用户名: 密码: 验证码:
室温熔盐电沉积在核工业应用中的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国际热核聚变实验堆(ITER)计划中,包层模块等关键部件表面需要制备阻氚涂层,以防止氚渗透。目前公认最被认可的阻氚涂层是具自修复性能的Al2O3/Fe-Al涂层,但如何在保持零部件力学性能的同时,适合异形件表面无缺陷阻氚涂层的制备,仍然是ITER计划中的技术难题之一。本论文提出了一种阻氚涂层制备的新技术路线:首先通过室温熔盐电沉积技术在金属表面镀铝;之后通过低温热处理在表面制备Fe-Al合金层;并进一步通过低温氧化,在Fe-Al涂层表面制备A1203膜。
     本文紧扣该技术路线,采用室温熔盐电沉积表面工程新技术和热处理、氧化等技术,以及CV曲线、XRD、SEM、EDS、XPS等手段,深入研究了不同金属基体上前处理工艺及电沉积参数等对室温熔盐电沉积铝镀层结合力及形貌的影响,探讨了热处理温度、时间,以及基体成分、结构、表面粗糙度等因素对Fe-Al涂层组成及相转变的影响规律,详细考察了基体与涂层之间空洞的形成机理及影响因素,并对不同金属基体上Fe-Al涂层的氧化进行了研究,对所得涂层进行了阻氚性能测试。得到了以下结果:
     利用酸性AICl3-EMIC室温熔盐对201、HR-2奥氏体和1Cr17铁素体不锈钢基体进行1 A/dm2、30 min阳极活化处理,可去除表面氧化膜;活化电流密度过低,基体产生局部腐蚀;更高的电流密度会导致镀液分解。室温下、0.5-3 A/dm2电流密度电沉积,可得到致密铝镀层,电流密度增加,晶粒细小,过高产生树枝状析出。电流密度2A/dm2时,5-40 min内,电流效率接近100%,铝镀层厚度与时间成线性上升关系;可通过控制电沉积时间制备不同厚度的铝镀层。
     201奥氏体不锈钢上17μm的铝镀层,经620℃-680℃低温热处理,可获得含铬、镍、锰合金元素的Fe-Al涂层。高于铝熔点时,在2~240 min范围内,随热处理时间增加,铝层逐渐消失,FeAl3和Fe2A15相继形成;铝层完全消失后,扩散以FeAl3为铝源继续进行,Fe2Al5相厚度继续增加,同时在基体和镀层之间形成FeAl相。低于铝熔点时,涂层组织转变有同样的规律,只是所需时间更长。当基体为1Crl7铁素体及HR-2奥氏体不锈钢时,热处理温度及时间对铝镀层组织转变的影响规律相似。依扩散理论计算可知,铝镀层较薄时,可通过低温短时间热处理制备韧性的FeAl涂层。HR-2上4μm的薄铝镀层经670℃、4h热处理后,可得到厚度均匀的韧性FeAl层,FeAl层及界面中无裂纹、空洞等缺陷。
     不同基体对低温热处理制备的Fe-Al涂层形貌有较大影响,各Fe-Al合金相中都固溶基体中的铬、锰、镍合金元素。基体中合金元素铬、镍、锰等的存在抑制了Fe2A15相的舌状生长,使201、HR-2奥氏体和1Crl 7铁素体不锈钢上Fe-Al涂层与基体的界面平坦。FeAl层厚度与热处理时间关系曲线遵循抛物线关系,基体的不同影响FeAl相的生成速度:1Cr17铁素体基体上FeAl相的生成速度最慢,而Q235基体上FeAl相的生成速度最快。
     镀铝基体在热处理时,会在FeAl相/基体界面上形成空洞。空洞的形成与热处理的温度、时间、基体粗糙度、晶体结构和合金元素等因素有关。镀铝的1Cr17基体在低于铝熔点的640℃下热处理100 h而无空洞,而在高于铝熔点的670℃热处理时,20 h便可观察到空洞,50h出现明显的圆形空洞;粗糙基体表面增加了铝的扩散通量,更易产生空洞,1Cr47喷砂粗化镀铝后,670℃热处理20 h的空洞形貌与抛光态镀铝热处理50h相似;面心立方结构的HR-2和201奥氏体不锈钢较体心立方结构的1Cr17不易形成空洞;HR-2即使喷砂处理,740℃、24 h热处理也观察不到空洞。采用室温熔盐镀铝制备铝化物涂层时,铝镀层越薄,铝的浓度梯度下降快,同时铝镀层薄,可采用低的热处理温度,这些因素都有利于抑制空洞的形成。
     1Cr17不锈钢上镀铝+热处理制备的Fe-Al涂层,可以在740℃大气气氛氧化获得A12O3,但氧化膜中含有Fe2O3,且涂层与基体之间存在明显的空洞缺陷。HR-2不锈钢上镀铝+热处理制备的Fe-Al涂层,在690℃-740℃大气气氛氧化,涂层与基体之间没有空洞等缺陷,得到的氧化膜中含Fe203和A12O3;在10-2Pa低氧势环境下,经700℃、80 h氧化,可在表面得到完整的A12O3膜,低氧势环境氧化可抑制铁氧化物的形成;Fe-Al涂层中铬的存在促进完整A12O3膜的形成。740℃对涂层阻氚性能进行测试,所得涂层渗透率降低因子PRF可达431。因而室温熔盐镀铝可以在不锈钢表面制备性能优异的阻氚涂层,是一条适合异型件表面阻氚镀层制备的新技术路线。
     本文还在室温熔盐镀铝成功应用于ITER计划中阻氚涂层制备的基础上,利用AlCl3-EMIC室温熔盐无水、无氧的特点,以易氧化的核材料耐蚀保护为目标,以化学性质活泼的La-Ce稀土与AZ91D镁合金为对象,进行了室温熔盐镀铝的研究,重点考察镀层与基体的结合,得到以下重要的结论:La-Ce稀土在煤油中进行打磨,并在氩气保护气氛中烘干,可有效去除表面氧化膜,并防止氧化膜的再产生;而AZ91D镁合金通过浓度为10wt.%的稀磷酸浸蚀20s,可在表面形成磷酸盐膜,抑制基体的再氧化。经上述前处理,在两种活泼金属表面得到了镀层致密、结合良好的纯铝镀层。
In the International Thermonuclear Experimental Reactor (ITER) project, tritium permeation barrier is necessary on the surface of TBM (Test Blanket Module). Al2O3 /Fe-Al layer with self-repairing performance is recognized as the best tritium permeation barrier. But how to prepare tritium permeation barrier on special-shaped surface and maintain mechanical performance of the matrix at the same time is still one of the technical problems. In this paper a new preparation technology of tritium permeation barrier is presented:at first, aluminum is electrodeposited on metal surface at room temperature molten salt; then Fe-Al alloy coating is prepared on the surface through low temperature heat treatment, and further Al2O3 film is prepared on the surface of the Fe-Al coating through low temperature oxidation.
