用户名: 密码: 验证码:
扬子陆核古老地壳及其深熔产物花岗岩的地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究前寒武纪大陆地壳的形成和演化规律,是理解大陆动力学、发展板块构造理论的重要方向之一。湖北省宜昌市三峡地区不仅出露有扬子最古老的基底,而且有大量的新元古代岩浆岩产出,是研究大陆地壳的生长和演化、花岗岩的成因与源区物质控制、新元古代岩浆活动与Rodinia超大陆裂解等科学问题最理想的天然实验室。本文利用多种分析手段,包括主量元素和微量元素分析、锆石U-Pb定年、Rb-Sr和Sm-Nd同位素分析、矿物氧同位素分析以及最新发展起来的锆石Lu-Hf同位素分析,研究了崆岭杂岩中的片麻岩、混合岩、花岗岩、变沉积岩和角闪岩,对黄陵花岗岩基中的四个岩套进行了系统的对比研究,特别是仔细解剖了晓峰镁铁质—长英质岩墙以及相关的浅成花岗岩,并对莲沱砂岩中的一百多粒碎屑锆石进行了U-Pb定年和Lu-Hf同位素分析。结果不仅对三峡地区这些岩石的成因提供了可靠的地球化学制约,而且有助于了解扬子基底的演化和华南新元古代构造,从而为了解大陆的生长、分异和演化以及花岗岩,尤其是TTG质花岗岩的成因机制提供了新的思路。
     崆岭杂岩由基底岩石加表壳岩石组成,另外有一些基性岩侵入其中。基底岩石中以TTG质岩石为主,少量为花岗质岩石。表壳岩石主要为变沉积岩,其主微量元素变化范围大,受物源组成的控制。对基底岩石中的混合岩、片麻岩和花岗岩共七个样品进行锆石U-Pb定年,得到三组不同的年龄。第一组年龄为岩浆活动时间,除一个花岗岩年龄为2.85Ga外,其余六个的年龄都在2.90~3.00Ga。第二组年龄是在混合岩和片麻岩中的继承锆石核上获得的,为3.12~3.35Ga。另外,在一个混合岩的锆石增生边上,得到了约1.98Ga的第三组年龄,代表了混合岩化的时间。对表壳岩中的两个变沉积岩进行锆石U-Pb定年,得到两个变质年龄分别为1.95Ga和1.98Ga。对一个角闪岩的锆石U-Pb定年也得到相似的1.94Ga的年龄。这些年龄与混合岩化时间接近,说明崆岭杂岩记录了一期古元古代(1.97±0.03Ga)的构造热事件,引起了扬子陆块的增生乃至克拉通化,可能与同时期的全球构造活动有关。基底岩石氧同位素组成与典型太古代TTG岩石相似,锆石δ~(18)O值大多都小于6‰,而变沉积岩氧同位素组成则显著偏高,与其原岩为沉积来源一致。对混合岩、片麻岩和花岗岩中三组不同年龄的锆石,都进行了锆石Lu-Hf同位素分析。~2.9Ga的锆石颗粒的Hf同位素组成基本相似,εHf(t)值为-2.1到-5.2,对应Hf模式年龄主要分布在3.4~3.5Ga之间。对来自不同样品的13个继承核进行了锆石Hf同位素分析,其Hf同位素比值相对~2.9Ga的锆石略低,所得εHf(t)值加权平均为-1.6,对应Hf模式年龄为3.55Ga。这些数据说明扬子陆块的地壳生长至少从3.5Ga就已经开始。只对混合岩中的一个古元古代锆石增生边进行了Hf同位素分析,其εHf(t)值为-21.7。两个变沉积岩的锆石Hf同位素组成非常相似,εHf(t)值分布范围为-13.3到-1.0,加权平均值分别为-6.4和-6.5。角闪岩锆石Hf同位素比值变化范围大。崆岭杂岩中混合岩、片麻岩和花岗岩的Rb-Sr和Sm-Nd同位素组成比较相似,计算到2.9Ga的εNd(t)值都在0左右,为-1.9~+2.6。变沉积岩的Nd同位素组成变化范围较大,与源区物质的组成不同有关。角闪岩和辉长岩计算到1.97Ga的εNd(t)值分别为-4.3和+4.4。对崆岭杂岩的研究表明,扬子地壳生长至少从3.5Ga就已经开始,经过太古代的生长之后在古元古代受到了再造。
     黄陵岩基可以划分为四个岩套,分别是黄陵庙奥长花岗岩—花岗闪长岩岩套,三斗坪石英闪长岩—英云闪长岩岩套,大老岭二长闪长岩—二长花岗岩岩套以及由浅成花岗岩和镁铁质—长英质岩墙组成的晓峰岩套。除晓峰岩套之外,其余三个岩套中的绝大多数花岗岩都以富Na、富Sr,Y和HREE含量低,亏损Nb、Ta为特征,具有典型的TTG特征。但各岩套的主微量元素之间存在系统的差异,黄陵庙岩套相对三斗坪和大老岭岩套Sr/Y比和La/Yb比较高,而Nb/La比则较低。晓峰岩套中的两个花岗岩的锆石U-Pb年龄分别为797±5Ma和799±2Ma,测得一个长英质岩墙年龄为806±12Ma,一个镁铁质岩墙年龄为806±4Ma,显然晓峰岩套中的岩墙和花岗岩都形成于800Ma左右。对黄陵庙岩套中的6个花岗岩进行锆石U-Pb定年,得到的年龄从821Ma到800Ma,加权平均值为815±7Ma,继承核给出了古元古代到太古代的源岩年龄。三斗坪岩套的两个英云闪长岩给出了相似的两组年龄,分别为803±11Ma和919±15Ma,810±15Ma和911±14Ma,前者为三斗坪岩套的结晶年龄,后者可能反映了格林威尔期造山运动的影响。大老岭岩套的一个英云闪长岩锆石U-Pb定年结果为817±22Ma。因此,黄陵岩基各岩套都是在800~820Ma期间形成的。单矿物氧同位素分析表明,黄陵花岗岩基绝大多数样品具有与典型的Ⅰ型花岗岩相似的氧同位素组成,岩墙侵入花岗岩时,只发生了有限的小规模的高温水岩反应。黄陵岩基四个岩套的Sr同位素组成总体上比较相似,Sr同位素初始比值为0.705~0.708。各岩套Nd同位素比值变化范围较大,晓峰岩套εNd(t)值为-6.4到-10.4,黄陵庙岩套εNd(t)值为-9.3到-21.3,三斗坪岩套εNd(t)值为-2.1到-9.2,一个大老岭英云闪长岩的εNd(t)值为-4.4。锆石Hf同位素分析显示,晓峰岩套εHf(t)值-8.3~-12.9,三斗坪岩套εHf(t)值为-10.5~-13.1,一个大老岭英云闪长岩εHf(t)值为-6.1。黄陵庙岩套中新元古代锆石和古老的继承锆石具有截然不同的Hf同位素组成,新元古代锆石的εHf(t)值为-10.3~-24.1,继承核的Hf同位素比值虽然受到新元古代岩浆活动的扰动,仍然显著偏低,最低的继承核εHf(t)值与崆岭杂岩中的太古代岩石相似。这些结果说明,黄陵岩基是由古老地壳在800~820Ma期间遭受深熔作用形成的,这些古老地壳包括下覆于崆岭TTG之下的太古代岩石和古元古代角闪岩,太古代岩石熔融深度较深,残留相中含石榴石,而古元古代岩石熔融深度相对较浅,残留相主要为角闪石。黄陵岩基的源区物质为太古代和古元古代地壳,说明它不可能是与地幔柱或者洋壳俯冲有关的岩浆活动的产物,而更有可能与板块裂谷假说所陈述的古造山带构造垮塌有关。这对TTG岩石的成因、Ⅰ型花岗岩的形成以及陆壳成分的演化都有着重要的意义。
     莲沱组砂岩不整合覆盖于黄陵岩基之上,沉积时代约为750Ma。对来自其中的106粒碎屑锆石进行了U-Pb定年,并选取其中的39粒锆石进行了Lu-Hf同位素分析。根据U-Pb年龄,这些锆石可以分为四组,分别为>3.0Ga,约2.95Ga,约1.95Ga以及820-750Ma。其中3.8Ga的锆石代表了扬子最古老的地壳残片,其εHf(t)值为-0.8,模式年龄为4.0Ga。约3.3Ga的锆石具有+4.2的εHf(t)值,暗示了新生地壳的生长。所有锆石都具有太古代的Hf模式年龄,主要峰期在3.2~3.6Ga,可能代表了重要的地壳生长时间。约2.95Ga,约1.95Ga和820-750Ma的锆石都具有负的εHf(t)值和太古代模式年龄,反映了太古代物质在不同期次的幕式再造。最年轻的锆石U-Pb年龄约750Ma,与莲沱组沉积时代一致,反映了裂谷盆地中表壳物质的迅速再循环,可能与Rodinia超大陆的裂解有关。
Investigation of the growth and evolution of Precambrian crust is a key to understanding of continental dynamics and developing of the plate tectonic theory.The Kongling Complex, which is the oldest basement of the Yangtze Block,and the Neoproterozoic Huangling Batholith are located in the Three Gorge area,Yichang,Hubei Province.In this thesis,a detailed study of major and trace element analyses,zircon U-Pb dating,Rb-Sr and Sm-Nd isotope analyses,mineral Oxygen isotope analyses and newly-developed zircon Lu-Hf isotope analyses was carried out for different rocks from the Kongling Complex,the Huangling Batholith and the Liantuo Formation.The results not only place geochemical constraints on the genesis of these rocks,but also provide insight into the Yangtze basement evolution and the Neoproterozoic geodynamics of South China.Our study is of great implications for the continental crust growth,differentiation and evolution,and petrogenetic mechanism of granites(especially TTG rocks).
     The Kongling Complex consists of basement rocks,supracrustal rocks and some marie rocks occurring as lenses,boudins or layers.The basement rocks are mainly TTG rocks with minor granites.The chemical compositions of metsedimentary rocks varied significantly and are controlled by the source materials.Three groups of ages are obtained from zircon U-Pb dating on seven basement rocks,including migmatites,gneisses and granites.The first group represents the time of magmatic activity at 2.90-3.00 Ga except one granite with an age of 2.85 Ga.The second group is obtained on the inherited cores of some migmatites and gneisses, ranging from 3.12 Ga to 3.35 Ga.The third group at about 1.98 Ga represent the time of migmatization,which is obtained on the zircon overgrowth of a migmatite.Zircon U-Pb dating is carried out for two metasedimentary rocks of the Kongling Complex,yielding two metamorphic ages of 1.95 Ga and 1.98 Ga.A similar age of 1.94 Ga is obtained by zircon U-Pb dating on an amphibolite.These ages are close to the time of migmatization,indicating an episode of tectonothermal event at 1.97±0.03 Ga,consistent with contemporaneous global events.It is this event that causes accretion of the Yangtze continental nucleus even cratonization.The O isotope compositions of basement rocks are similar to typical Archean TTG rocks,with most zirconδ~(18)O values lower than 6‰.The O isotopic ratios for the metasedimentary rocks are obviously higher,consistent with its sedimentary sources.Zircon Lu-Hf isotopes are measured for the three groups of zircons from migmatites,gneisses and granites.The~2.9 Ga grains from different rocks have similar Hf isotope compositions,with ε_(Hf)(t)values of-2.1 to -5.2 and Hf model ages of 3.4-3.5 Ga.The Hf isotopic ratios obtained on 13 inherited cores are lower than the~2.9 Ga grains.The weighted mean of theirε_(Hf)(t) values is -1.6 and corresponding Hf model age is 3.55 Ga.The Hf isotopic data suggests that the growth of Yangtze continental crust had begun as early as 3.5 Ga.Hf isotopic analysis was carried out for one Paleoproterozoic zircon overgrowth rim,yielding anε_(Hf)(t)value of-21.7. Zircons from the two metasedimentary rocks have similar Hf isotope compositions,ε_(Hf)(t) values ranging from -13.3 to -1.0 and weighted mean values being -6.4 and -6.5, respectively.The amphibolite has a wide range of Hf isotopic ratios,reflecting the effect of metamorphism.The migmatites,gneisses and granites of the Kongling Complex have similar Rb-Sr and Sm-Nd isotope compositions.Theε_(Nd)(t)values calculated to 2.9 Ga are all around zero,from -1.9 to +2.6.The Nd isotopic ratios of the metasedimentary rocks varied greatly and are controlled by the source materials.The amphibolite and gabbro haveε_(Nd)(t)values(t= 1.97 Ga)of-4.3 and +4.4,respectively.The study on the Kongling Complex suggests that the initial growth of.Yangtze continental crust started no later than 3.5 Ga and suffered reworking in the Paleoproterozoic after the growth in the Archean.
     The Huangling Batholith is subdivided into four rock suites,namely the Huanglingmiao trondhjemite-granodiorite suite,the Sandouping quartz diorite-tonalite suite,the Dalaoling monzodiorite-monzogranite suite,and the Xiaofeng composite suite including mafic-felsic dykes and associated epigranite.Except the Xiaofeng Suite,most rocks from the other three suites are characterized by high Na and Sr,low Y and HREE,depletion of Nb,Ta,similar to typical TTG rocks.However,different rock suites show systematical differences in chemical compositions.The Huanglingmiao suite has higher Sr/Y and La/Yb ratios,but lower Nb/La ratios than the Sandouping and Dalaoling suite.Two granites of the Xiaofeng suite have zircon U-Pb age of 797±5 Ma and 799±2 Ma,respectively.Two dykes,felsic and mafic in composition,have ages of 806±12 Ma and 806±4 Ma,respectively.Thus all rocks in the Xiaofeng Suite formed simultaneously at about 800 Ma.Zircon U-Pb dating on six granites from the Huanglingmiao suite,yielding ages from 821 Ma to 800 Ma,with a weighted mean of 815±7 Ma,and Paleoproterozoic to Archean ages on the inherited cores which constrains the ages of source rocks.Two Sandouping tonalites both gave two groups of ages,803±11 Ma and 919±15 Ma,810±15 Ma and 911±14 Ma.The younger age represents the crystallization age of the Sandouping Suite,whereas the older age reflects the possible influence of Grenvillian orogen.A Dalaoling tonalite show a zircon U-Pb age of 817±22 Ma.Therefore, four rock suites of the Huangling Batholith are formed in the period of 800-820 Ma.Mineral O isotope analyses show that most rocks from the Huangling Batholith have O isotope compositions similar to typical I-type granite and only small-scaled high-temperature water-rock interactions happened during the intrusion of dykes into the granitoids.Four suites of the Huangling Batholith generally have similar Sr isotope compositions with initial Sr isotopic ratios of 0.705-0.708.ε_(Nd)(t)values for each rock suite are,-6.4 to -10.4 for the Xiaofeng suite,-9.3 to -21.3 for the Huangling suite,-2.1 to -9.2 for the Sandouping suite, and -4.4 for a Dalaoling tonalite.Zircon Lu-Hf isotope analyses gaveε_(Hf)(t)values of -8.3~-12.9 for the Xiaofeng suite,-10.5~-13.1 for the Sandouping suite,and -6.1 for the Dalaoling tonalite.The Neoproterozoic co-magmatic zircons and ancient inherited cores have contrasting Hf isotopic compositions,withε_(Hf)(t)values of-10.3~-24.1 for co-magmatic zircons and significantly lower Hf isotopic ratios for the inherited cores in spite of the alteration by Neoproterozoic magmatism.The lowestε_(Hf)(t)values are similar to Archean rocks of the Kongling Complex.These suggest that the Huangling Batholith is the anatexis product of ancient crust at 800-820 Ma.The ancient crust includes the Archean rocks underlying Kongling TTGs and Paleoproterozoic amphibolites.The Archean rocks were molten at great depth with garnet in the residual and the melting depth of Paleoproterozoic rocks was relatively shallower with amphibole as a major residual phase.The source materials of the Huangling Batholith are Archean and Paleoproterozoic crusts,suggesting that it was not the product of mantle plume or oceanic crust subduction,but connected with ancient orogen tectonic collapse as stated in the plate-rift hypothesis.This has significant implications for TTG petrogenesis,I-type granite origin and continental crust evolution.
