用户名: 密码: 验证码:
光纤光栅传感网络技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传感技术是信息技术的重要支柱。而光学传感,尤其是光纤传感技术,是近些年来发展最为迅速的传感技术之一。由于光纤具有许多优良的特性,因此其在复杂恶劣环境中,成为不可替代的传感器件。光纤光栅是一种新型的光无源器件。它是利用光纤材料的光敏特性在光纤的纤芯上建立的一种空间周期性折射率分布,其作用在于改变或控制光在该区域的传播行为方式。光纤光栅的出现,使许多复杂的全光纤通信网络和传感网络成为可能,极大地拓宽了光纤技术的应用范围,并由此产生了许多重要的应用。作为光子研究领域的一种新兴技术,以光纤和光纤光栅为基本传感器件的传感技术近年来受到普遍关注,各国研究者积极开展有关研究工作。
     本报告结合国家863重点项目“光纤光栅传感系统中的关键技术及实用化研究”和天津市重点攻关项目“工程化光纤光栅传感器及其网络解调系统设备研制”等,并考虑当前光纤和光纤光栅传感网络技术的发展方向和主要问题,主要对光纤和光纤光栅的传感技术、解调技术以及网络技术进行了理论和实验的研究工作。报告的主要内容有:
     1.以光纤光栅作为传感器件,对光纤光栅的增敏和减敏技术进行了研究,开发出一套完整的封装工艺,并研制开发了多种适合工程使用的光纤光栅传感器。
     2.采用可调谐法布里-珀罗滤波器作为核心解调器件,利用并行解调方案,设计并制作实现了工程化光纤光栅传感网络解调设备(GCW型光纤光栅传感网络解调系统),实现了光纤光栅传感器网络的波长解调,性能优良,被鉴定为国际先进水平。
     3.对倾斜光纤光栅进行了理论分析。在柱坐标系下推导了倾斜光纤光栅的传输公式并进行了理论模拟。采用倾斜光纤光栅作为核心解调器件,采用边沿检测的方法,实现了800nm波段的倾斜光纤光栅波长解调系统,并利用该系统进行了温度和应变的传感的实验。
     4.针对一般可调谐激光器输出功率随波长变化的问题,采用自动功率控制方法,通过在掺铒光纤环行腔激光器内加入功率负反馈,设计并实验成功一种均衡功率的C+L波段的掺铒光纤可调谐激光器。波长调谐范围为87nm(1525-1612nm),覆盖了整个C+L波段。输出激光功率0.7mW,3dB带宽为0.26nm,各波长激光的边模抑制比高于55dB。
     5.在光纤传感方面,对各种光纤围栏的可行性技术进行了探讨与分析。同时,利用M-Z干涉技术,设计并实现了一种实用的光纤围栏系统,进行了单点和多点扰动的实验。
Fiber gratings are attracting considerable interests in applications. They are new type of passive optical components, which are based on the periodical distribution of refraction index in fiber core. Fiber gratings have several distinguished advantages over normal fibers. Because of their intrinsic nature and inherent wavelength-encoded operation, fiber gratings are utilized as sensing elements in recent years. The relevant reports have been appealed much attention throughout the world.
     Encoding the information on the measurand in a wavelength form has been caused extensively focus. The most important advantage is that wavelength is an absolute parameter and thus does not depend on loss of the system or fluctuation of the source power. Most of today’s demodulation techniques rely on optical filtering method, such as bulk optical edge filters, scanning fiber Fabry-Perot filters, WDM fiber couplers, acousto-optic tunable filters and Mach-Zehnder filters.
     In this report, we mainly focus on the research and realization of fiber Bragg grating networks, including the principles and experiments of sensing and demodulation techniques. The contents are listed as follows:
     1. Generally introduce the sensing technique, especially the present situation and development of fiber and fiber Bragg grating sensor technique. The fundamental theory of fiber grating is also demonstrated. The basic principle of fiber Bragg grating sensor and demodulation and multiplex technique can be found in this dissertation.