     By means of the technology of electrodeposition at room temperature molten salt, heat treatment and thermal oxidation and the methods such as CV, XRD, SEM, EDS and XPS, the effects of pretreatment on different metal matrix and electrodeposition parameters at room temperature molten salt on adhesion and morphology are studied, and further the effects of heat treatment temperature, time, matrix composition, matrix structure and surface roughness on phase structure and phase transformation of Fe-Al coating are studied. At the same time the formation mechanism and influence factors of the voids between the coating and matrix are studied. At last the oxidation of Fe-Al coating on different metal matrix is studied and tritium resistivity test is carried out. Through the research, the following conclusion can be concluded:
     Through anode activation treatment of 1 A/dm2,30 min at AlCl3-EMIC room temperature molten salt on 201, HR-2 austenitic and 1Cr17 ferritic stainless steel matrix, oxide film on the surface is removed; if the activation current density is too low, localized corrosion will be produced on the matrix and higher current density would lead to the plating liquid decomposition. Compact aluminum coating will be electrodeposited with the current density of 0.5-3 A/dm2, and with the increase of current density, grain size become smaller. Dendritic crystal will appear if current density is too high. Current efficiency is close to 100% with the current density of 2 A/dm2, during 5-40 min. Aluminum coating thickness linear increase with the time increase. Through controlling the electrodeposition time, different thickness of aluminum coating can be obtained.
     After the aluminum coating of 17μm on 201 austenitic stainless steel is heat treated at low temperature of 620℃~680℃, Fe-Al coating with the alloy element of chrome, nickel will form. The aluminum layer gradually disappeared with the heat treatment time increases at the temperature higher than aluminum melting point in 2~240 min range. FeAl3 and Fe2Al5 form in succession; after the aluminum layer disappear completely, diffusion continue with FeAl3 as aluminum source and the thickness of Fe2Al5 phase continues to increase, at the same time FeAl phase forms between the coating and the matrix. Below the melting point of aluminum, the rule of the phase transformation is similar, just the transformation time is longer. When the matrix is 1Cr17 ferrite and HR-2 austenitic stainless steel, the rule is similar. According to the diffusion theory, FeAl layer can be prepared through short time heat treatment at low temperature. After aluminum coating of 4μm on HR-2 is heat treated at 670℃/4h, FeAl layer with uniform thickness can form and there is no defects such as cracks and voids at the interface and FeAl layer.
     The morphology of Fe-Al layer prepared by low temperature heat treatment is different on different matrix. Alloy elements of chromium, manganese, nickel appears in Fe-Al alloy phase as the solid solution. The exist of chromium, nickel, manganese inhibit the growth of Fe2Al5 phase like tongue, so that the interface between Fe-Al layer and 201, HR-2 austenitic and 1Cr17 ferritic stainless steel is flat. The curve of FeAl layer thickness with heat treatment time is a parabola. The generating speed of FeAl phase is different:FeAl generation rate on 1Cr17 ferrite matrix is the slowest, and the rate on Q235 matrix is the quickest.
     Voids appears at the interface of FeAl and matrix during the heat treatment. Void formation is related with heat treatment temperature, time, roughness of matrix, crystal structure and alloy elements. At the heat treatment temperature of 640℃below the melting point of aluminum, there is no void on the interface between the FeAl layer and 1Cr17 matrix even the heat treatment time is 100 h, but at 670℃above the melting point of aluminum, voids are observed after 20 h heat treatment. Circular voids are observed after 50 h heat treatment. Rough surface of the matrix increases the aluminum diffusion flux, so voids forms easier. The void morphology of sandblasted 1Cr17 heat treated with 670℃/20 h is similar with polishing 1Cr17 heat treated with 670℃/50. Voids form easier on the interface of HR-2 and 201 austenitic stainless steel with face-centered cubic structure than 1Cr17 with body-centered cubic structure. There is no void even after 740℃/24 h heat treatment on sandblasted HR-2 matrix.
     In the atmosphere, Al2O3 can be observed after the Fe-Al layer on 1Cr17 thermal oxidized at 740℃, but Fe2O3 is observed too, and there exist voids between Fe-Al and the matrix. The oxide film containing Fe2O3 and Al2O3 after the Fe-Al layer on HR-2 thermal oxidized at 690℃-740℃in the atmosphere and there is no void at the interface. But in 10-2 Pa hypoxia potential environment, intact Al2O3 film can be obtained after thermal oxidation at 700℃/80 h. Hypoxia potential can inhibit iron oxide formation. Chromium in Fe-Al layer promotes the formation of intact Al2O3 film. Tritium resistivity test is carried out at 740℃, the permeability reduction factor PRF is 431.
