oro, M.M. Dias, J. Zhang et al. Apoptin nuclea accumulation is modulated by a CRM1-recognized nuclear export signal that is active in normal but not in tumor cells, Cancer Res.2005; 65:7059-7064.
    11.K. Kamada, A. Kuroishi, T. Kamahora et al. Spliced mRNAs detected during the life cycle of chicken anemia virus. J. Gen. Virol.2006; 87:2227-2233.
    12. A.A. Danen-Van Oorschot, Y.H. Zhang, S.R. Leliveld et al. Importance of nuclear localization of apoptin for tumor-specific induction of apoptosis, J. Biol.2003 Chem. 2003; 278:27729-27736.
    13. H.V. Kuusisto, K.M. Wagstaff, G. Alvisi et al. The C-terminus of apoptin represents a unique tumor cell-enhanced nuclear targeting module, Int. J. Cancer 2008; 2965-2969.
    14. C. Backendorf, A.E. Visser, A.G. de Boer et al. Apoptin:therapeutic potential of an early sensor of carcinogenic transformation, Annu. Rev. Pharmacol. Toxicol.2008; 48: 143-169.
    15. S.R. Leliveld, Y.H. Zhang, J.L. Rohn et al. Apoptin induces tumor-specific apoptosis as a globular multimer, J. Biol. Chem.2003; 278:9042-9051.
    16. S.R. Leliveld, R.T. Dame, M.A. Mommaas et al. Apoptin protein multimers form distinct higher-order nucleoprotein complexes with DNA, Nucleic Acids Res.2003; 31: 4805-4813.
    17. M. Tavassoli, L. Guelen, B.A. Luxon, J. Gaken. Apoptin:specific killer of tumor cells? Apoptosis 2005; 10:717-724.
    18. A.A. Danen-Van Oorschot, D.F. Fischer, J.M. Grimbergen et al. Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells, Proc. Natl. Acad. Sci. U. S. A.1997; 94:5843-5847.
    19. Y.H. Zhang, P.J. Abrahams, A.J. van der Eb et al. The viral protein Apoptin induces apoptosis in UV-C-irradiated cells from individuals with various hereditary cancer-prone syndromes, Cancer Res.1999; 59:3010-3015.
    20. L. Guelen, H. Paterson, J. Gaken et al. TAT-apoptin is efficiently delivered and induces apoptosis in cancer cells, Oncogene 2004; 23:1153-1165.
    21. A. Pietersen, S.J. Erkeland, S.A. Rutjes et al. Continuous apoptin expression in transgenic mice does not interfere with lymphocyte development and proliferation, J. Med. Mol. Biol.2005; 2:321-330.
    22. S.M. Zhuang, A. Shvarts, H. van Ormondt et al. Apoptin, a protein derived from chicken anemia virus, induces p53-independent apoptosis in human osteosarcoma cells, Cancer Res.1995; 55:486-489.
    23. A.A. Danen-Van Oorschot, A.J. van der Eb, M.H. Noteborn. BCL-2 stimulates Apoptin-induced apoptosis, Adv. Exp. Med. Biol.1999; 457:245-249.
    24. A.A. Danen-Van Oorschot, Y. Zhang, S.J. Erkeland, et al. The effect of Bcl-2 on Apoptin in'normal'vs transformed human cells, Leukemia 1999; 13 (Suppl 1): S75-S77.
    25. X. Liu, S. Elojeimy, A.M. El-Zawahry et al. Modulation of ceramide metabolism enhances viral protein apoptin's cytotoxicity in prostate cancer, Molec. Ther.2006; 14: 637-646.
    26. M. Burek, S. Maddika, C.J. Burek et al. Apoptin-induced cell death is modulated by Bcl-2 family members and is Apaf-1 dependent, Oncogene 2005; 25:2213-2222.
    27. van der Eb MM, Pietersen AM, Speetjens F et al. Gene therapy with Apoptin induces regression of xenografted human hepatomas. Gene Therapy,2002; 9:53-61.
    28. Ferreira CG, Tolis C, Giaccone G, p53 and chemosensitivity, Ann. Oncol.1999; 10: 1011-1021.
    29. M. Los, S. Wesselborg, K. Schulze-Osthoff. The role of caspases in development, immunity, and apoptotic signal transduction:lessons from knockout mice, Immunity 1999; 10:629-639.