     2. Using the fiber grating as the basic sensor unit, we design several kinds of FBG sensors which are suitable for application. Moreover, the design principle, the system structure as well as the test results are demonstrated in detail.
     3. We designed and realized a high-speed sensor multiplexing network system based on the F-P tunabled filter. The high-speed wavelength demodulation of fiber Bragg grating sensor has been turned into practice. The system principle is introduced and analyzed in this dissertation. The system is designed as an all-fiber system. It realized the high-speed wavelength-division-multiplexing demodulation of fiber grating sensor.
     4. Some theorical works on tilted fiber Brag grating is presented in this paper. And more, we firstly build the demodulation system based on TFBG in the world. The principle and structure are introduced in detail. And the experimental results are also presented.
     5. In this report, a power-equilibrium tunable C+L band Erbium-doped fiber lasers is proposed and demonstrated. The laser is based on Erbium-doped fiber ring, and a F-P filter incorporated with a tunable bandpass filter in the ring. At the same time, the Auto-Power-Control (APC) technique is used to proportion the output power of the laser. The laser has wide tunable range from 1525nm to 1612nm, and the sidemode suppression ratio is more than 55dB. The output power variation is less than +/-0.1dB over the running range.
     6. At the end, we discuss the feasible techniques for fiber fence. Using M-Z interferometer, we build and realize a practical fiber fence system. The principle and structure and also the experimental results are presented and discussed.
引文
[1.1] 刘迎春, 叶湘滨著. 现代新型传感器原理与应用. 北京:国防工业出版社, 1998 年第一版: 10
    [1.2] 栾桂冬, 张金铎, 金欢阳著. 传感器及其应用. 西安: 西安电子科技大学出版社, 2002 年第一版: 96
    [1.3] 安毓英, 曾小东著. 光学传感与测量. 北京: 电子工业出版社, 2001 年第3 版: 167
    [1.4] 安毓英, 曾小东著. 光学传感与测量. 北京: 电子工业出版社, 2001 年第3 版: 168
    [1.5] K.O.Hill, Y.Fuji, D.C.Jonson and B.S.Kawasaki. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett., 1978, 32:647-649
    [1.6] G.Meltz, W.W.Morey and H.Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett., 1989, 14: 823-825
    [1.7] K.O.Hill, B.Malo, F.Bilodeau, D.C.Johnson and J.Albert. Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett., 1993, 62: 1035-1037
    [1.8] W.W.Morey, G.A.Ball, H.Singh. Applications of fibre grating sensors. Proc. of SPIE., 1996, 28(39): 2-7
    [1.9] A.D Kersey, M.A. Davis, T.A. Berkoff, D.G. Bellemore, K.P. Koo, R.T. Jones. Progress towards the development of practical fibre Bragg grating instrumentation systems. Proc. of SPIE., 1996, 2839: 40-63
    [1.10] P.Ferdinand, S.Magne, V.Dewynter-Marty, et al. Applications of Bragg Grating Sensors in Europe. Proceedings of the 12th International Conference on Optical Fibre Sensors, Williamsburg, USA, 1997. 14-19.
