用户名: 密码: 验证码:
自修复添加剂对含铸铁配副摩擦磨损性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦学的发展已将摩擦磨损研究从减摩抗磨扩展到磨损表面自修复甚至零磨损,其中,在线自修复已成为当今摩擦学研究热点,这对节能降耗要求越来越迫切的今天,具有重要的理论与应用意义。
     近年来,对自修复添加剂的研究多集中于钢摩擦副上。有研究表明,在自修复添加剂润滑下,45钢磨损表面能够在线生成自修复保护膜,有效地减少了金属磨损、延长了材料使用寿命。铸铁作为重要的工程材料,广泛应用于机械制造业,在铸造合金中,铸铁的产量约为75%~80%。若自修复添加剂能明显改善铸铁的摩擦磨损性能,可进一步扩大其在工业上的应用,降低生产成本。因此,开展自修复添加剂对含铸铁配副的摩擦磨损性能的研究具有重要的实际意义。
     本文选取自修复添加剂对含铸铁配副摩擦磨损性能的影响作为研究课题。选用MMU-5G屏显式材料端面摩擦磨损试验机作为试验平台,自主设计便于润滑的试验试样,自备亚微米级羟基硅酸盐粉体作为磨损自修复添加剂,对含铸铁配副:45钢/铸铁、铸铁/45钢以及铸铁/铸铁摩擦副进行了大量的摩擦磨损试验。研究了自修复添加剂浓度、添加剂的时间效应、载荷效应以及摩擦副间相对滑动速度等因素对自修复添加剂润滑下的含铸铁配副摩擦磨损性能的影响,借助扫描电镜观察试样的磨损表面及断面形貌,借助能谱仪对试样表面和断面进行成分分析,揭示含铸铁配副在自修复添加剂作用下的摩擦磨损行为,初步探讨自修复添加剂对铸铁的作用机理。
     结果表明,不同工况参数对自修复添加剂作用下的含铸铁配副的摩擦磨损性能影响十分明显。当自修复添加剂浓度、磨损时间、摩擦副所加载荷以及摩擦副间相对滑动速度适宜时,铸铁及含铸铁配副在自修复添加剂润滑下表现出良好的摩擦磨损性能。在整个试验过程中,含铸铁配副的摩擦系数较0%添加剂时明显减小,铸铁试样的磨损量明显降低,自修复添加剂对铸铁的减摩抗磨效应显著;试验发现,45钢试样在与铸铁对磨时,其磨损表面仍能发生自修复反应,生成自修复保护膜,而铸铁因其金相组织和机械性能的特点,磨损表面无法发生自修复反应。
     本文的研究结果对于进一步开展对铸铁在自修复添加剂润滑下的摩擦磨损性能以及自修复膜生成状况的研究具有重要的参考价值,为自修复添加剂在含铸铁配副上的应用提供了一定的试验依据。
The development of tribology has expand the antifriction and antiwear of the researches on friction and wear into the self-repairing of worn surface, even zero wear, among them, repairing the early worn surface on-line has become the hotpot of the tribology researches.Today, in the increasing urgent demands of energy-saving and consumption-decreasing, it is of important academic and practical significance.
     For the past few years, the researches on self-repairing additive chiefly focused on frictional pairs of steel. Previous studies have shown that self-repairing coating can be generated on the worn surface of 45steel on-line, which reduces wear of metal materials and increases the service life.Cast iron is widely used in machine building industry as a important engineering material, in casting alloy, the output of cast iron is about 75 to 80 percent.If cast iron shows good friction and wear characteristic under self-rpairing additive, its application in industry will be further increased, and greatly reduce manufacturing cost. So, carrying out a research on friction and wear characteristics of pairs containing cast iron in self-repairing additive is of important practical significance.