     In the base of the successful application of electrodeposition aluminum on prepare tritium permeation barrier at room temperature molten salts in the ITER project, the studied of electrodeposition aluminum on active La-Ce rare earth and AZ91D magnesium alloy in AlCl3-EMIC at room temperature molten salt is carried out which focuses on the adhesion between coating and matrix. The following important conclusions can be drawed:oxide film can be effectively removed after the La-Ce rare earth polished in kerosene and dried in argon atmosphere and this pretreatment can prevent the oxide film to produce. After the AZ91D magnesium alloy etched for 20 seconds in dilute phosphoric acid with concentration of 10 wt.%, phosphate film can be obtained on the surface which can inhibit the formation of oxide film. After the pretreatment, dense and pure aluminum coating with good adhesion can be obtained on the surface of the two kind of active metal.
引文
[1]冯开明.可控核聚变与国际热核实验堆(ITER)计划[J].中国核电,2009,2(3):212-219.
    [2]刘松林,汪卫华,龙鹏程,李春京,吴宜灿ITER中国液态锂铅实验包层模块结构设计与加工[J].核科学与工程,2006,26(1):92-96.
    [3]K.M. Feng, C.H. Pan, G.S. Zhang. Overview of design and R&D of solid breeder TBM in China[J]. Fusion Engineering and Design,2008,83(2008):1149-1156.
    [4]T. Muroga, M. Gasparotto, S.J. Zinkle. Overview of Materials Research for Fusion Reactors Fusion Engineering and Design,2002,13(2006):61-62.
    [5]黄群英.聚变堆结构材料:中国低活化马氏体钢设计与性能研究[D].合肥:中国科学院等离子体物理研究所,2006.
    [6]Y. Gang, X. Li, J. Yu. Helium effects on EUROFER97 martensitic steel irradiated by dual-beam from 1 to 50 dpa at 250 and 300℃ with 10 He appm/dpa[J]. Journal of Nuclear Mater-ials,2004,329-333:1003-1007.
    [7]Q. Huang, C. Li, Y. Li. Progress in development of China Low Activation Martensitic steel for fusion application[J]. Journal of Nuclear Materials,2007,367-370(1):142-146.
    [8]T. Hirose, K. Shiba, M. Enoeda. Corrosion and stress corrosion cracking of ferritic/martensitic steel in super critical pressurized water[J]. Journal of Nuclear Materials,2007,367-370(2): 1185-1189.
    [9]Y. Yano, T. Yoshitake, S. Yamashita. Tensile and transient burst properties of advanced ferritic-martensitic steel claddings after neutron irradiation[J]. Journal of Nuclear Materials,2007, 367-370(1):127-131.
    [10]S. Raju, B. J. Ganesh, A.K. Rai. Measurement of transformation temperatures and specific heat capacity of tungsten added reduced activation ferritic-martensitic steel[J]. Journal of Nuclear Materials,2009,389(1):385-393.
    [11]Y. Dai, W. Wagner. Materials researches at the Paul Scherrer Institute for developing high power spallation targets[J]. Journal of Nuclear Materials,2009,389(2):288-296.
    [12]B. Beidokhti, A. Dolmi, H. Koukabi. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking[J]. Materials Science and Engineering,2009,507(1-2):167-173.
    [13]S. Curtze, V.T. Kuokkala, M. Hokka, P. Peura. Deformation behavior of TRIP and DP steels in tension at different temperatures over a wide range of strain rates[J]. Materials Science and Engineering,2009,507(1-2):124-131.
    [14]M. Goodarzi, S.P.H. Marashi, M. Pouranvari. Dependence of overload performance on weld attributes for resistance spot welded galvanized low carbon steel[J]. Journal of Materials Processing Technology,2009,209(9):4379-4384.
    [15]P. Bala Sdnivasan, M.P. Satish Kumar. Microstructural and electrochemical characterization of a tllin-section dissimilar stainless steel weld joint[J]. Materials Chemistry and Physics, 2009,115(1):179-184.
    [16]H. Mirzadeh, A. Najafizadeh. ANN modeling of strain-induced martensite and its applications in metastable austenitic stainless steels[J]. Journal of Alloys and Compounds, 2009,476(1-2):352-355.
    [17]黄群英,李春京,李艳芬.中国低活化马氏体钢CLAM研究进展[J].核科学与工程,2007,27(1):41-50.
    [18]Y. Torikai, D. Murata. Migration and release behavior of tritium in SS 316 at ambient temper-ature[J]. Journal of Nuclear Materials,2007, (363-365):462-466.
    [19]M. Nakamichi, H. Kawamura, T. Teratani. Characterization of chemical densified coating as tritium permeation barrier[J]. Journal of Nuclear Science and technology,2001,38(11): 1007-1013.
    [20]M. Nakamichi, H. Kawamura, T. Teratani. Development of ceramic coating as tritium perme-ation barrier[J]. Fusion Science and Technology,2002,41(3):939-942.
    [21]刘红兵,陶杰,张平则.防氚渗透涂层制备技术的研究进展[J].材料导报,2006,20(9):47-54
    [22]K. A. Khor, Y.W. Cu. Thermal properties of plasma-sprayed functionally graded thermal barrier coatings[J]. Thin Solid Film,2000,372:104-113.
    [23]G.W. Hollenberg. Tritium-hydrogen barrier development[J]. Fusion Engineering and Design, 1995,28:190-198.