     The Liantuo Formation with deposition time at about 750 Ma,unconformably overlies on the Huangling Batholith.Zircon U-Pb dating was carried out for 106 detrital zircons from a Liantuo sandstone,39 grains of which were further analyzed for their Lu-Hf isotopes.Four populations of ages are recognized,namely>3.0Ga,~2.95Ga,~1.95 Ga and 820-750 Ma.The 3.8 Ga zircon with anε_(Hf)(t)value of -0.8 and a model age of 4.0 Ga represents the oldest crustal relict in the Yangtze Block.The 3.3 Ga zircons have positiveε_(Hf)(t)values as high as 4.2,providing compelling evidence for growth of juvenile crust.All the zircons have Archean Hf model ages,with prominent peaks at 3.2 to 3.6 Ga,indicating an important period of crustal growth.The other three zircon populations at~2.95 Ga,~1.95 Ga and 820-750 Ma have negativeε_(Hf)(t)values and consistent Archean Hf model ages,suggesting multi-stage episodic reworking of Archean crust.The youngest age is~750 Ma,close to the deposition time of the Liantuo Formation,indicating rapid recycling of supracrustal materials in a rift basin,possibly associated with breakup of the supercontinent Rodinia.
引文
曹荣龙,朱寿华,1995.安徽碧溪岭含柯石英榴辉岩的U-Pb与Ar-Ar年代学研究.地球化学,24,152-161.
    甘晓春,李惠民,孙大中,等,1995.浙西南早元古代花岗质岩石的年代.岩石矿物学杂志,14,1-8.
    甘晓春,赵风清,金文山,孙大中,1996.华南火成岩中捕获锆石的早元古代-太古宙U-Pb年龄信息.地球化学,25,112-120.
    高山,Yumin,Q.,凌文黎,N.J.,M.,D.I.,G,2001.崆岭高级变质地体单颗粒锆石SHRIMP U-Pb年代学研究.中国科学,D辑,31,27-35.
    龚冰,郑永飞,2003.硅酸盐矿物氧同位素组成的激光分析.地学前缘,10,286-295.
    郭进京.张国伟,陆松年等.1999.中国新元古代大陆拼合与Rodinia超大陆.高校地质学报,5,148-156.
    胡世玲,王松山,桑海清等.1985.应用~(40)Ar/~(39)Ar快中子活化定年技术探讨江西九岭花岗闪长岩体的早期侵位时代.岩石学报,1,29-34.
    姜继圣,1986.黄陵变质地区的同位素地质年代及地壳演化.长春地质学院学报,(3),1-11.
    靳新娣,朱和平,2000.岩石样品中43种元素的高分辨等离子质谱测定.分析化学,28,563-567.
    李福喜,1987.黄陵断隆北部崆岭群地质时代及其地层划分.湖北地质,1,28-41.
    李曙光,陈移之,葛宁洁,等.浙西南八都群变火山岩系及变晶糜棱岩的同位素年龄及其构造意义.岩石学报,1996,12,79-87.
    李献华,周国庆,赵建新,Fanning CM,Compston W.1994.赣东北蛇绿岩的离子探针锆石U-Pb年龄及其构造意义.地球化学,23,125-131.
    李献华,王一先,赵振华,等,1998.闽浙古元古代斜长角闪岩的离子探针锆石U-Pb年代学.地球化学,27,327-334.
    李献华.1999.广西北部新元古代花岗岩锆石U-Pb年代学及其构造意义.地球化学,28,1-9.
    李献华,周汉文,李正祥等.2001a.扬子块体西缘新元古代双峰式火山岩的锆石U-Pb年龄和岩石化学特征.地球化学,30,315-322.
    李献华,李正详,葛文春等,2001b.华南新元古代花岗岩的锆石U-Pb年龄及其构造意义.矿物岩石地球化学通报,20,271-273.
    李献华,周汉文,李正祥等.2002a.川西新元古代双峰式为火山岩成因的微量元素和Sm-Nd同位素制约及其大地构造意义.地质科学,37,264-276.
    李献华,李正祥,周汉文等.2002b.川西新元古代玄武质岩浆岩的锆石U-Pb年代学、元素和Nd同位素研究:岩石成因与地球动力学意义.地学前缘,9,329-338.
    李献华,祁昌实,刘颖等.2005.扬子地块西缘新元古代双峰式火山岩成因:Hf同位素和Fe/Mn制约.50,2155-2160.
    李益龙,周汉文,李献华and罗清华,2007.黄陵花岗岩基英云闪长岩的黑云母和角闪石~(40)Ar-~(39)Ar 年龄及其冷却曲线.岩石学报,23,1067-1074.
    李志昌,方向,1998.鄂西黄陵地区太古宙变质岩La-Ce同位素体系.地球化学,27,117-124.
    李志昌,王桂华,张自超,2002.鄂西黄陵花岗岩基同位素年龄谱.华南地质与矿产,19-28.
    梁细荣,韦刚健,李献华,刘颖,2003.利用MC-ICPMS精确测定~(143)Nd/~(144)Nd和Sm/Nd比值.地球化学,32,91-96.
    林广春,李献华,李武显,2006.川西新元古代基性岩墙群的SHRIMP锆石U-Pb年龄、元素和Nd-Hf 同位素地球化学:岩石成因与构造意义.中国科学,D辑,36,630-645.
    凌文黎,高山,郑海飞,周炼,赵祖斌,1998.扬子克拉通黄陵地区崆岭杂岩Sm-Nd同位素地质年代学研究.科学通报,43,86-89.
    凌文黎,高山,张本仁,周炼,徐启东,2000.扬子陆核古元古代晚期构造热事件与扬子克拉通演化.科学通报,45,2343-2348.
    凌文黎,高山,程建萍,江麟生,袁洪林,胡兆初,2006.扬子陆核与陆缘新元古代岩浆事件对比及其构造意义-来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束.岩石学报,22,387-396.
    柳小明,高山,凌文黎,袁洪林,胡兆初,2005.扬子克拉通35亿年碎屑锆石的发现及其地质意义.自然科学进展,15,1334-1337.
    刘红英,夏斌,张玉泉,2004.攀西会理猫猫沟钠质碱性岩锆石SHRIMP定年及其地质意义.科学通报,49,1431-1438.
    刘颖,刘海臣,李献华,1996.用ICP-MS准确测定岩石样品中的40余种微量元素.地球化学,25,552-558.
    马大铨,李志昌,肖志发,1997.鄂西崆岭杂岩的组成、时代及地质演化.地球学报,18,233-241.
    马大铨,杜绍华,肖志发,2002.黄陵花岗岩基的成因.岩石矿物学杂志,21,151-161.
    马国干,李华芹,张自超,1984.华南地区震旦纪时限范围的研究.宜昌地质矿产研究所所刊,8,1-29.
    彭头平,王岳军,范蔚茗,刘敦一,石玉若,苗来成.澜沧江南段早中生代酸性火成岩SHRIMP锆石U-Pb定年及其构造意义.中国科学,D辑,36,123-132.
    沈渭洲,凌洪飞,李武显,黄小龙,王德滋.1999.中国东南部花岗岩类Nd-Sr同位素研究.高校地质学报,5,22-32.
    宋彪,张玉海,万渝生,2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评48(增刊),26-30.
    涂荫久,杨晓勇,郑永飞,李惠民,2001.皖东南黄片麻岩的锆石U-Pb年龄.岩石学报,17,157-160.
    王洪亮,陈亮,孙勇,等,2007.北秦岭西段奥陶纪火山岩中发现近4.1Ga的捕掳锆石.科学通报,52,1685-1693.
    王剑,李献华,Duan T.Z.等.2003.沧水铺火山岩锆石SHRIMP U-Pb年龄及“南华系”底界新证据.科学通报。48,1726-1731.
    韦刚健,梁细荣,李献华,刘颖,2002.(LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成.地球化学,31,295-299.
    韦刚健,刘颖,涂湘林,梁细荣,李献华,2004.利用选择性特效树脂富集分离岩石样品中的锶钐和钕.岩矿测试,23,11-14.
    吴福元,杨进辉,柳小明,李铁胜,谢烈文,杨岳衡,2005.冀东3.8Ga锆石Hf同位素特征与华北克拉通早期地壳时代.科学通报,50,1996-2002.
    吴福元,李献华,杨进辉,郑永飞,2007.花岗岩成因研究的若干问题.岩石学报,23,1217-1238.
    吴元保,陈道公,夏群科,E.,D.,程昊,2002.北大别黄土岭麻粒岩锆石U-Pb离子探针定年.岩石学报,18,378-382.
    谢智,陈江峰,张巽等.2002.北淮阳新元古代基性侵入岩年代学初步研究.地球学报,23,517-520.
    邢凤鸣,徐祥,任思明,李应运.1988.皖南歙县岩体的岩石地球化学特征、形成时代和成岩条件.地质论评,34,400-413.
    徐平,吴福元,谢烈文,杨岳衡,2004.U-Pb同位素定年标准锆石的Hf同位素.科学通报,49,1403-1410.
    颜丹平,周美夫,宋鸿林等.2002.华南在Rodinia古陆中位置的讨论--扬子地块西缘变质-岩浆证据及其与Seychelles地块的对比.地学前缘,9,249-256.
    尹崇玉,刘敦一,高林志等.2003.南华系底界与古城冰期的年龄:SHRIMPⅡ定年证据.科学通报,48,1721-1725.
    于津海,王丽绢,周新民,蒋少涌,王汝成,徐夕生,邱检生,2006.粤东北基底变质岩的组成和形成时代.地球科学,31,38-48.
    于津海,O'Rcilly,Y.S.,王丽娟,Griffin,W.L.,蒋少涌,王汝成,徐夕生,2007.华夏地块古老物质的发现和前寒武纪地壳的形成.科学通报,52,11-18.
    袁海华,1991.直接测定颗粒锫石~(207)Pb/~(206)pb年龄的方法.矿物岩石,11,72-79.
    曾雯,钟增球,周汉文,江麟生,周忠友,陈铁龙,2004.黄陵地区基性岩墙群的地球化学特征及其地质意义.地球科学,29,31-38.
    张旗,简平,刘敦一,王元龙,钱青,王焰,薛怀民,2003.宁芜火山岩的锆石SHRIMP定年及其意义.中国科学,D辑,33,309-314.
    郑维钊,刘观亮,汪雄武,1991.黄陵背斜北部崆岭杂岩的太古代信息.中国地质科学院宜昌地质研究所所刊,16,97-105.
    郑永飞,2003.新元古代岩浆活动与全球变化.科学通报,48,1705-1720.
    周建波,郑永飞,吴元保,2002.苏鲁造山带西北缘五莲花岗岩中锆石U-Pb年龄及其地质意义.科学 通报, 47, 1745-1750.
    Albarede, F., 1998. The growth of continental crust. Tectonphys. 296, 1-14.
    Albarede, F., Scherer, E.E., Blichert-Toft, J., Rosing, M., Sirnionovici, A., Bizzarro, M., 2006. -ray irradiation in the early Solar System and the conundrum of the Lu-176 decay constant. Geochim. Cosmochim. Acta 70, 1261 -1270.
    Allegre, C.J. and Lewin, E., 1989. Chemical structure and history of the Earth: evidence from the global non-linear inversion of isotopic data in a three-box model. Earth Planet. Sci. Lett. 96,61-89.
    Amelin, Y, 1998. Geochronology of the Jack Hills detrital zircons by precise U-Pb isotope dilution analysis of crystal fragments. Chem. Geol. 146, 25-38.
    Amelin, Y., Lee, D.C., Halliday, A.N., Pidgeon, R.T., 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature 399,252-255.
    Amelin, Y, Lee, D.C., Halliday, A.N., 2000. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochim. Cosmochim. Acta 64,4205-4225.
    Amelin, Y, 2005. Meteorite phosphates show constant Lu-176 decay rate since 4557 million years ago. Science 310, 839-841.
    Amelin, Y, Davis, W.J., 2005. Geochemical test for branching decay of ~(176)Lu. Geochim. Cosmochim. Acta 69, 465-473.
    Ames, L., Zhou, GZ., Xiong, B.C., 1996. Geochronology and isotopic characteristics of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics 15,472-489.
    Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report Pb-204. Chem. Geol. 192, 59-79.
    Andersen, T., 2005. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem. Geol. 216,249-270.
    Armstrong, R.L., 1981. Radiogenic isotopes: the case for crustal recycling recycling on a near steady state no-continental-growth model. Phil. Trans. Roy. Soc. Lond. A. 301, 443-472.
    Arth, J.G., Hanson, G.N., 1972. Quartz diorites derived by partial melting of eclogite or amphibolite at mantle depths. Contrib. Mineral. Petrol. 37, 161-172.
    Arth, J.G., Hanson, G.N., 1975. Geochemistry and origin of the early Precambrian crust of northeastern Minnesota. Geochim. Cosmochim. Acta 30, 325-362.
    Arth, J.G, Barker, F., Peterman, Z.E., Friedman, I., 1978. Geochemistry of the gabbro-diorite- tonalite-trondhjemite suite of southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas. J. Petrol. 19, 289-316.
    Atherton, M.P., Petford, N., 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362, 144-146.
    Ayers, J.C., Dunkle, S., Gao, S., Miller, C.F., 2002. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chem. Geol. 186, 315-331.
    Barbarin, B., 1981. Enclaves of the Mesozoic calc-alkaline granitoids of the Sierra Nevada batholith, California. In: J. Didier and B. Barbarin (Editors), Enclaves and Granite Petrology, Developments in Petrology. Elsevier, Amsterdam, pp. 135-153.
    Barbarin, B., 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46, 605-626.
    Barbarin, B., 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80, 155.
    Barker, F., Arth, J.G, 1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology 4, 596-600.
    