    30. C. Schwerk, K. Schulze-Osthoff. Regulation of apoptosis by alternative pre-mRNA splicing, Mol. Cell 2005;19:1-13.
    31. U. Fischer, R.U. Janicke, K. Schulze-Osthoff. Many cuts to ruin:a comprehensive update of caspase substrates, Cell Death Differ.2003; 10:76-100.
    32. S. Maddika, E.P. Booy, D. Johar et al. Cancer-specific toxicity of apoptin is independent of death receptors but involves the loss of mitochondrial membrane potential and the release of mitochondrial cell-death mediators by a Nur77-dependent pathway, J. Cell. Sci.2005; 118:4485-4493.
    33. Poon Ivan K.H., Oro Cristina, Dias M. M.. Cancer Accumulation Is Modulated by a CRM1-Recognized Nuclear Res.2005; 65:7059-7064.
    34. Murphy AL. Apoptin:nuclear switch triggers cancer cell death. Gene Ther.1999 May; 6 (5):713-4.
    35. Maddika S, Panigrahi S, Wiechec E et al. Unscheduled Akt-triggered activation of
    cyclin-dependent kinase 2 as a key effector mechanism of apoptin's anticancer toxicity. Mol Cell Biol 2009; 29:1235-48.
    36. Maddika S, Wiechec E, Ande SR,et al. Interaction with PI3-kinase contributes to the cytotoxic activity of Apoptin. Oncogene.2007,1-6.
    37. Lee Yen-Hsien, Cheng Chih-Mei, Chang Yung-Fu et al. Apoptin T108 phosphorylation is not required for its tumor-specific nuclear localization but partially affects its apoptotic activity. Biochem. Biophys. Res. Commun.2007; 354:391-395
    38. Danen-van Oorschot Astrid A. A. M, Zhang Ying-Hui et al. Importance of Nuclear Localization of Apoptin for Tumor-specific Induction of Apoptosis. J. Biol. Chem. 2003; 278:27729-27736.
    39. B. Lin, S.K. Kolluri, F. Lin et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3, Cell 2004; 116:527-540.
    40. Marek Los, Soumya Panigrahi, Iran Rashedi et al. Apoptin, a tumor-selective killer. Biophysica Acta 2009; 1793:1335-42.
    41. Q. Liu, H. Fu, R. Xing et al. Survivin knockdown combined with apoptin overexpression inhibits cell growth significantly, Cancer Biol. Ther.2008; 7: 1053-1060.
    42. S. Panigrahi, T. Klonisch, M. Los. The art of killing:double stroke with apoptin and survivin as a novel approach in cancer therapy, Cancer Biol. Ther.2008; 7: 1061-1062.
    43. H. Lian, N. Jin, X. Li et al. Induction of an effective anti-tumor immune response and tumor regression by combined administration of IL-18 and Apoptin, Cancer Immunol. Immunother.2007; 56:181-192.
    44. S.J. Olijslagers, Y.H. Zhang, C. Backendorf et al. Additive cytotoxic effect of apoptin and chemotherapeutic agents paclitaxel and etoposide on human tumour cells, Basic Clin. Pharmacol. Toxicol.2007; 100:127-131.
    45. A.M. Pietersen, M.M. van der Eb, H.J. Rademaker, D.J. et al. Specific tumor-cell killing with adenovirus vectors containing the apoptin gene, Gene Ther.1999; 6: 882-892.
    46. X. Li, N. Jin, Z. Mi, H. Lian et al. Antitumor effects of a recombinant fowlpox virus expressing Apoptin in vivo and in vitro, Int. J. Cancer 2006; 119:2948-2957.
    47. D.J. Peng, Sun, J.,Y.Z.Wang et al. Inhibition of hepatocarcinoma by systemic delivery of Apoptin gene via the hepatic asialoglycoprotein receptor, Cancer Gene Ther.2007; 14:66-73.
    48. S. Maddika, E. Wiechec, S.R. Ande et al. Interaction with PI3-kinase contributes to the cytotoxic activity of apoptin, Oncogene 2008; 27:3060-3065.
    49. R.A. Schoop, R.J. Baatenburg de Jong, M.H. Noteborn. Apoptin induces apoptosis in an oral cancer mouse model, Cancer Biol. Ther.2008; 7:1368-1373.