    [1.11] Othonos, K.Kalli. Fiber Bragg Grating: Fundamentals and Applications in Telecommunications and Sensing. Artech House, Boston, London. 1999
    [1.12] Riant, F.Haller. Study of the photosensitivity at 193nm and comparison with photosensitivity at 240nm influence of fiber tension: type IIA aginging. IEEE Journal of Lightwave Tech., 1997, 15(8): 1464-1469
    [1.13] W.X.Xie, P.Niay, P.Bernage, et al. Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings written within germanosilicate fiber. Optics Communications, 1993, 104: 185-195
    [1.14] L.Dong, W.F.Liu. Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber. Applied Optics, 1997, 36(31): 8222-8226
    [1.15] J.L.Archambault, L.Reekie, P.St.Russell. 100% reflectivity Bragg reflectors produced in optical fibers by single excimer laser pulses. Electron. Lett., 1993, 29(5): 453-455
    [1.16] A.Othonos, K.Kslli. Fiber Bragg Gratings: fundamentals and Applications in Telecommuniccations and Sensing. Artech House, Boston, 1999
    [1.17] H.J.Patrick, C.C.Chang, S.T. Vohhra. Long period fiber gratings for structural bend sensing. Electron. Lett., 1998, 34(18): 1773-1775
    [1.18] R.Kashyap, R.Wyatt, R.J.Campbell. Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating. Electron. Lett., 1993, 29(2): 154-156
    [1.19] J.A.R.Williams, I. Bennion, K. Sugden, et al. Fiber dispersion compensation using a chirped in-fiber Bragg grating. Electron. Lett., 1994, 30(12): 985-987
    [1.20] R.Kashyap, H.G.Froehlich, A. Swanton, D.J.Armes. Super-step-chirped fiber Bragg gratings. Electron. Lett., 1996, 32(15): 1394-1396
    [1.21] R.Zengerle, O.Leminger. Phase-shifted Bragg Filters with improved transmission characteristics. IEEE Journal of Lightwave Tech., 1995, 13: 2354-2358
    [1.22] B.J.Eggleton, P.A.Krug, L.Poladian, F.Ouellette. Long periodic superstructure Bragg gratings in optical fibers. Electron. Lett., 1994, 30(19): 1620-1622
    [1.23] M.A.Putnam, G.M.Williams, R.J.Friebele. Fabrication of tapered, strain-gradient chirped fiber Bragg gratings. Electron. Lett., 1995, 31(4): 309-310
    [1.24] I.Bennion, J.A.R.Williams, L.Zhang, et al. UV-written in-fiber Bragg grating. Optical and Quantum Electronics, 1996, 28: 93-135
    [1.25] M.Ibsen, B.J.Eggleton, M.G.Sceats et al. Broadly tunable DBR fiber laser using sampled fiber Bragg gratings. Electron. Lett., 1995, 31: 37-38
    [1.26] H.Storoy, H.E.Engan, B.Sahlgren, et al. Position weighting of fiber Bragg gratings for bandpass filtering. Opt. Lett., 1997, 22(11): 784-786
    [1.27] M.LeBlanc, S.Y.Huang, M.Ohn, et al. Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis. Opt. Lett., 1996, 21(17): 1405-1407
    [1.28] A.D.Kersey, M.A.Davis, H.J.Patrick, et al, Fiber grating sensors. Journal of Lightwave Technology, 1997, 15(8): 1442-1463
    [1.29] 童峥嵘, 黄勇林, 蒙红云等. 一种新颖的光纤光栅位移传感的研究. 传感技术学报, 2002, 15(1): 10-13
    [1.30] 黄勇林, 童峥嵘, 项阳等. 用光纤光栅的啁啾效应实现温度不敏感的位移测量. 中国激光, 2002, 29(11): 1015-1018
    [1.31] T.A.Berkoff, A.D.Kersey. Experimental demonstration of a fiber Bragg grating accelerometer. IEEE Photonics Technology Lett., 1996, 8(12): 1677-1679