    Barker, F., 1979. Trondhjemite: definition, environment and hypotheses of origin. In: F. Barker (Editor), Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam, pp. 1-12.
    Barr, S.R., Temperley, S., Tarney, J., 1999. Lateral growth of the continental crust through deep level subduction-accretion: a re-evaluation of central Greek Rhodope. Lithos 46, 69-94.
    Beard, J.S., Lofgren, GE., 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1,3, and 6.9kb. J. Petrol. 32, 365-401.
    Bedard, J.H., 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta 70, 1188-1214.
    Bingen, B., Austrheim, H., Whitehouse, M.J., Davis, W.J., 2004. Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway. Contrib. Mineral. Petrol. 147,671-683.
    Bizzarre, M., Baker, J.A., Haack, H., Ulfbeck, D., Rosing, M., 2003. Early history of Earth's crust-mantle system inferred from hafnium isotopes in chondrites. Nature 421,931-933.
    Blichert-Toft, J., Boyet, M., Telouk, P., Albarede, F., 2002. ~(147)Sm-~(143)Nd and ~(176)Lu-~(176)Hf in eucrites and the differentiation of the HED parent body. Earth Planet. Sci. Lett. 204,167-181.
    Blichert-Toft, J., Albarede, F., 2008. Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth Planet. Sci. Lett. In Press, Accepted Manuscript, in press.
    BlichertToft, J., Albarede, F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 148,243-258.
    Bodet, F., Scharer, U., 2000. Evolution of the SE-Asian continent from U-Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers. Geochim. Cosmochim. Acta 64,2067-2091.
    Bonin, B., 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 97,1-29.
    
