用户名: 密码: 验证码:
纸浆悬浮液超声衰减理论及其在浓度流量检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,液固两相流特性分析及检测技术是国内外两相流研究领域高度关注的热点课题。作为一种常见的工业液固两相流体,在管道中流动的纸浆悬浮液质量浓度是造纸过程的基本工艺参数。另一方面,纸浆悬浮液的流量参数及温度参数也是生产中需要测量的重要参数。因为超声检测技术具有非侵入性、非接触性、穿透力强、响应快速、结构简单等突出优点,本论文考虑采用测量超声衰减的方法实现纸浆悬浮液质量浓度的在线检测。从多传感器集成化测量的角度出发,本论文将超声换能器和温度传感器集成到电磁流量计的测量管道中,实现了管道中纸浆悬浮液浓度、流量、温度三参数的一体化测量。
     无论在理论上还是在实践中,采用超声衰减检测技术来测量纸浆悬浮液浓度都是一个有待深入研究的课题。现有悬浮液超声衰减理论的研究大多只限于以球体离散相介质为散射元模型构成的悬浮液系统。对于以圆柱体离散相介质为散射元模型构成的悬浮液系统超声衰减理论至今还缺少系统地研究。本论文的理论研究工作从线性声学的基本原理出发,针对纸浆悬浮液中具有圆柱体外形的纸纤维介质,分别建立了基于无限长圆柱体散射和基于有限长圆柱体散射的超声衰减模型。
     作为研究基于无限长圆柱体散射和基于有限长圆柱体散射的超声衰减模型的出发点,论文首先推导了在粘滞导热流体和弹性圆柱体纸纤维中传播模式散射波、热模式散射波和剪切模式散射波的速度势方程表达式。为了完善现有的无限长圆柱体超声散射模型,根据矢量势的规范不变性,论文建立了速度、应力、温度和热流的连续边界条件线性方程组,并由此求解得到了斜入射到单个无限长圆柱体超声波散射模型。根据Epstein的单个球体能量损耗模型,论文推导了无限长圆柱体空间中超声能量损耗表达式。从稀释悬浮液的单次散射近似出发,论文提出了基于无限长圆柱体散射的纸浆悬浮液超声衰减理论模型。
     根据纸纤维的实际形状,考虑到基于无限长圆柱体散射的超声衰减模型存在的缺陷,论文首次提出了纸纤维的复合型有限长圆柱体模型,并从Kirchhoff标量衍射理论出发讨论了有限长的纸纤维尺寸与远场衍射的关系,推导得到了粘滞导热悬浮液中复合型有限长圆柱体远场前向散射波的速度势表达式。论文通过研究适用于分析纸浆悬浮液超声传播特性的迭代有效介质近似方法,得出了预测纸浆悬浮液超声衰减的基本方法。
     以上述纸浆悬浮液超声衰减模型为基础,论文采用符号计算软件Maple编写了数值计算软件包,实现了超声衰减模型的计算机描述。利用软件包的计算结果,分析了散射波速度势无穷级数谐波表达式收敛特性、纸浆悬浮液超声衰减与悬浮液浓度关系及超声衰减模型对纸浆悬浮液材料参数变化的敏感度等问题。数值计算结果与相关文献的理论结果和实验结果的对比,验证了本论文的理论分析和数值计算结果可靠性。
     论文从造纸工业现场多参数测量的实际需要出发,讨论了可实现纸浆悬浮液流量、浓度及温度等多参数在线测量的浓度流量测量装置总体方案及其实现技术,重点研究了用于测量纸浆悬浮液超声衰减的超声换能器设计,建立了基于虚拟仪器的浓度流量测量系统的信号测试平台。同时也对浓度流量测量系统的仪表化设计进行了探索性的研究。
     论文采用浓度流量测量装置及信号测试平台分别对非流动状态纸浆悬浮液超声衰减特性及在管道中流动纸浆悬浮液的浓度流量测量进行了一系列实验研究,取得实验结果与理论计算值相符合的研究结论。实验表明,基于无限长圆柱体散射的超声衰减模型和基于有限长圆柱体散射的超声衰减模型在实验所测量的纸浆悬浮液浓度内具有各自的浓度适用范围。
     论文最后提出了有待于进一步解决的问题。
Recently techniques for characterization of liquid-solid two phase flow have aroused great attention in domestic and foreign two phase flow research area. Pulp suspension is a kind of typical liquid-solid two phase flow in industry. Mass concentration of pulp suspension flowing in pipe is a fundamental technical parameter. Flow and temperature of pulp suspension are two other important parameters to be measured in production process. Due to the prominent advantages of ultrasonic technique, such as non-destructiveness, non-intrusiveness, good penetrability, rapid response, and simple structure, on-line measurement of mass concentration of pulp suspension was carried out by means of ultrasonic attenuation in this paper. Based on the point of view of multi-sensor integration, ultrasonic transducers and a temperature senor were mounted in the measuring pipe of electromagnitic flowmeter to measure concentration, flow and temperature in pulp suspension integratively.