    [1.32] E.J.Friebele, C.G.Atkins, M.A.Putnam, et al. Disatributed strain sensing with fiber Bragg grating array embedded in CRTM composites. Electron. Lett., 1994, 30: 1783
    [1.33] Zhang Wei-Gang, Huang Yong-Lin, Xiang Yang, et al. Temperature–independent stress and displacement bi-directional sensing tuned by applying bilateral cantilever beam. Chinese Physical Lett., 2002, 19(1): 76-78
    [1.34] W.G.Zhang, X.Y.Dong, D.J.Feng, et al. Linear fibre-grating-type sensing tuned by applying torsion stress. Electron. Lett., 2000, 36(20): 1686-1688
    [1.35] J.L.Arce-Diego, R.Lopez-Ruisanchez, J.M.Lopez-Higuera, et al. Fiber Bragg grating as an optical filter tuned by a magnetic field. Opt. Lett., 1997, 22(9): 603-605
    [1.36] P.M.Cavaleiro, F.M.Araujo, A.B.Lobo Ribeiro. Metal-coated fiber Bragg grating sensor for electric current metering. Electron. Lett., 1998, 34(11): 1133-1135
    [1.37] Xinyong Dong, Hongyun Meng, Guiyun Kai, et al. Bend measurement with chirp of fiber Bragg grating. Smart Materials and Structures, 2001, 10: 1-3
    [1.38] Xinyong Dong, Yunqi Liu, Zhiguo Liu, et al. Simultaneous displacement and temperature measurment with cantilever-based fiber Bragg grating sensor. Opt. Comm., 2001, 192: 213-217
    [1.39] Weigang Zhang, Zhaowen Xu, Xiaopeng Yang, et al. Study of fiber-type sensor of refractive indices and concentration of liquids. Proc. of SPIE., 2001, 4595: 209-212
    [1.40] 许兆文, 盛秋琴, 施可彬等. 光纤光栅振动传感实验研究. 南开大学学报(自然科学), 2001, 34(2): 79-81
    [1.41] C.Y.Lin, L.A.Wang, G.W.Chern. Corrugated long-period fiber grating as strain, torsion, and bending sensors. Jour. of Lightwave Techn., 2001, 19(8): 1159-1168
    [1.42] A.D.Kersey. Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry. IEICE Trans. Electron, E83-C, 2000: 400-404
    [1.43] R.Arai, A.Suumita, S.Makino. Large-scale hybrid monitoring system for temperature, strain and vibration using fiber Bragg grating sensors. Proc. of SPIE., 2002, 4920: 62-72
    [1.44] W.W.Morey, G.Meltz, W.H.Glenn. Fiber Bragg grating sensors. Proc. SPIE Fiber Optics & Laser Sensors VII, 1989, 1169: 98-107
    [1.45] 张伟刚. 纤栅式传感系列器件的设计及技术研究. 南开大学博士学位论文, 天津: 南开大学, 2002: 13
    [1.46] W.W.Morey, G. Meltz, WH Glenn. Bragg-grating temperature and strain sensors. Proc. OFS’89, Paris, France, 1989, 526
    [1.47] M.G.Xu, L.Reekie, Y.T.Chow, et al. Optical in-fiber grating high pressure sensor. Electron. Lett., 1993, 29(4): 398-399
    [1.48] M.G.Xu, H.Geiger, J.P.Dakin. Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing. Electron. Lett., 1996, 32(2): 128-129
    [1.49] Yunqi Liu, Zhuanyun Guo, Ying Zhang, et al. Simultaneous pressure and temperature measurement with a polymer-coated fibre Bragg grating. Electronics Letters, 2000, 36(6): 564-566
    [1.50] Ying Zhang, Dejun Feng, Zhiguo Liu, et al. High-Sensitivity Pressure Sensor Using a Shielded Polymer-Coated Fiber Bragg Grating. Photonics Technology Letter, 2001, 13(6): 618-619
    [1.51] T.Iwashima, A. Inoue, M. Shigematsu, et al. Temperature compensation technique for fiber Bragg gratings using liquid crystalline polymer tubes. Electron. Lett., 1997, 33: 417-419