     The research of influence of self-repairing additive on friction and wear characteristics of friction pairs with cast iron was chosen as a subject in this paper. MMU-5G end-face friction and wear testing machine was used as testing platform, experimental samples were designed independently which were convenient for being lubricated, hydroxy silicate powder were prepared by ourselves as self-repairing additive.On this condition, large numbers of experiment on friction and wear characteristics of friction pairs containing cast iron such as 45steel/cast iron,cast iron/45steel and cast iron/cast iron pairs were carried out, the influence on the friction and wear characteristics of friction pairs containing cast iron of concentration of self-repairing additive, wear time, the load on the friction pairs and the relative sliding speed of the pairs were studied systemically.The feature of worn surfaces and sections were observed by means of scanning electron microscopy, component of worn surfaces and sections were analyzed by means of energy disperse spectroscopy, the behavior of friction and wear of pairs containing cast iron in self-repairing additive have been known, and the mechanism of self-repairing additive are discussed.
     The results indicates that various working conditions parameters have a remarkable influence on friction and wear characteristics of friction pairs containing cast iron.When concentration of self-repairing additives, wear time, the load on the friction pairs and the relative sliding speed of the pairs are suitable,cast iron and the pairs containing cast iron have shown good performance of friction and wear.In the whole process,the frictional coefficient of pairs containing cast iron had decreased obviously comparing with ones in no additive,the weight losses of cast iron had reduced obviously from beginning to end, self-repairing additive has remarkable effect on antifriction and wearing of cast iron.The experimental results shows, self-repairing reaction can be caused on the frictional surface of 45steel and self-repair coatings generated while working conditions parameters suitable,the self-repairing coating has failed to be generated on the frictional surface of cast iron because of its metallographical structure and mechanical character.
     The research results of this paper have an important reference value for the further study on the friction and wear characteristic and probability of generating self-repair coatings of the cast iron lubricated in self-repairing additive, and also provide experimental reference for the application of additive on the friction pairs with cast iron.
引文
1温诗铸.摩擦学原理.北京:清华大学出版社,1990:1
    2薛群基,刘维民.摩擦化学的主要研究领域及其发展趋势.化学进展,1997,19(3):311-317
    3邵荷生,曲敬信,许小棣,等.摩擦与磨损.北京:煤炭工业出版社,1992:1
    4林福严,任建华.润滑理论与润滑技术研究进展.液压(液力)用油品质及污染控制技术论文集.2004:28-31
    5齐毓霖.摩擦与磨损.北京:高等教育出版社,1986:1-5
    6陈建敏,周惠娣.磨损失效与摩擦学新材料的研究与发展.材料保护,2004,37(7):35-39