     Employing ultrasonic attenuation technique to determine mass concentration in pulp suspension is a problem to be studied thoroughly either in theory or in application. Most theoretical studies on ultrasonic attenuation in suspension were limited to the suspension system in which the scatterer model is composed of spheral solid particles in disperse phase. However, the ultrasonic attenuation theory of the suspension system in which the scatterer model is composed of cylindrical solid particles in disperse phase has not been studied systematically yet. According to fundamental principles of linear acoustics, aiming at cylindrical paper fiber in pulp suspension, ultrasonic attenuation models based on infinite cylinder scattering and the model based on finite cylinder scattering were established in the paper.
     As the starting point of theoretical study, the velocity potential equations of compressional scattered wave, thermal scattered wave and shear scattered wave in viscous, heat conduction liquid and elastic cylindrical fiber were deduced respectively. In order to complete the existing ultrasonic scattering model of infinite cylinder, system of linear equations at continuous boundary conditions of velocity, stress, temperature and heat flux, was established based on gauge invariance and then the oblique incidence ultrasonic scattering model of single infinite cylinder was gained. According to Epstein's energy dissipation model of single sphere, the ultrasonic energy dissipation expression in infinite cylindrical space was deduced. From single scattering approximation in diluted suspension, ultrasonic attenuation model based on infinite cylindrical scattering in pulp suspension was built in the paper.
     According to the actual shape of paper fiber, compound finite cylinder model of paper fiber was put forward for the first time due to the disadvantages of ultrasonic attenuation model based on infinite cylindrical. From Kirchhoff's diffraction theory, the relation between finite fiber size and far field scattering amplitude was discussed in the paper. The velocity potential expression of far field forward-scattering wave from compound finite cylinder in viscous, heat conduction suspension was deduced. The iterative effective medium approximation for ultrasonic attenuation analysis in pulp suspension was established and the essential method to predict ultrasonic attenuation in pulp suspension was acquired.
     Based on above ultrasonic attenuation model in pulp suspension, a numerical computation software package was programmed with symbol computing software Maple to implement the computer description of ultrasonic attenuation model. Several problems were analyzed from the results of numerical computation, including the convergence criteria for infinite series partial expressions of scattering wave velocity potential, the relationship between ultrasonic attenuation in pulp suspension and concentration of suspension, ultrasonic attenuation model's sensitivity to suspension material properties. The result of the comparison between the numerical computation data and theoretical or experiment data in correlative literatures validated the reliability of theoretical analysis and numerical computation in this paper
     The overall design scheme and techniques of concentration-flow measurement device were put forward in the paper, which can measure concentration, flow and temperature in pulp suspension. Emphasis was placed on the design of ultrasonic transducer which can be applied in the measurement of ultrasonic attenuation in pulp suspension. The signal testing platform based on virtual instrument for concentration flow measurement system was designed. Meanwhile the instrumented device design techniques for the concentration-flow measurement system were researched initially.
     Employing the concentration-flow measurement device and signal testing platform, several experiments were carried out to test the ultrasonic attenuation characteristic of pulp suspension in static state and measure concentration-flow value of the pulp suspension flowing in pipe. Experimental results agreed with the theoretical results quit well. Experimental results showed that within the whole concentration range in the experiments, there existed different applicable range of suspension concentration in the ultrasonic attenuation model based on finite cylinder and the ultrasonic attenuation model based on infinite cylinder.
     Some questions needed to research firth were discussed in the end of the paper.
引文
[1] 华苾.国内外纸浆生产和贸易调研报告.中华纸业,v21,n12,2000:66-68.