    [1.52] M.G.Xu, J.-L.Archambault, L.Reekie, et al. Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors. Electron. Lett., 1994, 30(13): 1085-1087
    [1.53] M.G.Xu, L.Dong, L. Reekie, et al. Temperature -independent strain sensor using a chirped Bragg grating in tapered optical fibre. Electron. Lett., 1995, 31(10): 823-825
    [1.54] S.E.Kanellopoulos, V.A.Handerek, A.J.Rojers. Simultaneous strain and temperature sensing with photogenerated in-fiber grating. Opt. Lett., 1995, 20(3): 333-335
    [1.55] S.W.James, M.L.Dockney, R.P.Tatam. Simultaneous independent temperature and strain measurement using in-fiber grating sensors. Electron. Lett., 1996, 32(12): 1133-1134
    [1.56] M.Song, B.Lee, S.B.Lee, et al. Interferometric temperature-insensitive strain measurement with different-diameter fiber Bragg gratings. Opt. Lett., 1997, 22(11): 790-792
    [1.57] G.P.Brady, K.Kalli, D.J.Webb, et al. Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelength of Bragg gratings. IEEE Proc. Optoelectron, 1997, 144(3): 156-161
    [1.58] M.A.Davis, A.D.Kersey. Simultaneous measurement of temperature and strain using in-fiber Bragg gratings and Brillouin scattering. IEEE Proc.-Optoelectron, 1997, 144(3): 151-155
    [1.59] A.D.Kersey, T.A.Berkoff, W.W.Morey. Multiplexed fiber Bragg grating sreain-sensor system with a fiber Fabry-Perot wavelength filter. Opt. Lett., 1993, 18(16): 1370-1372
    [1.60] M.A. Davis, A.D.Kersy. Matched-filter interrogation technique for fiber Bragg grating arrays. Electron. Lett., 1995, 31(10): 822-823
    [1.61] A.D.Kersey, T.A.Berkoff. Dual wavelength fiber interferometer with wavelength selection via fiber Bragg grating elements. Electron. Lett., 1992, 28(13): 1215-1216
    [1.62] G.A.Ball, WW Morey, PK Cheo. Fiber laser source/analyzer for Bragg grating sensor array interrogation. Journal of Lightwave Tech., 1994, 12(4): 700-703
    [1.63] Y.J.Rao, A.B.L.Ribeiro, D.A.Jackson, et al. Simultaneous spatial, time and wavelength division multiplexed in-fiber grating sensing network. Opt. Commun., 1996, 125: 53-58
    [1.64] 姜德生, 左军, 信思金等. 光纤 Bragg 光栅传感器在水布垭工程锚杆上的应用. 传感器技术, 2005, 24(1): 72-74
    [2.1] V. Mizrahi, JE Sipe. Optical properties of photosensitive fiber phase gratings, IEEE J. Lightwav. Techn., 1993, 11: 1513-1517
    [2.2] A.Yariv. Coupled-mode theory for guided-wave optics. IEEE J. of Quantum Electron, 1973, QE-9: 919-933
    [2.3] 董孝义等编著. 光波电子学. 天津: 南开大学出版社, 1987 年 11 月版
    [2.4] H. Kogelnik. Filter response of non uniform almost-periodic structures. Bell syst. Tech. J., 1976, 55(1): 109-126
    [2.5] M. Yamada, K.Sakuda. Analysis of almost periodic distributed feedback slab waveguides via a fundamental matrix approach. Appl. Opts., 1987, 26(16): 3474-3478
    [2.6] Weller-Brophy L.A., Hall D.G. Analysis of waveguide gratings: a comparison of the results of Rouard’s method and coupled-mode theory. J. Opt. Soc. Am., 1987, A 4(1): 60-65
    [2.7] H.Kogelnick. Filter response of non uniform almost-periodic gratings. Bellsystem. Tech. J., 1976, 55(1): 106-126
    [2.8] J.L.Frolik, AE Yagle. An Asymmetric discrete-time approach for the design and analysis of periodic waveguide gratings. IEEE J. of Lightwave Tech., 1995, 13: 175-185