    50. Sun J, Yan Y, Wang XT et al. PTD4-apoptin protein therapy inhibits tumor growth in vivo. Int. J. Cancer 2009; 124:2973-2981.
    [1]Clark, Jr. W. H.; Elder, D. E.; Guerry, D. et al. A study of tumor progression:the precursor lesions of superficial spreading and nodular melanoma. Hum. Pathol.1984, 15,1147-1165.
    [2]Bishop, J. A.; Wachsmuth, R. C.; Harland, M. et al. Genotype/phenotype and penetrance studies in melanoma families with germline CDKN2A mutations. J. Invest. Dermatol.2000,114,28-33.
    [3]Koh, H. K. Cutaneous melanoma. N. Engl. J. Med.1991,325,171-182.
    [4]Fidler, I. J. Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res.1978,38,2651-2660.
    [5]Folkman, J. How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes memorial Award lecture. Cancer Res.1986,46,467-473.
    [6]Folkman, J. Angiogenesis:an organizing principle for drug discovery? Nat. Rev. Drug Discov.2007,6,273-286.
    [7]Piepkorn, M. W.; Barnhill, R. L.; Cannon-Albright, A. L. et al. A multiobserver, population-based analysis of histologic dysplasia in melanocytic nevi. J. Am. Acad. Dermatol.1994,30,707-714.
    [8]Helm, K. F.; Marks, J. G. Differential diagnosis in dermathology; New York, Churchill Livingston,1997.
    [9]Farmer, E. R.; Gonin, R.; Hanna, N. P. Discordance in the histopathologic diagnosis of melanoma and melanocytic nevi between expert pathologists. Hum. Pathol.1996,27, 528-531.
    [10]Korner, A.; Pawelek, J. Activation of melanoma tyrosinase by a cyclic AMP-dependent protein kinase in a cell-free system. Nature 1977,267, 444-447.
    [11]La Porta, C. A. M.; Comolli, R. Activation of protein kinase Calpha isoform in murine melanoma cells with high metastatic potential. Clin. Exp. Metatstasis 1997,15, 568-579.
    [12]Gruber, J. R.; Ohno, S.; Niles, R. M. Increased expression of protein kinase C alpha plays a key role in retinoic acid-induced melanoma differentiation. J. Biol. Chem.
    1992,267,13356-13360.
    [13]La Porta, C. A. M.; Di Dio, A.; Porro, D.; Comolli, R. Overexpression of novel protein kinase C delta in BL6 murine melanoma cells inhibits the proliferative capacity in vitro but enhances the metastatic potential in vivo. Melanoma Res.2000,10,93-102.
    [14]Englaro, W.; Rezzonico, R.; Durand-Clement, M.et al. Mitogen-activated protein kinase pathway and AP-1 are activated during cAMP-induced melanogenesis in B-16 melanoma cells. J. Biol. Chem.1995,270,24315-24320.
    [15]Oka, M.; Nagai, H.; Ando, H.et al. Regulation of melanogenesis through phosphatidylinositol 3-kinase-Akt pathway in human G361 melanoma cells. J. Invest. Dermatol.2000,115,699-703.
    [16]Prezioso, J. A.; Wang, N.; Duty, L.et al. Enhancement of pulmonary metastasis formation and gammaglutamyltranspeptidase activity in B16 melanoma induced by differentiation in vitro. Clin. Exp. Metastasis 1993,11,263-274.
    [17]Elstad, C. A.; Meadows, G. G. Modulation of B16-BL6 murine melanoma metastatic phenotype by tyrosine and phenylalanine restriction in the absence of host selection pressures. Anticancer Res.1993,13,523-528.
    [18]Pierson, H. F.; Meadows, G. G. Sodium ascorbate enhancement of carbidopa-levodopa methyl ester antitumor activity against pigmented B16 melanoma. Cancer Res.1983, 43,2047-2051.
    [19]Bennet, D. C.; Dexter, T. J.; Ormerod, E. J.; Hart, I. R. Increased experimental metastatic capacity of a murine melanoma following induction of differentiation. Cancer Res.1986,46,3239-3144.