    [2] Cha Jae-Eun. Flow measurement with an electromagnetic flowmeter in two-phase bubbly and slug flow regimes. Flow Measurement and Instrumentation, v12, n5-6, 2001:329-339.
    [3] Yoon Chi Ho. Experimental study on the flow characteristics of solid-liquid two-phase mixture in a vertical tube. Proceedings of the ISOPE Ocean Mining Symposium, 1999: 43-48.
    [4] Tanaka Yohsuke. Experimental study on the interaction between large scale vortices and particles in liquid-solid two-phase flow. International Journal of Multiphase Flow, v29, n3, 2003:361-373.
    [5] 轻工业部广州轻工业学校.制浆造纸分析与检验.北京:轻工业出版社,1983.
    [6] GB/T 5399-2004.纸浆浆料浓度的测定.北京:中国标准出版社,2004.
    [7] 卢佩.纸浆浓度的在线测量方法与研究展望.中国仪器仪表,n2,1994:16-19.
    [8] 郑莹娜,李昌禧.非牛顿流体(纸浆)浓度测量的研究.工业仪表与自动化装置,n4,1994:8-10.
    [9] 王利恒,李昌禧.动刀式浓度变送器的研究与设计.华中科技大学学报,v29,n11,2001:95-97..
    [10] 陆国强,富乃成,郑志受等.纸浆浓度在线测量方法的研究.计量学报,2001,v1,n21:74-80.
    [11] 金锋,张宝芬.电容式两相流相浓度传感器的仿真优化设计.清华大学学报,v42,n3,2002:380-382.
    [12] 张玉平,张宝芬等.两相流相浓度检测技术的研究.北京理工大学学报,v22,n3,2002:383-386.
    [13] R.C. Asher. Ultrasonic sensors for the process industry. Measurement & Control, v30, n5, 1997: 138-140.
    [14] D.J. McClements. Ultrasonic characterization of emulsions and suspensions. Adv. Colloid Interface Sci., v37, 1991:33-72.
    [15] M.J.W. Povey. Ultrasonic techniques for fluids characterization. San Diego: Academic Press, 1997.
    [16] E.Harkonen, J. Tornberg, M. Karras. Ultrasonic probe characterizing the pulp suspension. Proceedings of the 1983 Ultrasonics Symposium Proceedings, New York, NY, USA: IEEE, 1983, 870-873.
    [17] Torbjorn Lofqvist. Ultrasonic wave attenuation and phase velocity in a paper-fibre suspension. Proceedings of 1997 IEEE Ultrasonics Symposium, Toronto: IEEE, v1, 1997:841-844.
    [18] 应崇福.超声学.北京:科学出版社,1990.
    [19] Peter Hauptmann, Niels Hoppe, Alf. Puttmer. Application of Ultrasonic Sensors in the Process Industry. Measurement Science and Technology, v8, nl 3, 2002:73-83.
    [20] T.F. Hueter, H. Morgan, and M. S. Cohen. Ultrasonic Attenuation in Biological Suspensions. The Journal of the Acoustical Society of America, v25, n6, 1953:1200-1201.
    [21] 同济大学声学研究所.超声工业测量技术.上海:上海人民出版社,1977.
    [22] Piotrowska. Propagation of ultrasonic waves in suspensions and emulsions-1. Ultrasonics, v9, n1, 1971:14-20.
    [23] W. Balachandran, M.S. Beck. Solids-concentration measurement and flow measurement of slurries and sludges using ultrasonic sensors with random data analysis- 1. solids-concentration measurement. Transactions of the Institute of Measurement and Control, v2, n4, 1980:181-197.
    [24] M.S. Greenwood. Attenuation measurements of ultrasound in a kaolin-water slurry: A linear dependence upon frequency. The Journal of the Acoustical Society of America, v94, n2, Pt. 1, 1993:908-916.
    [25] J.A. Bamberger, M. S. Greenwood. Using ultrasonic attenuation to monitor slurry mixing in real time. Ultrasonics, v42, 2004:145-148.
    [26] J.A. Bamberger, M. S. Greenwood, Measuring fluid and slurry density and solids concentration non-invasively. Ultrasonics, v42, 2004:563-567.