    [2.9] L.Poladian. Graphical and WKB analysis of nonuniform Bragg gratings, Physical Reviews E., 1993, 48: 4747-4758
    [2.10] H.Storoy, HE Engan, B. Sahlgren, et al. Position weighting of fiber Bragg gratings for bandpass filtering. Opt. Lett., 1997, 22(11): 784-786
    [2.11] 应用软件,http://www.apollophoton.com
    [2.12] 应用软件,http://www.optiwave.com
    [2.13] T. Erdogan, Fiber grating spectra, IEEE J. Lightwav. Tech., 1997, 15(8): 1277-1294
    [2.14] G.P.Agrawal, A.H.Bobeck. Modeling of distributed feedback semiconductor lasers with axially-varying parameters. IEEE J.of Quantum Electron, 1988, 24: 2407-2414
    [2.15] M.P. Rouard. Etudes des proprietes optiques des lames metalliques treminces. Annal. Phys. II., 1973, 7(20)
    [2.16] K.C.Byron, K.Sugden, T.Bircheno, et al. Fabrication of chirped Bragg gratings in photosensitive fiber. Electron. Lett.,1993, 29(18): 1659
    [2.17] B.Eggleton, P.A.Krug, L.Poladin. Dispersion compensation by using Bragg grating filters with self induced chirp. Tech. Digest of Opt. Fib. Comm. Conf. OFC’94, 1994, 227
    [2.18] M.C.Farries, K.Sugden, D.C.J.Reid, et al. Very broad reflection bandwidth (44nm) chirped fiber gratings and narrow-band pass filters produced by the use of an amplitude mask. Electron. Lett., 1994, 30(11): 891-892
    [2.19] 罗建花. 工程化光纤光栅传感器及其网络解调系统研究. 南开大学硕士毕业论文, 天津: 南开大学, 2005: 20-22
    [3.1] Bai-Ou Guan, Hwa-Yaw Tam, Xiao-Ming Tao, et al. Simulataneout strain and temperature measurement using a superstructure fiber Bragg grating, IEEE Photon, Technol. Lett., 2000, 12(6): 675-677
    [3.2] 刘志国, 刘云启, 关柏鸥等. 高灵敏度光纤光栅温度传感及其测试研究. 南开大学学报, 1999, 32(4): 5-8
    [3.3] 关柏欧, 郭转运, 刘志国等. 光纤光栅的温度增敏实验. 光子学报, 1999, 28(1): 65-67
    [3.4] 张伟刚, 周广, 梁龙彬等. 混合聚合物光纤光栅封装原件的温敏实验. 光子学报, 2001, 30(8): 1003-1005
    [3.5] 刘云启, 郭转运, 刘志国等.光纤光栅的压力传感特性研究. 光子学报, 1999, 28(5): 443-445
    [3.6] 刘云启, 郭转运, 刘志国等. 聚合物封装的高灵敏度光纤光栅压力传感器. 中国激光, 2000, 27(3): 211-214
    [3.7] 张颖, 刘志国, 郭转运等. 高灵敏度光纤光栅压力传感器及其压力传感特性的研究. 光学学报, 2002, 22(1): 89-91
    [3.8] 刘丽辉, 赵启大, 张昊等. 双波长高灵敏度 Bragg 光纤光栅压力传感器. 光子学报, 2005, 34(2):319
    [3.9] 张亮, 卓仲畅, 韦占雄等. 光纤Bragg光栅温度补偿封装. 吉林大学学报, 2002, 40(3): 294-295
    [3.10] 张颖, 关柏鸥, 董新永等. 一种新颖的基于预应变技术的光纤光栅应变温度传感器. 中国激光, 2001, 28(8): 729-731
    [3.11] 王目光, 李唐军, 卓锋等. 光纤光栅传感器应变和温度交叉敏感问题分析. 光通信研究, 2001, 108: 50-53
    [3.12] James.S.W, Dockney.M.L, Tatam.R.P. Simultaneous independent temperatue and strain measurement using in-fiber Bragg grating sensors. Electron. Lett., 1996, 32(12): 1133-1134
    [3.13] 孙安, 乔学光, 贾振安等. 一种新颖的温度补偿光纤光栅应力传感测量技术. 光学技术, 2003, 29(5): 534-537
    [3.14] 关柏鸥, H.Y.Tam, S.L.Ho 等. 单光纤光栅温度应变双参数传感研究. 中国激光, 2001, 28(4): 372-374
    [3.15] Iwashiwa T, Inoue A, Shifgematsu M et al. Temperature compensation technique for fiber Bragg gratings using liquid crystalline polymer tubes. Electronics letters, 1997, 33(5): 417-419
    [3.16] Xu.M.G, Archambault.J.L, Reekie.L. Discrimination between strain and temperature effects using dual-wavelengh fiber grating sensors. Electron. Lett., 1994, 30(13): 1085-1087
    [3.17] Kersey A.D., Davis MA. Patrick HJ. et al. Fiber grating sensors. Journal of lightwave Technology [J] , 1997, 15(8):1442-1463