    Campbell, I.H., 2007. Testing the plume theory. Chem. Geol. 241,153-176.
    Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib. Mineral. Petrol. 134,33-51.
    
    Castillo, P.R., 2006. An overview of adakite petrogenesis. Chinese Sci. Bull. 51,258-268.
    Cavosie, A.J., Valley, J.W., Wilde, S.A., 2005. Magmatic δ~(18)O in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett. 235,663-681.
    Chappell, B.W., White, A.J.R., 1974. Two contrasting granites. Pacific Geology 8,173-174.
    Chappell, B.W., 1984. Source Rocks of 1-Type and S-Type Granites in the Lachlan Fold Belt, Southeastern Australia. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 310,693-707.
    Chappell, B.W., White, A.J.R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. J. Petrol. 28, 1111-1138.
    Chappell, B.W., White, A.J.R., 1992. I-Type and S-Type Granites in the Lachlan Fold Belt. Trans. Royal Soc. Ediburgh, Earth Sci. 83,1-26.
    Chappell, B.W., 1996. Compositional variation within granite suites of the Lachlan fold belt: Its causes and implications for the physical state of granite magma. Trans. Royal Soc. Ediburgh, Earth Sci. 87, 159-170.
    Chappell, B.W., Bryant, C.J., Wyborn, D., White, A.J.R., Williams, I.S., 1998. High- and low-temperature I-type granites. Res. Geol. 48,225-235.
    Chappell, B.W., 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46, 535-551.
    Chappell, B.W., White, A.J.R., 2001. Two contrasting granite types: 25 years later. Australlian Journal of Earth Sciences 48,489-499.
    Chappell, B.W., 2004. Towards a unified model for granite genesis. Trans. Royal Soc. Ediburgh, Earth Sci. 95,1-10.
    Chappell, B.W., White, A.J.R., Williams, I.S., Wyborn, D., 2004. Low- and high-temperature granites. Trans. Royal Soc. Ediburgh, Earth Sci. 95,125-140.
    Charvet, J., Shu, L.S., Shi, Y.S., Guo, L.Z., Faure, M., 1996. The building of south China: Collision of Yangzi and Cathaysia blocks, problems and tentative answers. Journal of Southeast Asian Earth Sciences 13, 223-235.
    Chen, J., Foland, K.A., Xing, F., Xu, X., Zhou, T., 1991. Magmatism along the southeast margin of the Yangtze Block; Precambrian collision of the Yangtze and Cathysia blocks of China. Geology 19, 815-818.
    Chen, J.F., Jahn, B.M., 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonphys. 284, 101-133.
    Chen, D.G, Etienne, D., Cheng, H., Xia, Q.K., Wu, Y.B., 2003. Preliminary study of microscale zircon oxygen isotopes for Dabie-Sulu metamorphic rocks: Ion probe in situ analyses. Chinese Sci. Bull. 48, 1670-1678.
    Chen, R.X., Zheng, Y.F., Zhao, Z.F., Tang, J., Wu, F.Y., Liu, X.M., 2007. Zircon U-Pb age and Hf isotope evidence for contrasting origin of bimodal protoliths for ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling project. J. Metam. Geol. 25, 873-894.
    Cherniak, D.J., Watson, E.B., 2003. Diffusion in Zircon. In: J.M. Hanchar and P.W.O. Hoskin (Editors), Zircon. Reviews in Mineralogy and Geochemistry, pp. 113-143.
    Chu, N.C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A., German, C.R., Bayon, G, Burton, K., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J. Anal. At. Spectrom. 17, 1567-1574.
    Clemens, J.D., Yearron, L.M., Stevens, G, 2006. Barberton (South Africa) TTG magmas: Geochemical and experimental constraints on source-rock petrology, pressure of formation and tectonic setting. Precambrian Res. 151, 53-78.
    Coleman, D.S., Gray, W., Glazner, A.F., 2004. Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32, 433-436.
    Collerson, K.D., Kamber, B.S., 1999. Evolution of the continents and the atmosphere inferred from Th-U-Nb systematics of the depleted mantle. Science 283,1519-1522.
    Collins, W.J., 1996. Lachlan Fold Belt granitoids: Products of three-component mixing. Trans. Royal Soc. Ediburgh, Earth Sci. 87, 171-181.
    Collins, W.J., 1998. Evaluation of petrogenetic models for Lachlan Fold Belt granitoids: implications for crustal architecture and tectonic models. Aust. J. Earth Sci. 45,483-500.
    Compston, W., Williams, I.S., Kirschvink, J.L., Zhang, Z.C., Ma G.G., 1992. Zircon U-Pb ages for the Early Cambrian time-scale. J. Geol. Soc. London 149, 171-184.
    Compston, W., Wright, A.E., Toghill, P., 2002. Dating the Late Precambrian volcanicity of England and Wales. J. Geol. Soc. 159, 323-339.
    Condie, K.C., 1998. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet. Sci. Lett. 163, 97-108.
    Condie, K.C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge Univ. Press., Oxford, UK, 306 pp.
    Condie, K.C., 2004. Supercontinents and superplume events: distinguishing signals in the geologic record. Phys. Earth Planet. Interi. 146, 319-332.
    