    [27] M.S. Greenwood, J.R. Skorpik, J.A. Bamberger. On -line ultrasinc density sensor for process control of liquids and slurries. Ultrasonics v37, 1999: 159-171.
    [28] J. Carlson, A. Grennberg. Ultrasonic Measurements of Particle Concentration in a Multiphase flow. Proceedings of 1999 IEEE Ultrasonics Symposium, Caesars Tahoe, NV, USA: IEEE, v1, 1999: 757-760.
    [29] Peter Hauptmann, Ralf Lucklum and Alf. Puttmer. Application of Ultrasonic Sensors for Process monitoring and chemical analysis: state-of-the-art and trends. Sensors and Actuators A, v67, 1998:32-48.
    [30] Alf. Puttmer, Peter Hauptmann, B.Henning. Ultrasonic sensor system for dairy industry. Sensors and their applications Ⅶ, Bristol: Institute of Physics, 1995:141-145.
    [31] Patricia Mougin, Derek Wilkinson, Kevin J. Roberts, and Richard Tweedie. Characterization of particle size and its distribution during the crystallization of organic fine chemical products as measured in situ using ultrasonic attenuation spectroscopy. The Journal of the Acoustical Society of America, v109, n1, 2001: 274-282.
    [32] Alvarez-Arenas. Characterization of suspensions of particles in water by an ultrasonic resonant cell. Ultrasonics, v39, 2002:715-727.
    [33] 张叔英,钱炳兴.高浓度悬浮泥沙的声学观测.海洋学报,v25,n6,2003:54-60.
    [34] 时钟,张叔英.河口近底细颗粒悬沙运动的声散射观测.声学学报,v23,n3.1998:221-228.
    [35] 张叔英,李允武.声学悬浮泥沙观测系统的研制和应用.海洋学报,v20,n5,1998:114-119.
    [36] 梁军汀,卢杰等.智能化超声波在线式轧钢乳化液浓度计.声学技术,v20,n2.2001:72-74.
    [37] 黄佳,冯斌等.用于发酵生产中菌体浓度在线测量的超声波仪.传感器技术,v21,n9,2002:48-50.
    [38] 姚士强.用超声波方法检测高水基流体介质浓度的研究.仪表技术与传感器,n9,2001:39-41.
    [39] 马殿旗.超声波污泥浓度监测仪.中国(实用新型)专利.00205264.4
    [40] 苏明旭,蔡小舒等.超声衰减法测量悬浊液中颗粒粒度和浓度.声学学报,v29,n5,2004:440-444
    [41] 苏明旭.颗粒两相介质中颗粒粒径的超声测量理论研究[博士学位论文].上海理工大学,2002.
    [42] V. Stolojanu, A.Prakash. Characterization of slurry systems by ultrasonic techniques. Chemical Engineering Journal, v84, 2001:215-222
    [43] C.A. Farrow, L.W. Anson, R.C. Chivers. Multiple scattering of ultrasound in suspensions. Acustica, v81, 1995:402-411.
    [44] V. Stolojanu, A.Prakash. Hydrodynamic measurements in a slurry bubble column using ultrasonic techniques. Chemical Engineering Science, v52, n21, 1997:4225-4230.
    [45] Yee Soong, K.Gamwo. Measurement of solids concentration by an Ultrasonic transmission technique. Chem.Eng.Technol v20, 1997:47-52.
    [46] A. Puttmer, J.Nowottnick, P. Hauptmann. High-accuracy measurement of pulse amplitudes for new applications of ultrasonic sensors. Sensors and Actuators A, v68, 1998:451-459.
    [47] G. Andria, F. Attivissimp, N. Giaquinto. Digital signal processing techniques for accurate ultrasonic sensor measurement. Measurement, v30, 2001:105-114.
    [48] J.W. Rayleigh. Theory of sound. New York: Dover, 1945.
    [49] C.J.T. Sewell. On the extinction of sound in a viscous atmosphere by small obstacles of cylindrical and spherical form. Phil. Trans. Roy. Soc., A210, 1911:239.
    [50] H. Lamb. Hydrodynamics. New York: Dover press, 1945.
    [51] P.S. Epstein, R.R.Carhart. The absorption of sound in suspensions and emulsions. I. water fog in air. The Journal of the Acoustical Society of America, v25, n3, 1953:553-565.