    [24]D.L.Smith, J.Konys, T. Muroga, V. Evitldain. Development of coatings for fusion power app-lications[J]. Journal of Nuclear Materials,2007,307-311:1314-1322.
    [25]A. Aiello, I. Ricapito, G. Benamati, A. Ciamichetti. Fusion Engineering and Design,2003,69: 245-250.
    [26]D. Levchuk, F. Koch, H, Mater, H, Bolt. Deuterium permeation through Eurofer and a-alumina coated Eurofer[J]. Journal of Nuclear Materials,2004,328(2-3):103-106.
    [27]沈嘉年,李凌蜂,张玉娟.不锈钢表面渗铝并热氧化处理对氢渗透的影响[J].腐蚀科学与防护技术,2005,17(1):15-19.
    [28]E. Serra, P.J. Kelly, D.K. Ross. Alumina sputtered on MANET as an ective deuterium perme-ation barrier[J]. Journal of Nuclear Materials,1998,257:194.
    [29]H. Peter, S. Tony, T. Anne. Stability of tritium permeation barriers and the self-healing capa-bility of aluminized coatings in liquid Pb-17Li[J]. Fusion Technology,995, 28(3):1194-1199.
    [30]J. Konys, A. Aiello, G. Benamati. Status of tritium permeation barrier development in the EU [J]. Fusion Science and Technolgy,2005,47(4):844-850.
    [31]R. Brill, F. Koch, J. Mazurelle. Crystal structure charactrisation of filtered are deposited alu-mina coatings:temperature and bias voltage[J]. Surface and Coating Technology,2003, 174-175:606-610.
    [32]王佩璇,宋家树.材料中的氦及氚渗透[M].北京:国防工业出版社,2002:88-92.
    [33]H. Glasbrenner, K. Stein, J. Konys. Scale structure of aluminised Manet steel after HIP treat-ment[J]. Journal of Nuclear Materials,2000,283-287:1302-1304.
    [34]T. Takayuki. Research and development on ceramic coatings for fusion reactor liquid blankets [J]. Journal of Nuclear Materials,1997,248:153-158.
    [35]H. Glasbrenner, J. Konys. Investigation on hot-dip aluminised and subsequent HIP steel sheet [J]. Journal of Nuclear Materials,2001,58-59:725-729.
    [36]H. Glasbrenner, J. Konys, Z. Voss. Corrosion behaviour of Al based tritium permeation barri-ers in flowing Pb-17Li[J]. Journal of Nuclear Materials,2002,307-311:1360-1363.
    [37]C. Chabrol, E. Rigal, E. Schuster. Report CEA, CEA Grenoble 1997:73-97.
    [38]A.S. Luis, C. Rainer. Modelling tritium extraction/permeation and evaluation of permeation barriers under irradiation[J]. Journal of Nuclear Materials,1996,233:1411.
    [39]C. Chabrol, F. Schuster, E. Serra. Development of Fe-Al CVD coating as tritium permeation barrier[R]. Proc.20th Symp.on Fus. Techn., Marseille, France, September,1998:7-11.
    [40]G. Benamati, C. Chabrol, A. Perujo. Development of tritium permeation barriers on Al base in Europe [J]. Journal of Nuclear Materials,1999,271-272:391-395.
    [41]占勤,杨洪广,赵崴巍,袁晓明.渗铝-真空预氧化制备FeAl/Al2O3防氚渗透涂层性能[J].材料热处理学报,2008,29(2):158-161.
    [42]沈嘉年,李凌峰,张玉娟.不锈钢表面包埋渗铝-热氧化处理制备氧化铝膜及其对氢渗透的影响[J].原子能科学技术,2005,39:73-78.
    |43] G.W. Hollenberg. Tritium/hydrogen barrier development[J]. Fusion Engineering and Design, 1995,28:190-208.
    [44]C. Fazio, K. Stein-Fechner, E. Serra. Investigation on the suitability of plasma sprayed Fe-Cr-Al coatings as tritium permeation barrier[J]. Journal of Nuclear Materials,1999,273:233.
    [45]A. Perujo, T. Sample, H. Kolbe. Report JRC EUR 18949 EN, JRC Ispra 1998.
    [46]姚振宇,M. Chini, A. Aiello, G. Benamati带热浸铝涂层MANET Ⅱ马氏体钢的氢渗透性能研究[J].核科学与工程,2002,22(1):36-42.
    [47]A. Aiello, A. Ciampichetti, G. Benamati. An overview on tritium permeation barrier develop-ment for WCLL blanket concept[J]. Journal of Nuclear Materials,2004,329-333:1398-1402.
    [48]D. Levchuk, S. Levchuk, H. Maier, H. Bolt, A. Suzuki. Erbium oxide as a new promising tritium permeation barrier[J]. Journal of Nuclear Materials,2007,367-370:1033-1037.
    [49]D. Levchuk, S. Levchuk, H. Maier, H. Bolt, A. Suzuki. Erbium oxide as a new promising tritium permeation barrier[J]. Journal of Nuclear Materials,2007,183:1832-1845.
    [50]D. Levchuk, H. Bolt, M. Dobeli, S. Eggenberger, B. Widrig, J. Ramm. Al-Cr-O thin films as an efficient hydrogen barrier[J]. Surface & Coatings Technology,2008,202:5043-5047.
    [51]H.B. Liu, J. Tao, J. Xu, Z.F. Chen, X.J. Sun, Z. Xu. Microstructure characterization of oxi-dation of aluminized coating prepared by a combined process[J]. Journal of Nuclear Mater-ials,2008,378:134-138.