    Condie, K.C., 2005. TTGs and adakites: are they both slab melts? Lithos 80, 33-44.
    Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P.D., 2003. Atlas of zircon textures. In: J.M. Hanchar and P.W.O. Hoskin (Editors), Zircon. Reviews in Mineralogy and Geochemistry, pp. 469-500.
    Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arcmagmas by melting of young subducted lithosphere. Nature 347, 662-665.
    Depaolo, D.J., 1988. Neodymium Isotope Geochemistry: An Introduction. Springer-Verlag, New York, 188 pp.
    Dewey, J.F., 1977. Extensional collapse of orogens. Tectonics 7, 1123-1139.
    Donaire, T., Pascual, E., Pin, C, Duthou, J.L., 2005. Microgranular enclaves as evidence of rapid cooling in granitoid rocks: the case of the Los Pedroches granodiorite, Iberian Massif, Spain. Contrib. Mineral. Petrol. 149,247-265.
    Ernst, R.E., Buchan, K.L., 2003. RECOGNIZING MANTLE PLUMES IN THE GEOLOGICAL RECORD. Annu. Rev. Earth Planet. Sci. 31,469-523.
    Flowerdew, M.J., Millar, I.L., Vaughan, A.P.M., Horstwood, M.S.A., Fanning, C.M., 2006. The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U-PbSHRIMP and laser ablation Hf isotope study of complex zircons. Contrib. Mineral. Petrol. 151, 751-768.
    Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417, 837-840.
    Foley, S.F., Buhre, S., Jacob, D.E., 2003. Evolution of the Archaean crust by delamination and shallow subduction. Nature 421, 249-252.
    Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. J. Petrol. 42,2033-2048.
    Fyfe, W.S., 1978. The evolution of the earth's crust: modern plate tectonics to ancient hot spot tectonics? Chem. Geol. 23, 89-114.
    Gao, S., Ling, W.L., Qiu, Y.M., Lian, Z., Hartmann, G, Simon, K., 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochim. Cosmochim. Acta 63, 2071-2088.
    
    Gong, B., Zheng, Y.-F., Chen, R.-X., 2007. TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys. Chem. Miner. 34,687-698.
    Green, T.H., 1982. Anatexis of mafic crust and high pressure crystallization of andesite. In: Thorpe, R.S., ed., Andesites. New York, NY, John Wiley and Sons, p. 465-487.
    Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., rsquo, Reilly, S.Y., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 64,133-147.
    Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X.S., Zhou, X.M., 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61, 237-269.
    Griffin, W.L., Belousova, E.A., Shee, S.R., Pearson, N.J., O'Reilly, S.Y., 2004. Archean crustal evolution in the northern Yilgam Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Res. 131,231-282.
    Grove, T.L., Chatterjee, N., Parman, S.W., Medard, E., 2006. The influence of H2O on mantle wedge melting. Earth Planet. Sci. Lett. 249, 74-89.
    Hacker, B.R., Ratschbacher, L., Webb, L., Ireland, T., Walker, D., Dong, S., 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth Planet. Sci. Lett. 161,215-230.
    Harrison, T.M., Blichert-Toft, J., Muller, W, Albarede, F., Holden, P., Mojzsis, S.J., 2005. Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga. Science 310,1947-1950.
    Hawkesworth, C.J., Kemp, A.I.S., 2006a. Evolution of the continental crust. Nature 443, 811-817.
    Hawkesworth, C.J., Kemp, A.I.S., 2006b. The differentiation and rates of generation of the continental crust. Chem. Geol. 226, 134-143.
    
    Huang, J., Zheng, Y.F., Zhao, Z.F., Wu, Y.B., Zhou, H.B., Liu, X.M., 2006. Melting of subducted continent: Element and isotopic evidence for a genetic relationship between Neoproterozoic and Mesozoic granitoids in the Sulu orogen. Chem. Geol. 229,227-256.
    
    Hurley, P.M., and Rand, J.R., 1969. Pre-drift continental nuclei. Science 164: 1229-1242.
    Iizuka, T., Hirata, T., 2005. Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chem. Geol. 220,121-137.
    Iizuka, T., Hirata, T., Komiya, T., Rino, S., Katayama, I., Motoki, A., Maruyama, S., 2005. U-Pb and Lu-Hf isotope systematics of zircons from the Mississippi River sand: Implications for reworking and growth of continental crust. Geology 33,485-488.
    Iizuka, T., Horie, K., Komiya, T., Maruyama, S., Hirata, T., Hidaka, H., Windley, B.F., 2006. 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: Evidence for early continental crust. Geology 34,245-248.
    Isley, A.E., Abbott, D.H., 2002. Implications of the Temporal Distribution of High-Mg Magmas for Mantle Plume Volcanism through Time. J. Geol. 110,141-158.
    Jahn, B.-m., Auvray, B., Cornichet, J., Bai, Y.L., Shen, Q.H., Liu, D.Y., 1987. 3.5 Ga old amphibolites from eastern Hebei Province, China: Field occurrence, petrography, Sm-Nd isochron age and REE geochemistry. Precambrian Res. 34,311 -346.
    Jahn, B.-m., Ernst, W.G., 1990. Late Archean Sm-Nd isochron age for Mafic-ultramafic supracrustal amphibolites from the Northeastern Sino-Korean Craton, China. Precambrian Res. 46,295-306.
    Jahn, B.-m., Condie, K.C., 1995. Evolution of the Kaapvaal-Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites. Geochim. Cosmochim. Acta 59,2239-2258.
    Jahn, B.-m., Wu, F., Capdevila, R., Martineau, F., Zhao, Z., Wang, Y., 2001. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos 59, 171-198.
    Johnson, K., Barnes, C.G., Miller, C.A., 1997. Petrology, geochemistry, and genesis of high-Al tonalite and trondhjemites of the Cornucopia stock, Blue Mountains, northeastern Oregon. J. Petrol. 38, 1585-1611.
    Johnston, A.D., Wyllie, P.J., 1988. Constraints on the origin of Archean trondhjemites based on phase relationship of Nuk gneiss with H2O at 15 kbar. Contrib. Mineral. Petrol. 100,35-46.
    Kapyaho, A., Manttari, I., Huhma, H., 2006. Growth of Archaean crust in the Kuhmo district, eastern Finland: U-Pb and Sm-Nd isotope constraints on plutonic rocks. Precambrian Res. 146,95-119.
    Keay, S., Collins, W.J., McCulIoch, M.T., 1997. A three-component Sr-Nd isotopic mixing model for granitoid genesis, Lachlan fold belt, eastern Australia. Geology 25,307-310.
    Kelemen, P.B., Hanghoj, K., Greene, A.R., 2003. One view of the Geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treastise on Geochemistry 3, 593-660.
    Kemp, A.I.S., Hawkesworth, C.J., 2003. Granitic perspectives on the generation and secular evolution of the continental crust, Treatise in Geochemistry, pp. 349-410.
    Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., Kinny, P.D., 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439, 580-583.
    King, E.M., Valley, J.W., Davis, D.W., Edwards, GR., 1998. Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: indicator of magmatic source. Precambrian Res. 92, 365-387.
    Kinny, P.D., Maas, R., 2003. Lu-Hf and Sm-Nd isotope systems in zircon. In: J.M. Hanchar and P.W.O. Hoskin (Editors), Zircon. Rev. Mineral. Geochem., pp. 327-341.
    Larson, R.L., 1991. Geological consequences of superplumes. Geology 19,963-966.
    Li, S.G., Xiao, Y.L., Liou, D.L., Chen, Y.Z., Ge, N.J., Zhang, Z.Q., Sun, S.S., Cong, B.L., Zhang, R.Y., Hart, S.R., Wang, S.S., 1993. Collision of the North China and Yangtse Blocks and Formation of Coesite-Bearing Eclogites - Timing and Processes. Chem. Geol. 109, 89-111.
    Li, Z.X., Zhang, L., Powell, C.M., 1995. South China in Rodinia: Part of the missing link between Australia-East Antarctica and Laurentia? Geology 23, 407-410.
    Li, X.H., 1999. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: timing of Neoproterozoic Jinning: Orogeny in SE China and implications for Rodinia Assembly. Precambrian Res. 97, 43-57.
    Li, Z.X., Li, X.H., Kinny, P.D., Wang, J., 1999a. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth Planet. Sci. Lett. 173, 171-181.
    Li, S.G., Jagoutz, E., Lo, C.-H., Chen, Y.-Z., Li, Q.-L, Xiao, Y.-L, 1999b. Sm/Nd, Rb/Sr, and ~(40)Ar/~(39)Ar isotopic systematics of the ultrahigh-pressure metamorphic rocks in the Dabie-Sulu belt, Central China: A retrospective view. Inter. Geol. Rev. 41,1114-1124.
    Li, X.H., Li, Z.X., Zhou, H.W., Liu, Y, Kinny, P.D., 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Res. 113, 135-154.
    Li, X.H., Li, Z.X., Ge, W.C., Zhou, H.W., Li, W.X., Liu, Y, Wingate, M.T.D., 2003a. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambrian Res. 122,45-83.
    Li, Z.X., Li, X.H., Kinny, P.D., Wang, J., Zhang, S., Zhou, H., 2003b. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Res. 122,85-109.
    Li, Z.X., Evans, D.A.D., Zhang, S., 2004a. A 90° spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latituede glaciation. Earth Planet. Sci. Lett. 220,409-421.
    Li, X.H., Li, Z.X., Ge, W.C., Zhou, H.W., Li, W.X., Liu, Y, Wingate, M.T.D., 2004b. Reply to the comment: Mantle plume-, but not arc-related Neoproterozoic magmatism in South China. Precambrian Res. 132, 405-407.
    Li, X.P., Zheng, Y.F., Wu, Y.B., Chen, F.K., Gong, B., Li, Y.L., 2004c. Low-T eclogite in the Dabie terrane of China: petrological and isotopic constraints on fluid activity and radiometric dating. Contrib. Mineral. Petrol. 148,443-470.
    Li, W.X., Li, X.H., Li, Z.X., 2005a. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Res. 136, 51-66.
    Li, X.H., Su, L., Chung, S.L., Li, Z.X., Liu, Y, Song, B., Liu, D.Y., 2005b. Formation of the Jinchuan ultramafic intrusion and the world's third largest Ni-Cu sulfide deposit: Associated with the similar to 825 Ma south China mantle plume? Geochem. Geophys. Geosyst. 6, 10.1029/2005GC001006.
    Li, X.H., Li, Z.-X., Sinclair, J.A., Li, W.-X., Carter, G, 2006. Revisiting the "Yanbian Terrane": Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Res. 151, 14-30.
    Li, X.H., Li, Z.-X., Sinclair, J.A., Li, W.-X., Carter, G, 2007a. Understanding dual geochemical characters in a geological context for the Gaojiacun intrusion: Response to Munteanu and Yao's discussion [Precambrian Res. 154 (2007) 164-167]. Precambrian Res. 155, 328-332.
    Li, X.H., Li, Z.-X., Sinclair, J.A., Li, W.-X., Carter, G, 2007b. Reply to the comment by Zhou et al. on: "Revisiting the "Yanbian Terrane": Implications for Neoproterozoic tectonic evolution of the
    