    [20]La Porta, C. A. M.; Porro, D.; Comolli, R. Higher levels of melanin and inhibition of cdk2 activity in primary human melanoma cells WM115 over expressing nPKCdelta. Melanoma Res.2002,12,297-307.
    [21]La Porta, C. A. M.; Comolli, R. Different levels of TGFbeta, IL-10 and gelatinase A occur in experimental white and black metastases induced by bryostatin 1 or by phorbol-ester treated BL6T murine melanoma cells. Clin. Exp. Metastasis 2001,18, 361-369.
    [22]La Porta, C. A. M. Perspectives in melanoma treatment with signal transduction. Curr. Med. Chem. Anticancer Agents 2002,3,371-385.
    [23]Barndhill, R. L.; Fandrey, K.; Levy, M. A.et al. Angiogenesis and tumor progression of melanoma. Quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma. Lab. Invest.1992,67,331-337.
    [24]Liotta, L. A.; Steeg, P. S.; Stetler-Stevenson, W. G. Cancer metastasis and angiogenesis:an imbalance of positive and negative regulation. Cell 1991,64, 327-336.
    [25]Folkman, J. Tumor angiogenesis. Adv. Cancer Res.1985,43,175-203.
    [26]La Porta, C. A. M.; Porro, D.et al. Opposite effects of TPA on G1/S transition and on cell size in the low metastatic B16F1 with respect to high metastatic BL6 murine melanoma cells. Cancer Lett.1998,132,159-164.
    [27]Kingsley, D. The TGF-beta superfamily:new members, new receptors, and new genetic tests of function in different organisms. Gene Dev.1994,8,133-146.
    [28]Laiho, M.; Keski-Oja, J. Transforming growth factors-beta as regulators of cellular growth and phenotype. Crit.Rev. Oncol.1992,3,1-26.
    [29]Krasagakis, K.; Tholke, D.; Farthmann, B. et al. Elevated plasma levels of transforming growth factor (TGF)-betal and TGF-beta2 in patients with disseminated malignant melanoma. Br. J. Cancer 1998,77,1492-1494.
    [30]La Porta, C. A. M.; Di Dio, A.; Porro, D.; Comolli, R. Overexpression of nPKCdelta in BL6 murine melanoma cells enhances TGFbetal release into the plasma of metastasised animals. Melanoma Res.2000,10,527-534.
    [31]Bodey, B.; Bodey, B.; Siegel, S. E.; Keiser, H. E. Immunocytochemical detection of endoglin is indicative of angiogenesis in malignant melanoma. Anticancer Res.1998, 18,2701-2710.
    [32]Jemal, A.; Devesa, S. S.; Hartge, P.; Tucker, M. A. Recent trends in cutaneous melanoma incidence among whites in the United States. J. Natl. Cancer Inst.2001,93, 678-683.
    [33]Florez, A.; Cruces, M. Melanoma epidemic:true or false? Int. J. Dermatol.2004,43, 405-407.
    [34]Welch, H. G.; Woloshin, S.; Schwartz, L. M. Skin biopsy rates and incidence of melanoma:population based ecological study. BMJ 2005,331,481.
    [35]Douglas, J. G.; Margolin, K. The treatment of brain metastases from malignant melanoma. Semin. Oncol.2002,29,518-524.
    [36]Sertoli, M. R.; Queirolo, P.; Bajetta, E. et al. Multi-institutional phase Ⅱ randomized trial of integrated therapy with cisplatin, dacarbazine, vindesine, subcutaneous interleukin-2, interferon alpha2a and tamoxifen in metastatic melanoma. BREMIM (Biological Response Modifiers in Melanoma). Melanoma Res.1999,9,503-509.
    [37]Helmbach, H.; Rossmann, E.; Kern, M. A.; Schadendorf, D. Drugresistance in human melanoma. Int. J. Cancer 2001,93,617-622.
    [38]Serrone, L.; Zeuli, M.; Sega, F. M.; Cognetti, F. Dacarbazine-based chemotherapy for metastatic melanoma:thirty-year experience overview. J. Exp. Clin. Cancer Res.2000, 19,21-34.
    [39]Lens, M. B.; Eisen, T. G. Systemic chemotherapy in the treatment of malignant melanoma. Expert Opin. Pharmacother.2003,4,2205-2211.
    [40]Lawson, D. H. Update on the systemic treatment of malignant melanoma. Semin. Oncol. 2004,31,33-37.