    7付尚发.铜一镀铬摩擦副磨损自补偿添加剂及其摩擦学效应研究.[机械电子工业部武汉材料保护研究所硕士论文].2001:1-2
    8方建,赵源.润滑添加剂的磨损自补偿摩擦学效应.材料保护,2006,39 (6):18-20
    9董伟达.世界顶尖技术全新摩擦理念—中国工程机械减摩技术研究取得突破性进展.科技与管理,2003,(1):122-123
    10董伟达.工程机械减摩自修复材料技术.机械工程师,2003,(3):3-6
    11乔玉林.纳米微粒的润滑和自修复技术.北京:国防工业出版社,2005:316-329
    12高玉周,张会臣,王亮,等.自修复材料在钢球磨损表面成膜的机理分析.大连海事大学学报,2005,(3):62-65
    13 A. Hernández Battez, R. González, J.L. Viesca.et al.CuO,ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 2008, 265 (3-4):422-428
    14 Junyan Zhang, Weimin Liu, Qunji Xue.The tribological properties of the heterocyclic compound containing S, N, O, and B as additive in liquid paraffin.Wear,1999,224(1):68-72
    15 U.S.Choi,O.K.Kwon,A.R.Lansdown.The mechanism of action and performance of dialkyl3,5-di-t-butyl4-hydroxy benzyl phosphonates as a new antiwear additive.Wear,1991, 146 (1):63-77
    16张沈生,高云秋.汽车维修新技术—金属磨损自修复材料.国防技术基础,2003,(5):8-9
    17方建华,陈波水,董凌.减摩自修复添加剂的应用和发展前景.合成润滑材料,2003,30(4):24-29
    18张继辉,陈国需.润滑油自修复添加剂的研究现状及设想.润滑油,2003,18(5):6-28
    19涂政文,李宏,高万振,等.二聚酸32氯2-2羟基丙单酯对钢-钢摩擦副的磨损自补偿效应研究.摩擦学学报,2003,23(2):120-123
    20刘永强,张栋.润滑技术的新进展和发展趋势.润滑与密封,2003,(4):103-106
    21吴晓玲.我国工业齿轮润滑的问题及对策.设备润滑液压技术论文集.常州,1997:17-21
    22 E.A.Levashov,A.E.Kudryashov,P.V.Vakaev,et al.The prospects of nanodispersive powders application in surface engineering technologies. Surface and Coatings.Technology,2004,(180): 347-351
    23付尚发.铜-镀铬摩擦副磨损自补偿添加剂及其摩擦学效应研究.[武汉材料保护研究所硕士论文].2001:30-45
    24薛群基,党鸿辛.摩擦学研究的发展概况与趋势.摩擦学学报,1993,13(1):73-80
    25 M.Husnawan,M.G.Saifullah,H.H.Masjuki.Development of friction force model for mineral oil basestock containing palm olein and antiwear additive.Tribology International, 2007,(40):74-81
    26李华峰,陈国需.磨损表面在线自修复研究.材料导报,2004,(18)8A:288-290
    27董伟达.世界顶尖技术全新摩擦理念.科技与管理,2003,(1):122-123
    28周培钰.金属磨损自修复材料在铁路内燃机车柴油机上的应用试验.铁道机车车辆,2003,(23)5:23-52
    29方建华,陈波水,董凌.减摩自修复添加剂的应用和发展前景.合成润滑材料,2003,(30)4:24-29
    30徐建生,赵源.纳米润滑添加剂的制备及特性研究.材料保护,2000,(7):44-46
    31徐建生.纳米润滑剂的特性研究.润滑与密封,2002,(1):16-18
    32张建华,杜大昌,陈国需,等.机械磨损部件的摩擦润滑自修复.合成润滑材料,2002,29(2):13-18
    33 R.S.Montgomery.Evidence for the Melt-Lubrication of projectile Bands. Asle Transacions,28, (1):17-122
    34 A.B.Vipper,A.K.Karauiov, O.A.Mischuk.New Data On the Mechanism of Antiwear Action of Zinc Dithiophosphatesin Lubricating Oils.Lubrication Science.1994,(7):93-95
    35 So H, Lin Y C.The Theory of antiwear for ZDDP at elevated temperature in boundary lubrication condition.Wear,1994,177(6):10-115
    36周强,陈又玲,徐瑞清.摩擦作用下润滑剂的结构重组及对磨损表面的修复功能.[中国机械工程学会第六届全国摩擦学学术论文集].西安,1995:159-163
    37王汝霖.润滑剂摩擦化学.北京:中国石化出版社,1994:31-34
    38姚俊兵.硼酸脂润滑油添加剂的水解稳定性及摩擦磨损特性的研究.重庆:[解放军后勤工程学院硕士学位论文].1993:15-16
    39陈波水,董竣修,陈国需.二烷基二硫化磷酸的制备及性能研究.合成润滑材料.1995,(1)1-3
    40姚洪熹.润滑油中二烷基二硫化磷酸锌与丁二酰亚胺的复合效应.摩擦学学报,1996,16(2):162-167
    41段庆华.丁二酰亚胺与ZDDP的相互作用及对油品分散性能的影响.石油炼制,1992,(5):60-64
    42欧忠文.纳米润滑材料应用研究进展.材料导报,2000,14(8):28-31
    43欧忠文.磨损部件自修复原理与纳米润滑材料的自修复设计构思.表面技术,2001,30(6):47-49