    [3.18] 金发宏, 董孝义, 盛秋琴等. 光纤布喇格光栅的理论分析. 光子学报, 1996, 25(9): 809-813
    [3.19] 罗建花. 工程化光纤光栅传感器及其网络解调系统研究. 南开大学硕士毕业论文, 天津: 南开大学: 2005, 61-63
    [3.20] 曹晔. 光纤光栅传感器解调技术及封装工艺的研究. 南开大学博士毕业论文, 天津: 南开大学, 2005: 103-105
    [4.1] Y.J.Rao. In-fiber Bragg grating sensors, Meas. Sci. & Technol., 1997, 8(4): 355-357
    [4.2] G.A.Ball, WW Morey, PK Cheo. Fiber laser source/analyzer for Bragg grating sensor array interrogation. J.of Lightwave Tech., 1994, 12(4): 700-703
    [4.3] T.A.Berkoff, A.D.Kersey. Eight element time-division multiplexed fiber grating sensor array with integrated-optic wavelength discriminator. Proc. of SPIE., 1994, 2316: 350-353
    [4.4] Y.J.Rao, K.K.Kalli, G.Brady, et al. Spatially multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection. Electron. Lett., 1995, 31(12): 1009-1010
    [4.5] Y.J.Rao, A.B.L.Ribeiro, D.A.Jackson, et al. Simultaneous spatial, time and wavelength division multiplexed in-fiber grating sensing network. Opt. Commun., 1996, 125: 53-58
    [4.6] P.Oberson, B.Huttner, O.Guinnard, et al. Optical frequency domain reflectometry with a narrow linewidth fiber laser. [J], IEEE Photo. Tech. Lett., 2000, 12(7): 867-869
    [4.7] M.A.Davis, D.G.Bellemore, M.A.Putnam, et al. Interrogation of 60 fiber Bragg grating sensors with microstrain resolution capability. Electron. Lett., 1996, 32(10): 1393-1394
    [4.8] A.D.Kersey, T.A.Berkoff, W.W.Morey. Multiplexed fiber Bragg grating sreain-sensor system with a fiber Fabry-Perot wavelength filter. Opt. Lett., 1993, 18(16): 1370-1372
    [4.9] Y.N.Ning, A.Meldrum, J. Shiw. Bragg Grating sensing instrument using a tunable Fary-perot filter to detect wavelength variations. Meas. Sci. & Technol., 1998, 9(6): 599-606
    [4.10] 刘波, 孙桂玲, 童峥嵘等. 光纤光栅传感网络中微弱光信号的检测. 南开大学学报, 2003, 2(36): 55-57
    [4.11] 刘云启, 刘志国, 郭转运等. 利用调谐滤波技术的光纤光栅复用传感器. 光学学报, 2000, 20(8): 1084-1088
    [4.12] 陈炳生. 电子可靠性工程系统设备的可靠性理论与实践, 北京: 国防工业出版社, 1987 年 5 月第一版
    [5.1] K.Zhou. Radiation of light by the tilted fibre grating. Aston University, UK. Unpublished work
    [5.2] Yufeng Li, Mark Froggatt, Turan Erdogan. Volume Current Method for Analysis of Tilted Fiber Gratings. JOURNAL OF LIGHTWAVE TECHNOLOGY, OCTOBER 2001, 19(10): 1580-1591
    [5.3] AG. Simpson, K. Zhou, L. Zhang, et al. Optical sensor interrogation with a blazed fibre Bragg grating and a charge-coupled device linear array. Applied Optics, 2004, 43(1): 33-40
    [5.4] AG. Simpson, K. Zhou, P. Foote, et al. Polarisation independent, high resolution spectral interrogation of FBGs using a BFBG-CCD array for optical sensing applications, SPIE Photonics East, 2003, Rhode Island, USA
    [5.5] K. Zhou, AG. Simpson, L. Zhang, et al. Low-cost in-fibre WDM devices using tilted FBGs. CLEO, 2003, Baltimore, USA
    [5.6] K. Zhou, AG. Simpson, L. Zhang, et al. Side detection of strong radiation-mode out-coupling from blazed FBGs in single-mode and multimode fibres. IEEE Photonics Technology Letters, 2003, 15(7): 936-938
    [5.7] K. Zhou, AG. Simpson, X. Chen, et al. High extinction ratio in-fibre polarizer based on a 45 -tilted fibre Bragg grating. Optics Letters, In Press, 2004.