    western Yangtze Block, South China" [Precambrian Res. 151 (2006) 14-30] [Precambrian Res. 154 (2007) 153-157]. Precambrian Res. 155,318-323.
    Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V., 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res. 160,179-210.
    Liew, T.C., Hofmann, A.W., 1988. Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic study. Contrib. Mineral. Petrol. 98,129-138.
    Lindh, A., 2005. Origin of chemically distinct granites in a composite intrusion in east-central Sweden: geochemical and geothermal constraints. Lithos 80,249.
    Ling, W.L., Gao, S., Zhang, B.R., Li, H.M., Liu, Y., Cheng, J.P., 2003. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Res. 122,111-140.
    Liu, D.Y., Nutman, A.P., Compston, W., Wu, J.S., Shen, Q.H., 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20, 339-342.
    Liu, M., Shen, Y.Q., 1998. Crustal collapse, mantle upwelling, and Cenozoic extension in the North American Cordillera. Tectonics 17, 311-321.
    Loiselle, M.C., Wones, D.R., 1979. Characteristics and origin of anorogenic granites. Geol. Soc. Am. Abst. Programs 11,468.
    Ludwig, K.R., 2001. Users Manual for Isoplot/Ex (rev. 2.49): A Geochronological Toolkit for Microsoft Excel, 1a. Berkeley Geochronology Center, Special Publication, 55 pp.
    Ma, C.Q., Ehlers, C., Xu, C.H., Li, Z.C., Yang, K.G., 2000. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane: constraints from geochemistry and Nd-Sr isotope systematics. Precambrian Res. 102,279-301.
    Maas, R., Nicholls, I.A., Legg, C, 1997. Igneous and metamorphic enclaves in the S-type Deddick granodiorite, Lachlan Fold Belt, SE Australia: Petrographic, geochemical and Nd-Sr isotopic evidence for crustal melting and magma mixing. J. Petrol. 38,815-841.
    Machado, N., Simonetti, A., 2001. U-Pb dating and Hf isotopic composition of zircons by laser ablation-MC-ICP-MS. In: P. Sylvester (Editor), Laser-Ablation-ICPMS in the Earth Sciences: Principles and Applications. Short Course of Mineral. Assoc. Canada, pp. 121-146.
    Malavieille, J., Guihot, P., Costa, S., Lardeaux, J.M., Gardien, V., 1990. Collapse of the thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and St. Etienne Late Carboniferous Basin. Tectonphys. 177,139-149.
    Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geol. Soc. Amer. Bull. 101, 635-643.
    
    Martin, H., 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46,411-429.
    Martin, H., Moyen, J.-F., 2002. Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. Geology 30,319-322.
    Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., Champion, D., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79,1-24.
    Maruyama, S., Tabata, H., Nutman, A.P., Morikawa, T., Liou, J.G, 1998. SHRIMP U-Pb geochronology of ultrahigh-pressure metamorphic rocks of the Dabie Mountains, Central China. Continental Dynamics 3, 72-85.
    Mayborn, K.R., Lesher, C.E., 2004. Paleoproterozoic mafic dike swarms of northeast Laurentia: products of plumes or ambient mantle? Earth Planet. Sci. Lett. 225,305-317.
    McCulloch, M.T., Bennett, V.C., 1994. Progressive Growth of the Earths Continental-Crust and Depleted Mantle - Geochemical Constraints. Geochim. Cosmochim. Acta 58,4717-4738.
    McDonough, W.F., Sun, S.S., 1995. The composition of the earth. Chem. Geol. 120,223-253.
    Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31, 529-532.
    Monecke, T, Dulski, P., Kempe, U., 2007. Origin of convex tetrads in rare earth element patterns of hydrothermally altered siliceous igneous rocks from the Zinnwald Sn-W deposit, Germany. Geochim. Cosmochim. Acta 71, 335-353.
    Mojzsis, S.J., Harrison, T.M., Pidgeon, R.T., 2001. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature 409,178-181.
    
    Moorbath, S. 1975. Evolution of Precambrian crust from strontium isotopic evidence. Nature 254:395-398.
    Munteanu, M., Yao, Y., 2007. The Gaojiacun intrusion: Rift- or subduction-related?: Comment on "Revisiting the "Yanbian Terrane": Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China" by Li et al. (2006) [Precambrian Res. 151 (2006) 14-30]. Precambrian Res. 155,324-327.
    Nebel, O., Nebel-Jacobsen, Y., Mezger, K., Berndt, J., 2007. Initial Hf isotope compositions in magmatic zircon from early Proterozoic rocks from the Gawler Craton, Australia: A test for zircon model ages. Chem. Geol. 241, 23-37.
    Nemchin, A.A., Pidgeon, R.T., Whitehouse, M.J., 2006. Re-evaluation of the origin and evolution of >4.2 Ga zircons from the Jack Hills metasedimentary rocks. Earth Planet. Sci. Lett. 244,218-233.
    Norrish, K., Hutton, J.T., 1969. An accurate X-Ray spectrographic method for the analysis of a wide range of geological samples. Geochim. Cosmochim. Acta 33, 431-453.
    Nowell, G.M., Kempton, P.D., Noble, S.R., Fitton, J.G, Saunders, A.D., Mahoney, J.J., Taylor, R.N., 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chem. Geol. 149, 211-233.
    Nutman, A.P., 2001. On the scarcity of > 3900 Ma detrital zircons in >3500 Ma metasediments. Precambrian Res. 105, 93-114.
    Nutman, A.P., Friend, C.R.L., Bennett, V.C., 2001. Review of the oldest (4400-3600 Ma) geological and mineralogical record: Glimpses of the beginning. Episod. 24,93-101.
    O'Nions, R.K. and Hamilton. P.J., 1981. Isotope and trace element models of crustal evolution. Phil. Trans. Roy. Soc. Lond. A. 301,473-487.
    Park, J.K., Buchan, K.L., Harlan, S.S., 1995. A proposed giant radiating dyke swarm fragmented by the separation of Laurentia and Australia based on paleomagnetism of ca. 780 Ma mafic intrusions in western North America. Earth Planet. Sci. Lett. 132, 129-139.
    Patchett, J.P., Tatsumoto, M., 1980. Lu-Hf total-rock isochron for the eucrite meteorites. Nature 288, 571-574.
    
    Patchett, P.J., White, W.M., Feldmann, H., Kielinczuk, S., Hofmann, A.W., 1984. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth's mantle. Earth Planet. Sci. Lett. 69,365-378.
    Pearce, J.A., Harris, N.B.W., Tindle, A.G, 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrology 25, 956-983.
    
    Pitcher, W.S., 1993. The Nature and Origin of Granite. Chapman & Hall, London, 387 pp.
    Plank, T., 2005. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. J. Petrol. 46, 921-944.
    Poll, S., Schmidt, M.W., 2002. PETROLOGY OF SUBDUCTED SLABS. Annu. Rev. Earth Planet. Sci. 30, 207-235.
    Pouclet, A., Tchameni, R., Mezger, K., Vidal, M., Nsifa, E., Shang, C, Penaye, J., 2007. Archaean crustal accretion at the northern border of the Congo Craton (South Cameroon). The charnockite-TTG link. Bull. Soc. Geol. Fr. 178, 331-342.
    Prouteau, G., Scaillet, B., Pichavant, M., Maury, R.C., 1999. Fluid-present melting of ocean crust in subduction zones, pp. 1111-1114.
    Qiu, Y.M., Gao, S., McNaughton, N.J., Groves, D.J., Ling, W.L., 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology 28,11-14.
    Ramsey, M.H., Potts, P.J., Webb, P.C., Watkins, P., Watson, J.S., Coles, B.J., 1995. An Objective Assessment of Analytical Method Precision - Comparison of Icp-Aes and Xrf for the Analysis of Silicate Rocks. Chem. Geol. 124, 1-19.
    Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res. 51, 1-25.
    Rapp, R.P., Shimizu, N., Norman, M.D., Applegate, G.S., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem. Geol. 160, 335-356.
    Rapp, R.P., Shimizu, N., Norman, M.D., 2003. Growth of early continental crust by partial melting of eclogite. Nature 425, 605-609.
    Rey, P., Vanderhaeghe, O., Teyssier, C, 2001. Gravitational collapse of the continental crust: definition, regimes and modes. Tectonphys. 342,435-449.
    Reymer, A. and Schubert. G, 1984. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics. 3,63-77.
    Roberts, M.P., Clemens, J.D., 1993. Origin of High-Potassium, Calc-Alkaline, I-Type Granitoids. Geology 21, 825-828.
    Rogers, J.J.W., Santosh, M., 2002. Configuration of Columbia, a mesoproterozoic supercontinent. Gondwana Research 5, 5-22.
    Rubatto, D., 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem. Geol. 184,123-138.
    Rudnick, R., Gao, S., 2003. Composition of the Continental Crust. In: R. Rudnick (Editor), Treatise on Geochemistry, pp. 1-64.
    Rudnick, R.L., 1995. Making continental crust. Nature 378, 571-578.
    Rushmer, T., 1991. Partial melting of 2 amphibolites - contrasting experimental results under fluid-absent conditions. Contrib. Mineral. Petrol. 107,41-59.
    Scherer, E., Munker, C, Mezger, K., 2001. Calibration of the lutetium-hafnium clock. Science 293, 683-687.
    Sguigna, A.P., Larabee, A.J., Waddington, J.C., 1982. The half-life of ~(176)Lu by γ-γ coincidence measurement. Can. J. Phys. 60, 361-364.
    