    [52]M. Nakamichi, H. Nakamura, K. Hayashi, I. Takagi. Impact of ceramic coating deposition on the tritium permeation in the Japanese ITER-TBM[J]. Journal of Nuclear Materials,2009, 386-388:692-695.
    [53]王立平,高燕,胡丽天.电沉积功能梯度材料的研究现状及展望[J].表面技术,2006,35(2):1-3.
    [54]G.R. Stafford, B. Grushko, R.D. McMichael. The electrodeposition of Al-Mn ferromagnetic phase from molten salt electrolyte[J]. Journal of Alloy and Compound,1993,200:107-113.
    [55]T.P. Moffat. Electrodeposition of Al-Cr metallic glass[J]. Journal of the Electrochemical Society,1994,141(9):115-117.
    [56]T.P. Moffat. Electrodeposition of Ni1-xAlx in a chloroaluminate melt[J]. Journal of the Electro-chemical Society,1994,141(11):3059-3070.
    [57]刘建国,李治国,田鹏.一种新的绿色溶剂-室温离子液体[J].辽宁大学学报,2003,30(2):179-184.
    [58]W. Thomas. Room temperature ionic liquids:solvents for synthesis and catalysis[J]. Chemi-cal Reviews,1999,99(8):2071-2083.
    [59]D. Jairton, S. Crestina. Room temperature molten salts:Neoteric "Green" solvents for chemical reactions and processes[J]. Journal of the Brazilian Chemical Society,2000, 11(4):337-344.
    [60]F.H. Hurley, T.P. Wier. Journal of Electrochemistry Society,1951,98:203.
    [61]J. Robonson, R.A. Osteryoung. Journal of the American Chemical Society,1979,102(2):323-327.
    [62]J.S. Wilkes, J.A. Levisky, R.A. Wilson, C.L. Hussey. Inorganic Chemistry,1982,21:1263-1268.
    [63]J.S. Wilkes, M.J. Zaworotko. Air and water stable 1-ethyl-3-methylimidazolium based ionic Liquids[J]. Journal of Chemical Society,1992,13:965-967.
    [64]J. Fuller, R.T. Carlin, D. Long, H.C. Haworth. Structure of 1-ethyl-3-methylimidazolium hex-afluoro hosphate:Made for room temperature molten salts[J]. Journal of Chemical Society, 1994,11:299-301.
    [65]S. Takaya, M. Gen, T. Kentaro. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications[J]. Electrochimica Acta,2004,49:3603-3611.
    [66]B. Garcia, S. Lavalle, G. Perron. Room temperature molten salts as lithium battery electrolyte [J]. Electrochimica Acta,2004,49:4583-4588.
    [67]K. Matsumoto, R. Hagiwara. A new room temperature ionic liquid of oxyfluorometallate anion:1-ethyl-3-methylimidazolium oxypentafluorotungstate (EMIm-WOF5)[J]. Journal of Fluorine Chemistry,2005,126:1095-1100.
    [68]A.M. Leone, S.C. Weatherly, M.E. Williams. An ionic liquid form of DNA:Redox-active molten salts of nucleic acids[J]. Journal of the American Chemical Society,2001,123(2): 218-222.
    [69]J. Robinson, R.C. Bugle, H.L. Chum.1H and 13C nuclear magnetic resonance spectroscopy studies of aluminum halide-alkylpyridinium halide molten salts and their benzene solutions [J]. Journal of the American Chemical Society,1979,101(14):3776-3779.
    [70]Shiddiky, J.A. Muhammad. Application of ionic liquids in electrochemical sensing systems[J]. Biosensors & Bioelectronics.26(5),2011:1775-1787
    [71]C.H. Lee, K.Y. Liu, S.H. Chang. Gelation of ionic liquid with exfoliated montmorillonite nanoplatelets and its application for quasi-solid-state dye-sensitized solar cells[J]. Journal of Colloid and Interface Science 363(2),2011:635-639
    [72]段淑贞,刘兴江,王新东.Cr(Ⅱ)在LiCl-KCl共晶熔盐体系中的电极过程研究[J].稀有金属,1992,16(3):175-177.
    [73]Q.X. Liu, S. Zein, E. Abedin, F. Endres. Electroplating of mild steel by aluminium in a first generation ionic liquid:A green alternative to commercial Al-plating in organic solvents [J]. Surface and Coatings Technology,2006,201(3-4):1352-1356.
    [74]S. Caporali, A. Fossati, A. Lavacchi, I. Perissi, A. Tolstogouzov, U. Bardi. Aluminium electro-plated from ionic liquid as protective coating against steel corrosion[J]. Corrosion Science,2008,50(2):534-539.
    [75]钱红妹,李岩,凌国平.酸浸蚀处理对AZ91D镁合金室温熔盐镀铝的影响[J].中国有色金属学报,2009,19(5):854-860.
    [76]T. Tsuda, C.L. Hussey. Electrodeposition of photocatalytic AllnSb semiconductor alloys in the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride room-temperature ionic liquid [J]. Thin Solid Films,2008,516(18):6220-6225.
    [77]P.Y. Chen, C.L. Hussey. The electrodeposition of Mn and Zn-Mn alloys from the room-temperature tri-1-butylmethylammonium bis((trifluoromethane)sulfonyl)imide ionic liquid[J]. Electrochimica Acta,2007,52(5):1857-1864.
    [78]S. Legeai, S. Diliberto, N. Stein, C. Boulanger, J. Estager, N. Papaiconomou, M. Draye. Room-temperature ionic liquid for lanthanum electrodeposition[J]. Electrochemistry Communications,2008,10(11):1661-1664.