    [5.8] K. Zhou, AG. Simpson, X. Chen, et al. Two-dimensional optical power distribution of side-out-coupled radiation from tilted FBGs in multimode fibre. Electronics Letters, 2003, 39(8): 651-653
    [5.9] K. Zhou, AG. Simpson, X. Chen, et al. Fibre Bragg grating sensor interrogation system using a CCD side detection method with superimposed blazed gratings. IEEE Photonics Technology Letters, 2004, 16(6): 1549-1551
    [5.10] K. Zhou, AG. Simpson, L. Zhang, et al. Wide bandwidth, high resolution spectral interrogation using a BFBG-CCD array for optical sensing applications. Optical Fibre Sensors – 16, Nara, Japan, 2003
    [5.11] K. Zhou, AG. Simpson, L. Zhang, et al. High accuracy interrogation of a WDM FBG sensor array using radiation modes from a B-FBG. BGPP. Monterey, USA, 2003
    [6.1] Shinji Yamashita, Masato Nishihara. Widely Tunable Erbium-Doped Fiber Ring Laser Covering Both C-Band and L-Band. IEEE Journal of Quantum Electronics, 2001, 7(1): 41-43
    [6.2] Hongxin Chen, F.Babin, M.Leblanc, et al. Widely Tunable Single-Frequency Erbium-Doped Fiber Lasers. Photonics Technology Letters, 2003, 13(2): 185-188
    [6.3] Antoine Bellemare, Miroslav Karasek, Christophe Riviere, et al. A Broadly Tunable Erbium-Doped Fiber Ring Laser: Experimentation and Modeling. IEEE Journal of Quantum Electronics, 2001, 7(1): 22-29
    [6.4] 董新永, 赵春柳, 关柏鸥等. 可调谐光纤环形腔激光器输出特性的理论与实验研究. 物理学报, 2002, 51(12): 2750-2755
    [6.5] 伍翔, 王一超, 冯重熙等. 一种光输出功率控制电路. 光通信研究, 2000, 97(1): 37-41
    [6.6] 刘波, 孙桂玲, 童峥嵘等. 光纤光栅传感网络中微弱光信号的检测. 南开大学学报, 2003, 36(2): 55-57
    [7.1] 孙圣和, 王廷云, 徐影著. 光纤测量与传感技术,哈尔滨: 哈尔滨工业大学出版社, 2000 年 1 月第 1 版: 62-64
    [7.2] 胡志新, 张桂莲, 何巨等. 利用分布式光纤传感技术检测天然气管道泄漏. 传感器技术, 2003, 22(10): 48-49
    [7.3] 谢彦吏. Sagnac 干涉光纤传感系统. 台湾中山大学电机工程学硕士毕业论文, 台北: 台湾中山大学, 2001
    [7.4] 周小群, 陈抗生, 饭山宏一. 干涉型长距离分布式光纤传感系统, 光学学报, 1998, 18(2): 253-255
    [7.5] 刘波, 杨亦飞, 牛文成等. 光纤围栏技术特点及研究现状. 光子技术, 2005, 4: 208-213
    [7.6] 刘波, 孙桂玲, 童峥嵘等. 光纤光栅传感网络中微弱光信号的检测. 南开大学学报, 2003, 36(2): 55-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700