    [41]Gottesman, M. M.; Fojo, T.; Bates, S. E. Multidrug resistance in cancer:role of ATP-dependent transporters. Nat. Rev. Cancer 2002,2,48-58.
    [42]Higgins, C. F. ABC transporters:from microorganisms to man. Annu. Rev. Cell Biol. 1992,8,67-113,
    [43]Dean, M.; Rzhetsky, A.; Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res.2001,11,1156-1166.
    [44]Ambudkar, S. V.; Kimchi-Sarfaty, C.; Sauna, Z. E.et al. P-glycoprotein:from genomics to mechanism. Oncogene 2003,22,7468-7485.
    [45]Goldstein, L. J.; Galski, H.; Fojo, A.et al. Expression of a multidrug resistance gene in human cancers. J. Natl. Cancer Inst.1989,81,116-124.
    [46]Gros, P.; Ben Neriah, Y. B.; Croop, J. M.; Housman, D. E. Isolation and expression of a complementary DNA that confers multidrug resistance. Nature 1986,323,728-731.
    [47]Riordan, J. R.; Deuchars, K.; Kartner, N.; Alon, N.; Trent, J.; Ling, V. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 1985,316, 817-819.
    [48]Roninson, I. B.; Chin, J. E.; Choi, K. G. et al. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc. Natl. Acad. Sci. USA 1986, 83,4538-4542.
    [49]Ueda, K.; Cornwell, M. M.; Gottesman, M. M.; Pastan, I.; Roninson, I. B.; Ling, V.; Riordan, J. R. The mdrl gene, responsible for multidrug-resistance, codes for P-glycoprotein. Biochem. Biophys. Res. Commun.1986,141,956-962.
    [50]Van der Bliek, A. M.; Baas, F.; Ten Houte de Lange, T. et al.. The human mdr3 gene encodes a novel P-glycoprotein homologue and gives rise to alternatively spliced mRNAs in liver. EMBOJ.1987,6,3325-3331.
    [51]Frank, N. Y.; Margaryan, A.; Huang, Y et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res.2005,65, 4320-4333.
    [52]Chen, K. G.; Szakacs, G.; Annereau, J. P. et al. Principal expression of two mRNA isoforms (ABCB 5alpha and ABCB 5beta) of the ATP-binding cassette transporter gene ABCB 5 in melanoma cells and melanocytes. Pigment Cell Res.2005,18, 102-112.
    [53]Huang, Y.; Anderle, P.; Bussey, K. J.et al. Membrane transporters and channels:role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Res. 2004,64,4294-4301.
    [54]Allikmets, R.; Schriml, L. M.; Hutchinson, A. et al. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res.1998,58,5337-5339.
    [55]Miyake, K.; Mickley, L.; Litman, T. et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells:demonstration of homology to ABC transport genes. Cancer Res.1999,59,8-13.
    [56]Doyle, L. A.; Yang, W.; Abruzzo, L. V. et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA 1998,95,15665-15670.
    [57]Abbott, B. L. ABCG2 (BCRP) expression in normal and malignant hematopoietic cells. Hematol. Oncol.2003,21,115-130.
    [58]Schinkel, A. H.; Jonker, J. W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family:an overview. Adv. Drug. Deliv. Rev.2003,55,3-29.
    [59]Monzani, E.; Facchetti, F.; Galmozzi, E. et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur. J. Cancer 2007,43, 935-946.
    [60]Liedert, B.; Materna, V.; Schadendorf, D.et al. Overexpression of cMOAT (MRP2/ABCC2) is associated with decreased formation of platinum-DNA adducts and decreased G2-arrest in melanoma cells resistant to cisplatin. J. Invest. Dermatol. 2003,121,172-176.
    [61]Igney, F. H.; Krammer, P. H. Death and anti-death:tumour resistance to apoptosis. Nat. Rev. Cancer 2002,2,277-288.
    [62]Soengas, M. S.; Alarcon, R. M.; Yoshida, H.; Giaccia, A. J.; Hakem, R.; Mak, T. W.; Lowe, S. W. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 1999,284,156-159.
    [63]Li, F.; Ambrosini, G.; Chu, et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 1998,396,580-584.