    Sharma, R.S., Pandit, M.K., 2003. Evolution of early continental crust. Curr. Sci. 84,995-1001.
    Smithies, R.H., 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet. Sci. Lett. 182,115-125.
    Smithies, R.H., Champion, D.C., 2000. The Archaean High-Mg Diorite Suite: Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archaean Crustal Growth. J. Petrology 41, 1653-1671.
    Smithies, R.H., Champion, D.C., Cassidy, K.F., 2003. Formation of Earth's early Archaean continental crust. Precambrian Res. 127, 89-101.
    Soderlund, U., Patchett, J.P., Vervoort, J.D., Isachsen, C.E., 2004. The ~(176)Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 219, 311-324.
    Song, B., Nutman, A.P., Liu, D.Y., Wu, J.S., 1996. 3800 to 2500Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Res. 56,1-31.
    Stephens, W.E., 2001. Polycrystalline amphibole aggregates (clots) in granites as potential I-type restite: an ion microprobe study of rare-earth distributions. Aust. J. Earth Sci. 48, 591-601.
    Stevenson, R.K., Patchett, P.J., 1990. Implications for the Evolution of Continental-Crust from Hf-Isotope Systematics of Archean Detrital Zircons. Geochim. Cosmochim. Acta 54,1683-1697.
    Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes.. In: A.D. Sanders and M.J. Norry (Editors), Magmatism in the Ocean Basins. Geol. Soc. Spec. Publ., pp. 313-345.
    Tatsumoto, M., Unruh, D.M., Patchett, P.J., 1981. U-Pb and Lu-Hf systematics of Antarctic meteorites, Proceedings of Sixth Symposium on the Antarctic meteorites. Natl. Inst. Polar Res., Tokyo, pp. 237-249.
    Taylor, H.P.J., 1977. Water/rock interaction and origin of H_2O in granitic batholiths. J. Geol. Soc. London 133, 509-558.
    Taylor, SJR. and McLennan, S.M., 1985. The Continental Crust: its composition and evolution. Oxford: Blackwell Scientific Publishers.
    Taylor, S.R., Mclennan, S.M., 1995. The Geochemical Evolution of the Continental-Crust. Rev. Geophys. 33,241-265.
    Tang, J., Zheng, Y.-F., Wu, Y.-B., Gong, B., Liu, X., 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen. Precambrian Res. 152,48-82.
    Tang, J., Zheng, Y.-F., Wu, Y.-B., Gong, B., Zha, X., Liu, X., 2008. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China. Precambrian Res. 161,389-418.
    Tuff, J., Gibson, S., 2007. Trace-element partitioning between garnet, clinopyroxene and Fe-rich picritic melts at 3 to 7 GPa. Contrib. Mineral. Petrol. 153,369-387.
    Valley, J.W., Kitchen, N., Kohn, M.J., Niendorf, C.R., Spicuzza, M.J., 1995. UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating. Geochim. Cosmochim. Acta 59, 5223-5231.
    Valley, J.W., Kinny, P.D., Schulze, D.J., Spicuzza, M.J., 1998. Zircon megacrysts fromkimberlite: oxygen isotope variability among mantle melts. Contrib. Mineral. Petrol. 133,1-11.
    Valley, J.W., 2003. Oxygen Isotopes in Zircon. Rev. Mineral. Geochem. 53,343-385.
    Van Wyck, N., Norman, M., 2004. Detrital zircon ages from early Proterozoic quartzites, Wisconsin, support rapid weathering and deposition of mature quartz arenites J. Geol. 112,305-315.
    Vavra, G., Schmid, R., Gebauer, D., 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib. Mineral. Petrol. 134, 380-404.
    Vervoort, J.D., Blichert-Toft, J., 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta 63, 533-556.
    Vervoort, J.D., Patchett, P.J., Blichert-Toft, J., Albarede, F.F., 1999. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet. Sci. Lett. 168, 79-99.
    Wan, Y, Liu, D., Xu, M., Zhuang, J., Song, B., Shi, Y, Du, L, 2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research 12,166-183.
    Wang, K., Plank, T, Walker, J.D., Smith, E.I., 2002. A mantle melting profile across the basin and range, SW USA. J. Geophys. Res. (Solid Earth) 107, doi: 10.1029/2001JB000209.
    Wang, J., Li, Z.X., 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Res. 122, 141-158.
    Wang, X.L., Zhou, J.C., Qiu, J.S., Gao, J.F., 2004a. Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan Province, South China: implications for the evolution of the western Jiangnan orogen. Precambrian Res. 135, 79-103.
    Wang, X., Zhou, J., Qiu, J., Gao, J., 2004b. Comment on "Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825Ma?" by Xian-Hua Li et al. [Precambrian Res. 122 (2003) 45-83]. Precambrian Res. 132,401-403.
    Wang, X.L., Zhou, J.C., Qiu, J.S., Zhang, W.L., Liu, X.M., Zhang, GL., 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution. Precambrian Res. 145,111 -130.
    Wang, X.-C, Li, X.-H., Li, W.-X., Li, Z.-X., 2007a. Ca. 825 Ma komatiitic basalts in South China: First evidence for >1500℃ mantle melts by a Rodinian mantle plume. Geology 35,1103-1106.
    Wang, X.-L., Zhou, J.-C, Griffin, W.L., Wang, R.-C, Qiu, J.-S., O'Reilly, S.Y., Xu, X., Liu, X.-M., Zhang, G-L., 2007b. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Res. 159, 117-131.
    Watkins, J.M., Clemens, J.D., Treloar, P.J., 2007. Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6-1.2 GPa. Contrib. Mineral. Petrol. 154,91-110.
    Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 64,295-304.
    Whalen, J.B., 1985. Geochemistry of an island-arc plutonic suite: the Uasilau-Yau Yau intrusive complex, New Britain, PNG. J. Petrol. 26,603-632.
    Whalen, J.B., Currie, K.J., Chappell, B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 95, 407-419.
    Whalen, J.B., Percival, J.A., McNicoll, V.J., Longstaffe, F.J., 2002. A Mainly Crustal Origin for Tonalitic Granitoid Rocks, Superior Province, Canada: Implications for Late Archean Tectonomagmatic Processes. J. Petrology 43,1551-1570.
    Whalen, J.B., Vicki J, M., Alan G, G, Frederick J, L., 2004. Tectonic and metallogenic importance of an Archean composite high- and low-Al tonalite suite, Western Superior Province, Canada. Precambrian Res. 132, 275-301.
    White, R.V., Tarney, J., Kerr, A.C., Saunders, A.D., Kempton, P.D., Pringle, M.S., Klaver, G.T., 1999. Modification of an oceanic plateau, Aruba, Dutch Caribbean: Implications for the generation of continental crust. Lithos 46,43-68.
    