    44周强.磨损修复润滑技术的新概念.润滑与密封,2000,(5):29-30
    45董凌,陈国需,方建华.抗磨自修复添加剂的发展现状.合成润滑材料.2003,30(1):17-21
    46师昌绪.表面工程与维修.北京:机械工业出版社,1996:21-23
    47吕德隆.表面工程技术的发展与应用.国外金属热处理,2002,23(5)13-15
    48刘世参,徐滨士,马世宁,等. 21世纪表面工程的发展和应用.第九次全国焊接会议论文集.北京,2006:248-252
    49徐滨士.纳米表面工程.北京:化学工业出版社,2004:1-2
    50刘家浚,郭凤炜.一种磨损表面自修复技术的应用效果及分析.中国表面工程,2004,(3):42-45
    51周仲荣.摩擦学发展前沿.北京:科学出版社,2006:100-104
    52韦周.奇葩在东方绽放[EB/OL].http :/ / www.China tradenews.com.cn/,2003:8-21
    53董伟达.金属磨损自修复材料.汽车工艺与材料,2003,(5):31-35
    54董伟达,马文江,黄岩.汽车及船用发动机应用金属磨损自修复技术的效果.铸造,2005,(54):401-403
    55夏延秋,杨文通,马先贵,等.纳米级铜粉改善润滑油抗磨性能的研究,润滑与密封,1998,(5):43-44
    56董浚修,蒋松,易世泽.摩擦化学处理表面的研究.润滑与密封,1997,(3):61-63
    57姜秉新,陈波水,董浚修.铜型添加剂摩擦修复作用的可行性研究.润滑与密封,1999,(2):50-52
    58李宏,涂政文,付尚发,等. ZTC磨损自补偿添加剂的修复效应.润滑与密封,2001,(6):23-26
    59付尚发,赵源,涂政文,等.机械油中添加剂对铜一钢摩擦副的磨损自补偿效应.材料保护,2000,35(7):100-130
    60熊仁根,董浚修.摩擦还原镀铜研究.合成润滑材料,1994,(3):9-11
    61姚俊兵.硼酸脂与油酸铜化合物的协同抗磨及作用机理研究.润滑与密封,1993,(5):11-13
    62柳学全,方建峰,黄乃红,等.修复型润滑添加剂的开发及应用.粉末冶金工业,2003,13(4):20-22
    63姜秉新,陈波水,董浚修.铜型添加剂摩擦修复作用的可行性研究.机械科学与技术,1999,18(3):445-447
    64豆立新,龚华栋,吕振坚,等.分散在润滑剂中的柔性金属微粒的摩擦学行为的试验研究.润滑与密封,2002,(5):23-25
    65高玉周.蛇纹石热处理产物的特性及其金属磨损表面自修复机理分析.功能材料,2004(增刊),(35):3264-3267
    66高玉周,张会臣,王亮,等.自修复材料在钢球磨损表面成膜的机理分析.大连海事大学学报,2005,31(3):62-65
    67杨宏伟,李召良,费逸伟,等.硅酸镁和滑石粉的抗磨自修复机理.合成润滑材料,2006,33(4):1-3
    68李大勇,李传校,王大飞.金属表面原位摩擦自修复陶瓷涂层的机理研究.山东化工,2005,34(3):5-6
    69莫易敏,邹岚,赵源,等.重载丝杆螺母副的微弹流研究.机械科学与技术,1997,(5B):l-6
    70莫易敏,邹岚,赵源,等.摩擦行程对磨损自补偿性的效应.材料保护,1997,(2):14-16
    71莫易敏,邹岚,赵源,等.滑动速度对磨损自补偿性的影响研究.材料保护,1997,(4):15-20
    72莫易敏,邹岚,赵源,等.载荷对磨损自补偿效应的影响研究.摩擦学学报,1998,(4):12-30
    73莫易敏,邹岚,赵源,等.自补偿磨损表面微观形貌分析.机械科学与技术,1998,(3):60-80
    74莫易敏,邹岚,赵源,等.基础油粘度对磨损自补偿性能影响研究.润滑与密封,1998,(1):34-36
    75莫易敏,邹岚,赵源,等.自补偿磨损模型研究.润滑与密封,1998,(3):7-8
    76涂政文,赵源.磨损自补偿润滑添加剂的摩擦学效应.材料保护,1998,31(8):12-14
    77方建,赵源.润滑添加剂的磨损自补偿摩擦学效应.材料保护,2006,39(6):18-20
    78付尚发,赵源,涂政文,等.添加剂对锡青铜一镀硬铬45钢摩擦副的磨损自补偿摩擦学效应.材料保护,2003,36(5):34-37
    79游中流,高万振,赵源.新型润滑添加剂的磨损自补偿效应研究.材料保护,2003,36(2):13-15
    80涂政文,李宏,高万振,等.二聚酸3-氯2-2羟基丙单酯对钢-钢摩擦副的磨损自补偿效应研究.摩擦学学报,2003,23(2):120-123
    81张建华,赵源,李健,等.磨损自补偿润滑添加剂ZT2的摩擦学特性试验.机械科学与技术,1998,17(6):1020-1022
    82杨鹤,李生华,金元生.修复剂羟基硅酸镁存在时钢摩擦副的摩擦磨损特性研究.摩擦学学报,2005,25(4):308-311
    83郭延宝,徐滨士,马世宁,等.羟基硅酸盐润滑油添加剂对45钢-球墨铸铁摩擦副摩擦磨损性能的影响.摩擦学学报,2004,24(6):512-516
    84徐建国,谢传林,杜占斌.金属抗磨修复材料对45钢摩擦副表面改性的影响.材料开发与应用,2007,22(4):30-33
    85齐效文,杨育林,薛飞.接触应力和相对滑动速度对金属表面自修复膜生成的影响及机制.润滑与密封,2007,(7):20-25
    86齐效文,杨育林,范兵利.羟基硅酸镁粉体添加剂含量对金属表面自修复膜生成的影响及机制.润滑与密封,2007,(6):46-49
    87高玉周,张会臣,许晓磊,等.硅酸盐粉体作为润滑油添加剂在金属磨损表面成膜机制.润滑与密封,2006,(10):39-42
    88张继辉,陈国需.润滑油自修复添加剂的研究现状及设想.润滑油,2003,18(5):6-8
    89田斌,王成彪,顾艳红,等.陶瓷润滑油添加剂对钢/钢摩擦副摩擦学性能的影响.材料热处理学报,2006,27(3):132-136
    90周培钰.“金属磨损自修复材料”在柴油机气缸套上的应用试验.内燃机车,2003,(l1):43-46
    91徐滨士,欧忠文,马世宁,等.纳米表面工程.中国机械工程,2000,11(6):707-712
    92乔玉林,徐滨士,马世宁,等.含纳米铜的减摩修复添加剂摩擦学性能及其作用机理研究.石油炼制与化工,2002,33(8):34-38
    93夏延秋,金寿日,孙维明,等.纳米级金属粉对润滑油摩擦磨损性能的影响.润滑与密封,1999,(3):33-34