    [64]Albino, A. P.; Vidal, M. J.; McNutt, N. S. et al. Mutation and expression of the p53 gene in human malignant melanoma. Melanoma Res.1994,4,35-45.
    [65]Soengas, M. S.; Capodieci, P.; Polsky, D. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001,409,207-211.
    [66]Bird, A. P.; Wolffe, A. P. Methylation-induced repression--belts, braces, and chromatin. Cell 1999,99,451-454.
    [67]Baldi, A.; Santini, D.; Russo, P.; Catricala, C. et al. G. Analysis of APAF-1 expression in human cutaneous melanoma progression. Exp. Dermatol.2004,13,93-97.
    [68]Zanon, M.; Piris, A.; Bersani, Let al. Apoptosis protease activator protein-1 expression is dispensable for response of human melanoma cells to distinct proapoptotic agents. Cancer Res.2004,64,7386-7394.
    [69]Dai, D. L.; Martinka, M.; Bush, J. A.; Li, G. Reduced Apaf-1 expression in human cutaneous melanomas. Br. J. Cancer 2004,91,1089-1095.
    [70]Fujimoto, A.; Takeuchi, H.; Taback, B.et al. Allelic imbalance of 12q22-23 associated with APAF-1 locus correlates with poor disease outcome in cutaneous melanoma. Cancer Res.2004,64,2245-2250.
    [71]Mustika, R.; Budiyanto, A.; Nishigori, C. et al. Decreased expression of Apaf-1 with progression of melanoma. Pigment Cell Res.2005,18,59-62.
    [72]Soengas, M. S.; Lowe, S. W. Apoptosis and melanoma chemoresistance. Oncogene 2003,22,3138-3151.
    [73]Irmler, M.; Thome, M.; Hahne, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997,388,190-195.
    [74]Grossman, D.; Altieri, D. C. Drug resistance in melanoma:mechanisms, apoptosis, and new potential therapeutic targets. Cancer Metastasis Rev.2001,20,3-11.
    [75]Facchetti, F.; Previdi, S.; Ballarini, et al. Modulation of pro-and anti-apoptotic factors in human melanoma cells exposed to histone deacetylase inhibitors. Apoptosis 2004,9, 573-582.
    [76]Chin, L.; Merlino, G.; DePinho, R. A. Malignant melanoma:modern black plague and genetic black box. Genes Dev.1998,12,3467-3481.
    [77]Serrone, L.; Hersey, P. The chemoresistance of human malignant melanoma:an update. Melanoma Res.1999,9,51-58.
    [78]Karst, A. M.; Dai, L. D.; Martinka, M.; Li, G. PUMA expression is significantly reduced in human cutaneous melanomas. Oncogene 2005,24,1111-1116.
    [79]Salvesen, G. S.; Duckett, C. S. IAP proteins:blocking the road to death's door. Nat. Rev. Mol. Cell Biol.2002,3,401-410.
    [80]Liston, P.; Fong, W. G.; Korneluk, R. G. The inhibitors of apoptosis:there is more to life than Bcl2. Oncogene 2003,22,8568-8580.
    [81]Deveraux, Q. L.; Takahashi, R.; Salvesen, G. S.; Reed, J. C. Xlinked IAP is a direct inhibitor of cell-death proteases. Nature 1997,388,300-304.
    [82]Roy, N.; Deveraux, Q. L.; Takahashi, et al. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBOJ.1997,16,6914-6925.
    [83]Kasof, G. M.; Gomes, B. C. Livin, a novel inhibitor of apoptosis protein family member. J. Biol. Chem.2001,276,3238-3246.
    [84]Shin, S.; Sung, B. J.; Cho, Y. S. et al.. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and-7. Biochemistry 2001,40,1117-1123.
    [85]Maier, J. K.; Lahoua, Z.; Gendron, N. H. et al. The neuronal apoptosis inhibitory protein is a direct inhibitor of caspases 3 and 7. J. Neurosci.2002,22,2035-2043.
    [86]Du, C.; Fang, M.; Li, Y.; Li, L.; Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000,102,33-42.
    [87]Suzuki, Y.; Imai, Y.; Nakayama, H et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell.2001,8, 613-621.
    [88]Hegde, R.; Srinivasula, S. M.; Zhang, Z. et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem.2002,277,432-438.