    White, A.J.R., Chappell, B.W., 1977. Ultrametamorphism and Granitoid Genesis. Tectonphys. 43, 7-22.
    White, A.J.R., 1979. Sources of granite magmas. Geol. Soc. Am. Abst. Programs 11, 539.
    Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Vonquadt, A., Roddick, J.C., Speigel, W, 1995. 3 Natural Zircon Standards For U-Th-Pb, Lu-Hf, Trace-Element And Ree Analyses. Geostand. Newsl. 19,1-23.
    Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175-178.
    Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben M.A., Shanks III W.C. and R. W.I. (Editors), Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Rev. Econ. Geol., pp. 1-35.
    Williamson, B.J., Downes, H., Thirlwall, M.F., 1997. Geochemical constraints on restite composition and unmixing in the Velay anatectic granite, French Massif central. Lithos 40,295-319.
    Wingate, M.T.D., Campbell, I.H., Compston, W., Gibson, G.M., 1998. Ion microprobe U-Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambrian Res. 87, 135-159.
    Woodhead, J., Hergt, J., Shelley, M., Eggins, S., Kemp, R., 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation.Chem. Geol. 209, 121-135.
    Wu, R.-X., Zheng, Y.-F., Wu, Y.-B., Zhao, Z.-F., Zhang, S.-B., Liu, X., Wu, F.-Y, 2006a. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China.Precambrian Res. 146,179-212.
    Wu, F.-Y, Yang, Y.-H., Xie, L.-W., Yang, J.-H., Xu, P., 2006b. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 234, 105-126.
    Wu, Y.B., Zheng, Y.F., Zhao, Z.F., Gong, B., Liu, X.M., Wu, F.Y., 2006c. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochim. Cosmochim. Acta 70, 3743-3761.
    Wu, Y.-B., Zheng, Y.-F., Tang, J., Gong, B., Zhao, Z.-F., Liu, X., 2007. Zircon U-Pb dating of water-rock interaction during Neoproterozoic rift magmatism in South China. Chem. Geol. 246,65-86.
    Wyllie, P.J., Carroll, M.R., Johnston, A.D., Rutter, M.J., Sekine, T., and Van Der Laan, S.R., 1989. Interactions among magmas and rocks in subduction zone regions: Experimental studies from slab to mantle to crust. Eur. J. Mineral. 1,165-79.
    Xia, X., Sun, M., Zhao, G, Wu, F., Xu, P., Zhang, J., Luo, Y, 2006. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth Planet. Sci. Lett. 241, 581-593.
    Xie, Z., Zheng, Y.F., Zhao, Z.F., Wu, Y.B., Wang, Z.R., Chen, J.F., Liu, X.M., Wu, F.Y., 2006. Mineral isotope evidence for the contemporaneous process of Mesozoic granite emplacement and gneiss metamorphism in the Dabie orogen. Chem. Geol. 231,214-235.
    Xiong, X.L., Adam, J., Green, T.H., 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem. Geol. 218,339.
    Xiong, X.-L., 2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology 34,945-948.
    Xu, X.S., O'Reilly, S.Y., Griffin, W.L., Deng, P., Pearson, N.J., 2005. Relict proterozoic basement in the Nanling Mountains (SE China) and its tectonothermal overprinting. Tectonics 24, doi: 10.1029/2004TC001652.
    Xu, X.S., O'Reilly, S.Y., Griffin, W.L., Wang, X.L., Pearson, N.J. and He, Z.Y., 2007.The crust of Cathaysia: Age, assembly and reworking of two terrenes. Precambrian Research, 158,51-78.
    Yang, J.S., Wooden, J.L., Wu, C.L., Liu, F.L., Xu, Z.Q., Shi, R.D., Katayama, I., Liou, J.G., Maruyama, S., 2003. SHRIMP U-Pb dating of coesite-bearing zircon from the ultrahigh-pressure metamorphic rocks, Sulu terrane, east China. J. Metam. Geol. 21, 551-560.
    Yuan, H.-L., Gao, S., Dai, M.-N., Zong, C.-L, Gunther, D., Fontaine, G.H., Liu, X.-M., Diwu, C, 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem. Geol. 247,100-118.
    Yuan, H.L., Gao, S., Liu, X.M., Li, H.M., Gunther, D., Wu, F.Y., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 28,353-370.
    Zhang, H., Zheng, Y.F., Zheng, M.G, Yeng, J.L., 1990. Early Archean inheritance in zircon from Mesozoic Dalongshan granitoids in the Yangtze Foldbelt of Southeast China. Geochem. J. 24,133-141.
    Zhang, S., Jiang, G, Zhang, J., Song, B., Kennedy, M.J., Christie-Blick, N., 2005. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations. Geology 33,473-476.
    Zhang, S.-B., Zheng, Y.-F., Wu, Y.-B., Zhao, Z.-F., Gao, S., Wu, F.-Y, 2006a. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China. Precambrian Res. 146,16-34.
    Zhang, S.-B., Zheng, Y.-F., Wu, Y.-B., Zhao, Z.-F., Gao, S., Wu, F.-Y, 2006b. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Res. 151, 265-288.
    
    Zhang, S.-B., Zheng, Y.-F., Wu, Y.-B., Zhao, Z.-F., Gao, S., Wu, F.-Y, 2006c. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth Planet. Sci. Lett. 252, 56-71.
    Zhang, S.-B., Zheng, Y.-F., Zhao, Z.-F., Wu, Y.-B., Yuan, H., Wu, F.-Y., 2008. Neoproterozoic anatexis of Archean lithosphere: Geochemical evidence from felsic to mafic intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Res., doi: 10.1016/j.precamres.2007.12.003.
    Zhao, G.C., Cawood, P.A., 1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block: Implications for neoproterozoic collision-related assembly of the South China craton. Am. J. Sci. 299,309-339.
    Zhao, Z.-F., Zheng Y.-F., Wei C.-S., Gong B. 2001a. Carbon concentration and isotope composition of granites from southeastern China. Physics and Chemistry of Earth (A), 26, 821-833.
    Zhao, G.C, Wilde, S.A., Cawood, P.A., Sun, M., 2001b. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res. 107,45-73.
    Zhao, G.C, Cawood, P.A., Wilde, S.A., Sun, M., 2002. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci. Rev. 59,125-162.
    Zhao, G.C, Sun, M, Wilde, S.A., Li, S.Z., 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth Sci. Rev. 67,91-123.
    
    Zhao, J.-H., Zhou, M.-F., 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambr. Res. 152, 27-47.
    Zheng, Y.-F., 1991. Calculation of oxygen isotope fractionation in metal oxides. Geochim. Cosmochim. Acta 55, 2299-2307.
    Zheng, Y.-F., 1993a. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta 57,1079-1091.
    Zheng, Y.-F., 1993b. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet. Sci. Lett. 120, 247-263.
    Zheng, Y.F., Fu, B., 1998. Estimation of oxygen diffusivity from anion porosity in minerals. Geochem. J. 32,71-89.
    Zheng, Y.-F., Wang, Z.B., Li, S.G, Zhao, Z.F., 2002. Oxygen isotope equilibrium between eclogite minerals and its constraints on mineral Sm-Nd chronometer. Geochim. Cosmochim. Acta 66,625-634.
    Zheng, Y.-F., Fu, B., Gong, B., Li, L., 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth Sci. Rev. 62,105-161.
    Zheng, Y.-F., Wu, Y.B., Chen, F.K., Gong, B., Li, L, Zhao, Z.F., 2004a. Zircon U-Pb and oxygen isotope evidence for a large-scale ~(18)O depletion event in igneous rocks during the Neoproterozoic. Geochim. Cosmochim. Acta 68, 4145-4165.
    Zheng, J., Griffin, W.L., O'Reilly, S.Y., Lu, F., Wang, C, Zhang, M., Wang, F., Li, H., 2004b. 3.6 Ga lower crust in central China: New evidence on the assembly of the North China craton. Geology 32, 229-232.
    Zheng, Y.-F., Wu, Y.B., Zhao, Z.F., Zhang, S.B., Xu, P., Wu, F.Y., 2005. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth Planet. Sci. Lett. 240,378-400.
    Zheng, Y.-F., Zhao, Z.-F., Wu, Y.-B., Zhang, S.-B., Liu, X., Wu, F.-Y, 2006a. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem. Geol.231, 135-158.
    Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., Zhang, M., Pearson, N., Pan, Y.M., 2006b. Widespread Archean basement beneath the Yangtze craton. Geology 34,417-420.
    Zheng, Y.-F., Zhang, S.-B., Zhao, Z.-F., Wu, Y.-B., Li, X., Li, Z., Wu, F.-Y, 2007a. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos 96, 127-150.
    Zheng, Y. F. and Zhang, S. B., 2007. Formation and evolution of precambrian continental crust in South China. Chinese Sci. Bull. 52(1): 1-12.
    Zheng, Y.-F., Wu, Y.-B., Gong, B., Chen, R.-X., Tang, J., Zhao, Z.-F., 2007a. Tectonic driving of Neoproterozoic glaciations: Evidence from extreme oxygen isotope signature of meteoric water in granite. Earth Planet. Sci. Lett. 256, 196-210.
    Zheng, Y.-F., Wu, R.-X., Wu, Y.-B., Zhang, S.-B., Yuan, H.L., Wu, F.-Y, 2008. Rift melting of juvenile arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Res., doi: 10.1016/j.precamres.2008.01.004.
    Zhou, J.C., Wang, X.L., Qiu, J.S., Gao, J.F., 2004. Geochemistry of Meso- and neoproterozoic mafic-ultramafic rocks from northern Guangxi,China:Arc or plume magmatism? Geochem.J.38,139-152.
    Zhou,M.F.,Kennedy,A.K.,Sun,M.,Malpas,J.,Lesher,C.M.,2002a.Neoproterozoic arc-related mafic intrusions along the northern margin of South China:Implications for the accretion of Rodinia.J.Geol.110,611-618.
    Zhou,M.F.,Yan,D.P.,Kennedy,A.K.,Li,Y.Q.,Ding,J.,2002b.SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block,South China.Earth Planet.Sci.Lett.196,51-67.
    Zhou,M.-F.,Yan,D.-P.,Wang,C.-L.,Qi,L.,Kennedy,A.,2006a.Subduction-related origin of the 750 Ma Xuelongbao adakitic complex(Sichuan Province,China):Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China.Earth Planet.Sci.Lett.248,286-300.
    Zhou,M.F.,Ma,Y.X.,Yah,D.P.,Xia,X.P.,Zhao,J.H.,Sun,M.,2006b.The Yanbian terrane(Southern Sichuan Province,SW China):A neoproterozoic arc assemblage in the western margin of the Yangtze block.Precambrian Res.144,19-38.
    Zhou,M.-F.,Zhao,J.-H.,Xia,X.,Sun,W.-H.,Yan,D.-P.,2007.Comment on "Revisiting the "Yanbian Terrane":Implications for Neoproterozoic tectonic evolution of the western Yangtze Block,South China"[Precambrian Res.151(2006)14-30].Precambrian Res.155,313-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700