    [79]M.J. Deng, P.Y. Chen, I.W. Sun. Electrochemical study and electrodeposition of manganese in the hydrophobic butylmethylpyrrolidinium bis(trifluoromethyl)sulfonyl) imide room-temperature ionic liquid [J]. Electrochimica Acta,2007,53(4):1931-1938.
    [80]B. Bozzini, E. Tondo, A. Bund, A. Ispas, C. Mele. Electrodeposition of Au from [EMIm][TFSA] room-temperature ionic liquid:An electrochemical and Surface-Enhanced Raman Spectroscopy study[J]. Journal of Electroanalytical Chemistry,2011,651(1):1-11.
    [81]O. Raz, G. Cohn, W. Freyland, O. Mann, Y. Ein-Eli. Ruthenium electrodeposition on silicon from a room-temperature ionic liquid[J]. Electrochimica Acta,2009,54(25):6042-6045.
    [82]M.J. Deng, I.W. Sun, P.Y. Chen, J.K. Chang, W.T. Tsai. Electrodeposition behavior of nickel in the water- and air-stable 1-ethyl-3-methylimidazolium-dicyanamide room temperature ionic liquid[J]. Electrochimica Acta,2008,53(19):5812-5818.
    [83]Y.L. Zhu, Y. Katayama, T. Miura. Effects of acetonitrile on electrodeposition of Ni from a hydrophobic ionic liquid[J]. Electrochimica Acta,2010,55(28):9019-9023.
    [84]S. Zein El Abedin, N. Borissenko. Electrodeposition of nanoscale silicon in a room temper-ature ionic liquid[J]. Electrochemistry Communications,2004,6(5):510-514.
    [85]Y. Bando, Y. Katayama, T. Miura. Electrodeposition of palladium in a hydrophobic 1-n-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide room temperature ionic liquid [J]. Electrochimica Acta,2007,53(1):87-91.
    [86]I. Mukhopadhyay, C.L. Aravinda, D. Borissov, W. Freyland. Electrodeposition of Ti from TiCl4 in the ionic liquid 1-methyl-3-butyl-imidazolium bis (trifluoro methyl sulfone) imide at room temperature:study on phase formation by in situ electrochemical scanning tunneling microscopy [J]. Electrochimica Acta,2005,50(6):1275-1281.
    [87]S. Zein El Abedin, A.Y. Saad, H.K. Farag, N. Borisenko, Q.X. Liu, F. Endres. Electrodeposi-tion of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures[J]. Electrochimica Acta,2007,52(8):2746-2754.
    [88]J.L. Lae, A. Daniel, Scherson.Wheeler underpotential deposition of aluminum and alloy formation on polycrystalline gold electrodes from AICl3/EMIC room temperature molten salts[J].Journal of the Electrochemical Society,2000,147(2):562-566.
    [89]C.C. Yang. Electrodeposition of aluminum in molten AlCl3-n-butylpyridinium chloride Electrolyte[J]. Materials Chemistry and Physics,1994,37(4):335-361.
    [90]R.T. Carlin, W. Crawford, M. Bersh. Mucleation and morphology studies of aluminum deposited from an ambient temperature chloroaluminate molten salt[J]. Journal of the Electrochemical Society,1992,139(10):2720-2727.
    [92]M.R. Ali, A.Nishikata, T. Tsuru. Electrodeposition of aluminumchromium alloys from AlCl3-BPC melt and its corrosion and high temperature oxidation behaviors[J]. Electrochimica Acta,1997,42(15):2347-2354.
    [93]Q.X. Liu, S. Zein, E. Abedin. Electroplating of mild steel by aluminium in a first generation ionic liquid:A green alternative to commercial Al-plating in organic solvents,Surface & Coatings Technology,2006,201:1352-1356.
    [94]J.K. Chang, S.Y. Chen, W.T. Tsai, M.J. Deng, I.W. Sun. Electrodeposition of aluminum on magnesium alloy in aluminum chloride (AlCl3)-1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and its corrosion behavior[J]. Electrochemistry Communications, 2007,9(7):1602-1606
    [95]韩文生,谢锐兵,萧以德.钕铁硼稀土永磁材料室温熔盐电镀铝的研究[J].材料保护,2005,38(10):1-4.
    [96]T. Yatsushiro, N. Koura, S. Nakano. Electrodeposition of aluminum-Carbon Nanotube Composite from room-temperature molten salt electrolyte[J]. Journal of the Electro-chemical Society,2006,74(3):233-236.
    [97]李铁藩.金属高温氧化和热腐蚀-腐蚀与防护全书.北京:化学工业出版社,2003:24-26.
    [98]R.Z. Hu, S.L. Gao, F.Q. Zhao. Thermal Analysis Kinetics.北京:科学出版社.2008:17-19.
    [99]H. Hsu, G.J. Yurek. Oxid,1982,17:55.
    [100]N.A. Ziegler. Resistance of iron-aluminum alloys to oxidation at high temperatures[J]. Transactions of American Institude of Mining and Metallurgical Engineers,1932,100:267-271.
    [101]C.G. McKamey. A review of recent developments on Fe3Al-based alloys[J]. Journal of Materials Research,1991,6(8):1779.
    [102]鞠玲玲,刘俊友.铸造Fe3Al合金的高温抗氧化性能研究与应用[J].河北科技大学学报,2004,25(4):37-39.
    [103]P.Tomaszewicz, G.R. Wailwork. Observations of nodule growth during the oxidation of pure binary iron-aluminum alloys[J]. Oxidation of Metals,1983,19:165-168.
    [104]W.E. Boggs. The oxidation of iron-aluminum alloys from 450℃ to 900℃[J]. Journal of Electrochemistry Society,1971,118(6):906-913.