    [89]Martins, M. L.; Iaccarino, I.; Tenev, T. et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J. Biol. Chem.2002,277, 439-444.
    [90]Verhagen, A. M.; Silke, J.; Ekert, P. G. et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J. Biol. Chem.2002,277,445-454.
    [91]Liston, P.; Fong, W. G.; Kelly, N. L. et al. Identification of XAF1 as an antagonist of XIAP anti-Caspase activity. Nat. Cell Biol.2001,3,128-133.
    [92]Ng. K. G.; Campos, E. I.; Martinka, M.; Li, G. XAF1 expression is significantly reduced in human melanoma. J. Invest. Dermatol.2004,123,1127-1134.
    [93]Goodell, M. A.; Brose, K.; Paradis, G.et al. Isolation and functional properties of
    murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med.1996,183, 1797-1806.
    [94]Schatton, T.; Murphy, G. F.; Frank, N. Y. et al. Identification of cells initiating human melanomas. Nature 2008,451,345-349.
    [95]Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 2005,5,275-284.
    [96]Mimeault, M.; Batra, S. K. Concise review:recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cell 2006,24,2319-2345.
    [97]Mimeault, M.; Hauke, R.; Batra, S. K. Stem cells:a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin. Pharmnacol. Ther.2007,82,252-264.
    [98]Rosell, R.; Cecere, F.; Cognetti, F.; et al. Future directions in the second-line treatment of non-small cell lung cancer. Semin. Oncol.2006,33, S45-S51.
    [99]Sato, M.; Shemes, D. S.; Gazdar, A. F.; Minna, J. D. A translational view of the molecular pathogenesis of lung cancer. J. Thorac. Oncol.2007,2,327-343.
    [100]Baker, N.; Clevers, H. Mining the Wnt pathway for cancer therapeutics. Nat. Rev. Drug Discov.2006,5,997-1014.
    [101]Rubin, L. L.; de Sauvage, F. J. Targeting the Hedgehog pathway in cancer. Nat. Rev. Drug Discov.2006,5,1026-1033.
    [102]Mimeault, M.; Batra, S. Interplay of distinct growth factors during epithelial mesenchymal transition of cancer progenitor cells and molecular targeting as novel cancer therapies. Ann. Oncol.2007,18,1605-1619.
    [103]Mimeault, M.; Batra, S. K. Functions of tumorigenic and migrating cancer progenitor cells in cancer progression and metastasis and their therapeutic implications. Cancer Metastasis Rev.2007,26,203-214.
    [104]Nicolis, S. K. Cancer stem cells and "stemness" genes in neurooncology. Neurobiol. Dis.2007,25,217-229.
    [105]Fodde, R.; Brabletz, T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr. Opin. Cell Biol.2007,19,150-158.
    [106]de Jonge-Peeters, S. D.; Kuipers, F.; de Vries, E. G.; Vellenga, E. ABC transporter expression in hematopoietic stem cells and the role in AML drug resistance. Crit. Rev. Oncol. Hematol,2007,62,214-226.
    [107]Hirschmann-Jax, C.; Foster, A. E.; Wulf, G. G.et al. A distinct "side population" of cells in human tumor cells:implications for tumor biology and therapy. Cell Cycle 2005,4,203-205.
    [108]Reya, T.; Clevers, H. Wnt signalling in stem cells and cancer. Nature 2005,434, 843-850.
    [109]Woodward, W. A.; Chen, M. S.; Behbod, F.; Rosen, J. M. On mammary stem cells. J. Cell Sci.2005,118,3585-3594.
    [110]Galmozzi, E.; Facchetti, F.; La Porta, C. A. M. Cancer stem cells and therapeutic perspectives. Curr. Med. Chem.2006,13,603-607.
    [111]Calabrese, C.; Poppleton, H.; Kocak, M.et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007,11,69-82.
    [112]Monzani, E.; La Porta, C. A. M. Targeting cancer stem cells to modulate alternative vascularization mechanisms. Stem Cell Rev.2008,4,51-56.
    [113]Sozzani, S.; Rusnati, M.; Riboldi, E. et al. Dendritic cell-endothelial cell cross-talk in angiogenesis. Trends Immunol.2007,28,385-392.
    [114]Scavelli, C.; Nico, B.; Cirulli, T. et al. Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene 2008,27,663-674.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700