    94欧忠文,徐滨士,马世宁,等.磨损部件自修复原理与纳米润滑材料的自修复设计构思.表面技术,2001,30(6):47-53
    95郭志光,顾卡丽,赵源.纳米润滑技术的进展.新材料产业,2003,(4):67-70
    96郭志光,顾卡丽,徐建生.纳米润滑添加剂的润滑自修复效应.材料保护,2003,36(9):22-24
    97乔玉林,姜海,毕志夫.应用纳米材料的新型原位自修复技术.工程机械与维修,2002,(7):100-101
    98 Satoshi Murata,Eiichi Yoshida,Haruhisa Kurokawa,et al.Al1 self-repairing mechanical system. Part of the SPIE conference on sensor fusion and decentralized control in robotic systems II,Boston,1999:202–213
    99 M Zako, N Takano, H Fujioka.Intelligent materials system using epoxy particles for self-repair. Proceedings of the eighth Japan-US1Conference on composite materials, inner harbor Baltimore, Maryland,1998:841–849
    100 Hideki Masuda, Masato Yotsuya, Mari Asano, et al, Al1 self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina.Applied Physics Letters, 2001,78(6):826–828
    101 M Motuku, U K Vaidya, G M Janowski.Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact.Smart Mater Struct,1999,(8):623-638
    102曹学军.美国国家纳米技术计划.国外科技动态,2000,(6):18-19
    103 S.Tarasov,A.Kolubaev,S.Belyaev,et al.Study of friction reduction of nanocopper additives to motor oil.Wear,2002,(252):63-69
    104 H.Mishina. Surface deformation and formation of original element of wear particles in sliding friction.Wear,1998,(215):10-17
    105 Xu T, Zhao J Z, Ma X G. Study on the tribological properties of unltradispersed diamond containing soot as oil additive.Tribology Transactions,1997,(40):178-183
    106 G.V.Vinogradov,O.E.Morozova.A study of the wear of steel under heavy loads with lubricants containing sulphur-based additives.Wear, 1960,(3):297-308
    107 Ichiro Minami, Satoru Kikuta, Heihachiro Okabe.Anti-wear and friction reducing additives composed of orthophenylene phosphate-amine salts for polyether type base stocks.Tribology International, 1998,(31):305-312
    108 M.I.de Barros'Bouchet, J.M.Martin,T. Le-Mogne,et al.Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives.Tribology International, 2005,(38):257-264
    109 B. Podgornik, D. Hren, J. Vi?intin, et al.Combination of DLC coatings and EP additives for improved tribological behaviour of boundary lubricated surfaces.Wear,2006,261(1):32-40
    110 A.Neville, A. Morina, T. Haque,et al.Compatibility between tribological surfaces and lubricant additives-How friction and wear reduction can be controlledby surface/lube synergies.Tribology International,2007,(40):1680-1695
    111 L.Joly-Pottuz, N. Matsumoto, H. Kinoshita, et al.Diamond-derived carbon onions as lubricant additives.Tribology International, 2008,41(2):69-78
    112 M.Kalin,J.Vi?intin.Differences in the tribological mechanisms when using non-doped, metaldoped(Ti, WC), and non-metal-doped (Si) diamond-like carbon against steel under boundary lubrication, with and without oil additives.Thin Solid Films, 2006,515(4):2734-2747