    [105]H. Stott, C.Y. Shih. High temperature corrosion of iron chromium alloys in oxidation chloridizing conditions[J]. Oxidation of Metals,2000,54:425.
    [106]Z.G. Zhang, F. Gesmundo, P.Y. Hou, Y. Niu. Criteria for the formation of protective Al2O3 scales on Fe-Al and Fe-Cr-Al alloys[J]. Corrosion Science,2006,48:741-765.
    [107]B.A. Pint, P.F. Tortorelli, I.G. Wright. Effect of cycle frequency on high-temperature oxi-dation behavior of alumina-forming alloys[J]. Oxidation of Metals,2002,58(1/2):73-101.
    [108]张志刚,张学军,潘太军,牛焱.Fe-Al和Fe-Cr-Al合金在高温下的初期氧化[J].钢铁研究,2007,35(3):38-43.
    [109]J.R. Regina, J.N. DuPont, A.R. Marder. Gaseous corrosion resistance of Fe-Al-based alloys containing Cr additions, Part 1:Kincetic results[J]. Materials Science and Engineering A, 2005,404:71-78.
    [110]J.R. Regina, J.N. DuPont, A.R. Marder. Gaseous corrosion resistance of Fe-Al-based alloys containing Cr additions, Part Ⅱ:Scale morphology[J]. Materials Science and Engineering A,2005,405:102-110.
    [111]W.L. Zhang, B. Peng, H.C. Jiang, W.X. Zhang. Hydrogen embrittlement processes and Al/Al2O3 hydrogen resistance coatings of NdFeB magnets[J]. Journal of Rare Earth,2004, 22(5):636-639.
    [112]S. Uran, B. Veal, M. Grimsditch, J. Pearson, A. Berger. Effect of surface roughness on oxidation:Changes in scale thickness, composition, and residual stress[J]. Oxidation of Metals,2000,54:73-85.
    [113]张鹏,杨奇,王飞舟.室温离子液体的研究进展[J].辽宁化工,2003,32(2):68-72.
    [114]苏立峰,李亚琼,吴开基.离子液体1-丁基-3-甲基咪唑-氯铝酸盐体系的电化学研究[J].材料与冶金学报,2009,8(2):95-99.
    [115]M.R. Ali, A. Nishikata, T. Tsuruh. Electrodeposition of Al-Ni intermetallic compounds from aluminum chloride-N-(n-butyl) pyridinium chloride room temperature molten salt[J]. Journal of Electroanalytical Chemistry,2001,513:111-118.
    [116]P.Y. Chen, I.W. Sun. Electrochemical study of copper in a basic 1-ethyl-3-methylimi-dazolium tetrafluoroborate room temperature molten salt[J]. Electrochimica Acta, 1999,45:441-450.
    [117]白晓军,金展鹏.不锈钢基体上Ni-HAP复合镀层结合强度的研究[J].电镀与环保,2000,20(1):6-8.
    [118]凌国平,逄请强.室温熔盐电镀的研究进展.化学通报(网络版),2000,C00035.
    [119]Massalski, T. B. Ed. Binary Alloy Phase Diagrams, Second Edition, ASM International, Materials Park, OH,1990.
    [120]D.Q. Wang. Phase evolution of an aluminized steel by oxidation treatment[J].Applied Surface Science,2008,254:3026-3032.
    [121]林高用,郑小燕,冯迪,杨伟,张胜华.热处理状态对H13模具钢渗氮层的影响[J].钢铁,2008,43(12):63-66.
    [122]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,1998:320-484.
    [123]陈涛,常海威,雷明凯.Al离子注入Fe靶的表面合金化研究[J].金属学报,2005,41(4):417-420.
    [124]孙振岩,刘春明.合金中的扩散与相变[M].沈阳:东北大学出版社,2002:1-91.
    [125]王兴庆,隋永江,吕海波.铁铝原子在金属间化合物形成中的扩散[J].上海大学学报,1998,4(6):661-666.
    [126]魏无际,丁毅,石焕荣.Q235钢热浸渗铝层的组织分析和性能[J].南京化工大学学报,2000,22(6):10-13.
    [127]夏原,姚枚,李铁藩.Q235钢热浸铝初期镀层组织结构的变化[J].金属热处理学报,1998,19(2):234-238.
    [128]F. Barbier, D. Manuelli, K. Bouche. Characterization of aluminide coatings formed on 1.4914 and 316L steels by hot-dipping in molten aluminium[J]. Scripta Materialia.1997,36:425-431.
    [129]邓文,熊良钺,王淑荷,郭建亭,龙期威. Fe-Al系金属间化合物中的微观缺陷和电子密度[J].金属学报,2002,38(5):453-457.
    [130]P.R. Munroe, I. Baker. Scripta Metall. Mater.,1990,24:2273-2278.
    [131]B. Grushko, T. Velikanova. Formation of quasiperiodic and related periodic intermetallics in alloy systems of aluminum with transition metals[J]. Computer Coupling of Phase Diagrams and Thermochemistry,2007,31:317-332.
    [132]马兹希拉特著,赖和怡等译.合金扩散和热力学[M].北京:冶金工业出版社,1984:126.
    [133]赵磊,孙勇,李玉阁,孟秀凤,宋群玲.微合金化元素对Fe-Al界面结合的第一性原理研究[J].原子与分子物理学报,2007,24(4):853-857.
    [134]张伟,文九巴,龙永强.渗铝钢扩散层空洞对循环氧化和剥落性能的影响[J].材料热处理学报,2004,25(6):96-100.
    [135]武汉材料保护研究所.钢铁化学热处理金相图谱[M].北京:机械工业出版社,1980:70-79.
    [136]张伟.热浸镀铝钢A1203/渗铝层界面空洞生长动力学研究[J].材料工程,2007,5:36-38.