    113 B. Podgornik, S.Jacobson, S.Hogmark.DLC coating of boundary lubricated components—advantages of coating one of the contact surfaces rather than both or none.Tribology International, 2003, 36(11):843-849
    114 Jianjun Wei,Qunji Xue.Effect of additive interactions on the friction and wear properties of WC coating.Wear,1992,157(1):163-172
    115 Jiamei Zhu,Yongmin Liang,Weimin Liu.Effect of novel phosphazene-type additives on the tribological properties of Z-DOL in a steel-on-steel contact.Tribology International, 2004,37(4):333-337
    116 Jianjun Wei, Qunji Xue.Effects of additives on friction and wear behaviour of Cr2O3 coatings.Wear, 1993, 160(1):61-65
    117 Jianjun Wei, Qunji Xue, Hanqing Wang.Effects of anti-wear additives on friction and wear properties of Cr2O3 coating.Tribology International,1993,26(4):241-244
    118 Jianjun Wei, Qunji Xue.Effects of lubricating greases and additives on the friction and wear properties of ceramics.Wear, 1992, 157(1):173-180
    119 Jianjun Wei, Qunji Xue.Effects of synthetic additives on the friction and wear properties of a Cr2O3 coating.Wear,1994,176(2):213-216
    120 T.Katafuchi, N. Shimizu.Evaluation of the antiwear and friction reduction characteristics of mercaptocarboxylate derivatives as novel phosphorous-free additives.Tribology International,2007,40(7):1017-1024
    121 Y.Y.Wu, W.C.Tsui, T.C.Liu.Experimental analysis of tribological properties of lubricating oils with nanoparticle additives.Wear,2007,262(7-8):819-825
    122 Sun Yangming, Jiang Sijuan, Yong Jinyin,et al.Friction behaviour and structure of boundary lubrication film for a molybdenum dithiolate anti-wear additive.Tribology International,1991,24(6):357-364
    123 Yan-qiu Xia, Wei-min Liu, Qun-ji Xue.Friction and wear behavior of nodular cast iron modified by a laser micro-precision treatment sliding against steel under the lubrication of liquid paraffin containing various additives.Wear,2002,253(7-8):752-758
    124 D. Chvedov, R. Jones.Frictional behavior of rolled surfaces coated with polymer films.Surface and Coatings Technology, 2004,(188-189):544-549
    125 K. Bobzin, E. Lugscheider, M. Maes, et al.High-performance chromium aluminium nitride PVD-coatings on roller bearings.Surface and Coatings Technology,November-December 2004,(188-189):649-654
    126 B. Podgornik, M. Sedla?ek, J. Vi?intin.Influence of contact conditions on tribological behaviour of DLC coatings.Surface and Coatings Technology,2007,202(4-7):1062-1066
    127 B. Podgornik, S. Jacobson, S. Hogmark.Influence of EP additive concentration on the tribological behaviour of.DLC-coated steel surfaces.Surface and Coatings Technology, 2005, 191(2-3):357-366
    128 B. Podgornik, S. Jacobson, S. Hogmark Influence of EP and AW additives on the tribological behaviour of hard low friction coatings.Surface and Coatings Technology, 2003,165(2):168-175
    129 P. I. Sanin, A. B. Vipper, E. S. Shepeleva,et al.Interaction of anti-wear additives with friction surfaces.Wear,1974, 30(2):249-256