    [137]J.S. Sheasby. Powder metallurgy of iron-aluminum[J]. Powder Metal Powder Technol,1979, 21(4):301.
    [138]D.J. Lee, R.M. German. Sintering behavior of iron-aluminum powder mixes[J]. Powder Metall Powder Technol,1985,21(1):9.
    [139]夏立方,张振信.金属中的扩散[M].哈尔滨:哈尔滨工业大学出版社,1989:108-113.
    [140]B. Wierzba, S. Chevalier, O. Politano. Numerical determination of intrinsic diffusion coefficient of aluminide coatings on metals[J]. Diffusion in Materials,2009,289-292:269-276.
    [141]H. Skoglund, M. Knutson-Wedel, B. Karlsson, Diffusion of Al during hot consolidation of FeAl[J]. Acta Materialia,2006,54(15):3853-3861.
    [142]M. Salamon, H. Mehrer. Interdiffusion, Kirkendall effect, and Al self-diffusion in iron-aluminium alloys[J]. Z. Metallk.,2005,96(1):4-16.
    [143]M. Fahnle, J. Mayer. Theory of atomic defects and diffusion in ordered compounds and application to B2-FeAl[J]. Intermetallics,1999,7(3/4).
    [144]L.S. James, D. Joseph, J.G. Darrell. Oxidation behavior of FeAl+Hf,Zr,B[J]. Oxidation of Metals,1990,34:259-266.
    [145]A. Gil, V. Shemet, R. Vassen. Effect of surface condition on the oxidation behaviour of MCrAlY coatings[J]. Surface and Coatings Technology,2006,201(7):3824-3828.
    [146]K.S. Forcey, D.K. Ross, C.H. Wu. The formation of hydrogen permeation barriers on steels by aluminizing[J]. Journal of Nuclear Materials,1991,182:36-51.
    [147]D.O. Gittings, D.H. Rowland, J.O. Mack. Effect of bath composition on aluminum coatings on steel[J]. Transactions of the American Society for Metals,1951,43:587-610.
    [148]黄志勇,饶咏初,彭丽霞.几种不锈钢的氘渗透扩散测量[R].中国工程物理研究院2008.
    [149]山常起.氚与防氚渗透材料[M].北京:原子能出版社,2005:22-24.
    [150]D. Levchuk. Gas-driven deuterium permeation through Al2O3 coated samples[J]. Physica Scripta.2004, T108:119-123.
    [151]郝嘉琨,山常起,金柱京.316L不锈钢表面A1203镀层中氚的扩散渗透行为[J].核聚变与等离子体物理,1996,16(2):62-68.
    [152]P. Juzon. Improving Fe3Al alloy resistance against high temperature oxidation by pack cementation process[J]. Applied Surface Science,2007,253:4928-4934.
    [153]刘祥荣,张树增,姜锦程. FeAl基合金的高温抗氧化性能分析[J].材料热处理技术,2009,38(20):38-41.
    [154]庞晓轩,沈保罗,尹昌耕.铀及铀合金防护镀层的研究进展[J].材料导报,2007,21(1):72-74.
    [155]L.J. Weirick. Evaluation of metallic coatings for the corrosion protection of a uranittm-3/4 weight percent titanium alloy[R]. Sandia Laboratory Report. SLL-73-5024,1974.
    [156]F.C. Chang, M. Levy, B. Jackman. Assessment of corrosion-resistant coatings for a depleted uranium -0.75 titanium alloy[J]. Surface and Coatings Technology,1991,48:31.
    [157]黄明,姜雯,张丽鹏,于先进.熔盐电镀铝合金的研究进展[J].现代技术陶瓷,2010,3:17-22.
    [158]X.H. Wang, Z.H. Yang, W.X. Li. Effect of TMA on structure and corrosion resistance of aluminum coatings from molten salt[J]. Journal of Chinese Society for Corrosion and Protection,2009,29(5):360-364.
    [159]长崎诚三,平林真.二元合金状态图集[M].北京:冶金工业出版社,2004:107-108.
    [160]Q.B. Ren, P.C. Zhang, M.F. Chu. Process of surface oxidation of Ce-5% La alloy[J]. Journal of the Chinese Rare Earth Society,2007,25(6):730-735.
    [161]L. Luo, X. Wang, X. Fu, Y. Zhang, Z. Zhao, C. Liu.Study on surface and bulk properties of Ce-5% Lanthanum alloy[J]. Journal of Rare Earths,2004,22(12):22-24.
    [162]A.A. Dakhel. Structural and Ac electrical properties of oxidized La and La-Mn thin films grown on Si substrates[J]. Materials Chemistry and Physics,2007,102(2-3):266-270.
    [163]J.K. Chang, I.W. Sun, S.J. Pan, M.H. Chuang, M.J. Deng, W.T. Tsai. Electrodeposition of Al coating on Mg alloy from Al chloride/1-ethyl-3-methylimidazolium chloride ionic liquids with different Lewis acidity [J].Transactions of the Institute of Metal Finishing,2008, 86(4):227-233.
    [164]王一建,钟金环,黄乐,施国颖.金属工件涂装前处理技术的现状与展望[J].涂料工业,2009,39(12):24-27.
    [165]S.J. Pan, W.T. Tsai, J.K. Chang, I.W. Sun. Co-deposition of Al-Zn on AZ91D magnesium alloy in AlCl3-1-ethyl-3-methylimidazolium chloride ionic liquid[J]. Electrochimica Acta, 2010,55:2158-2162.
    [166]肖泽辉,张仁.镁合金激光表面处理技术[J].电镀与涂饰,2008,27(11):28-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700