    130 B. Podgornik, D. Hren, J. Vi?intin.Low-friction behaviour of boundary-lubricated diamond-like carbon coatings containing tungsten.Thin Solid Films,2005,476(1) :92-100
    131 M. Voong, A. Neville, R. Castle.Optimised additive-surface material combinations for reduced friction & wear in internal combustion engines.Tribology and Interface Engineering Series,2003,(41):749-760
    132 E. A. Levashov, A. E. Kudryashov, P. V. Vakaev, et al.The prospects of nanodispersive powders application in surface engineering technologies.Surface and Coatings Technology,2004(180-181):347-351
    133 M. Kalin, J. Vi?intin.The tribological performance of DLC coatings under oil-lubricated fretting conditions.Thin Solid Films,2006,515(4):2734-2747
    134 Jianjun Wei, Xushou Zhang, Qunji Xue.The tribological properties of ceramic coatings modified by molybdenum films under oil-lubricated conditions.Thin Solid Films,1995,266(1):48-51
    135 K.Vercammen, K.Van Acker, A.Vanhulsel, et al.Tribological behaviour of DLC coatings in combination with biodegradable lubricants.Tribology International,2004,37(11-12):983-989
    136 Dalai Jin, Linhai Yue.Tribological properties study of spherical calcium carbonate composite aslubricant additive.Materials Letters,2008, 62(10-11):1565-1568
    137 B. Podgornik, J. Vi?intin.Tribological reactions between oil additives and DLC coatings for automotive applications.Surface and Coatings Technology,2005,200(5-6):1982-1989
    138 M. Kuhn, P. W. Gold, J. Loos.Wear and friction characteristics of PVD-coated roller bearings.Surface and Coatings Technology, 2004, 177-178(30):469-476
    139 Daisuke Yonekura, Richard J. Chittenden, Peter A. Dearnley.Wear mechanisms of steel roller bearings protected by thin,hard and low friction coatings.Wear, 2005,259(1-6):779-788
    140 Anna Gajewska-Midzia?ek, Benigna Szeptycka, Daniela Derewnicka, et al.Wear resistance of nanocrystalline composite NI-B coatings.Tribology International,2006,39(8):763-768
    141 P. W. Gold, J. Loos. Wear resistance of PVD-coatings in roller bearings.Wear,2002, 253,(3-4):465-472
    142 Wang C.B.The influence of metal surface composition on the tribological properties of filled PTFEP steel couples.Tribology international,2004,(37):645-650
    143张津,李军,李春天,等.金属磨损表面耐磨自修复技术的研究.表面技术,2004,33(5):7-8
    144刘维民,薛群基,周静芳,等.纳米颗粒的抗磨作用及作为磨损修复添加剂的应用研究.中国表面工程,2001,(3):21-29
    145顾艳红,田斌,岳文等.金属陶瓷润滑油添加剂对钢-钢摩擦副磨损行为的影响及其铁谱验证.中国表面工程,2005,(1):16-23
    146李大勇.硅酸盐粉末对金属表面的摩擦修复效应研究.[南京工业大学硕士学位论文],南京,2005:26-30
    147李凤生.超细粉体技术.北京:国防工业出版社,2000:1-5
    148汪德涛.润滑技术手册.北京:机械工业出版社,1999:37-40
    149罗虹,刘家浚,孙希桐.磨粒磨损中基体表面形成复合材料层的作用机理及其影响因素的考察.摩擦学学报,1995,15(3):218-223
    150温诗铸,黄平.摩擦学原理(第二版).北京:清华大学出版社,2002:179~199;301~306
    151刘谦,徐滨士,许一等.摩擦磨损自修复润滑油添加剂研究进展.润滑与密封,2006(2):150-154
    152何奖爱,王玉玮.材料磨损与耐磨材料.沈阳:东北大学出版社,2001:42-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700