    [52] J.W. Zink, L.P. Delsasso. Attenuation and dispersion of sound by solid particles suspended in a gas. The Journal of the Acoustical Society of America, v30, n8, 1958:765-771.
    [53] S.Temkin, R.Dobbins. Measurements of attenuation and dispersion of sound by an aerosol. The Journal of the Acoustical Society of America, v40, n5, 1966:1016-1024.
    [54] J.C.F. Chow. Attenuation of acoustical waves in dilute emulsions and suspensions. The Journal of the Acoustical Society of America, v36, n12, 1964:2395-2401.
    [55] J.R. Allegra, S.A. Hawley. Attenuation of sound in suspensions and emulsions: theory and experiments. The Journal of the Acoustical Society of America, v51, n5B, 1972:1545-1564.
    [56] M.C. Davis. Attenuation of sound in highly concentrated suspensions and emulsions. The Journal of the Acoustical Society of America, v65, n2, 1979: 387-390.
    [57] D.J. McClements. Comparison of multiple scattering theories with experimental measuremens oin emulsions. The Journal of the Acoustical Society of America, v91, n4, 1992:849-853.
    [58] L.L. Foldy. The multiple scattering of waves. Physical Review. v67, n3, 1945: 107-119.
    [59] P.C. Waterman, R.Truell. J.Multiple scattering of waves. J. Math. Phys, v2, 1961:512-537.
    [60] 苏明旭,蔡小舒.超细颗粒悬浊液中声衰减和声速的数值分析研究.声学学报,v27,n3,2002:218-222
    [61] J.S.Tebbutt, R.E.Challis, Ultrasonic waves propagation in colloidal suspensions and emulsions: a comparison of four models. Ultrasonics, v34, 1996:363-368.
    [62] D.J. McClements, M.J.W. Povey. Scattering of ultrasound by emulsions, Journal of Physics D: Applied Physics, v 22, n 1, 1989:38-47.
    [63] A.K. Holmes, R.E. Challis. Wide-bandwidth ultrasonic study of suspensions: The variation of velocity and attenuation with particle size. Journal of Colloid and Interface Science, v168, n 2, 1994:339-348.
    [64] D.Hibberd, A.Holmes, M. Garrood. Ultrasonic monitoring of oil-in-water emulsions undergoing depletion flocculation. Journal of Colloid and Interface Science, v193, n 1, 1997:77-87.
    [65] V.J. Pinfield, M.J.W. Povey. Interpretation of ultrasound velocity creaming profiles. Ultrasonics, v34, n6, 1996: 695-698.
    [66] V.K. Varadan, V.N. Bring. Coherent attenuation of acoustic waves by pair-corrlelate random distribution of scatterers with uniform and Gaussian size distributions. The Journal of the Acoustical Society of America, v73, n6, 1983:1941-1947.
    [67] R.E. Challis, J.S. Tebbutt, A.K. Holmes. Equivalence between three scattering formulations for ultrasonic wave propagation in particulate mixtures. J. Phys. D: Appl. Phys. V31, 1998:3481-3497.
    [68] V.M. Francois, F. Guy and B.M. Olivier. Theoretical and experimental study of the influence of the particle size distribution on acoustic wave properties of strongly inhomogeneous media. The Journal of the Acoustical Society of America, v110, n5, 2001: 2301-2307.
    [69] A.E. Hay, D.G.Mercer. On the theory of sound scattering and viscous absorption in aqueous suspensions at medium and short wavelengths. The Journal of the Acoustical Society of America, v78, n5, 1985:1761-1711.
    [70] J.Mobley, K.R.Waters, C.S. Hall, J.N. Marsh. Measurements and predictions of the phase velocity and attenuation coefficient in suspensions of elastic microspheres. Journal of the Acoustical Society of America, vl06, n2, 1999: 652-659.
    [71] L.Flex, L.R. Dragonette, H. Uberall. Theory of elastic resonance excitation by sound scattering. The Journal of the Acoustical Society of America, v63, 1978:723-731.
    [72] L.Flex, H. Uberall. Resonance scattering of elastic waves from spherical solid inclusions. The Journal of the Acoustical Society of America, v68,1980: 1432-1442.
    [73] C.C. Habeger. The attenuation of ultrasound in dilute polymeric fiber suspensions. The Journal of the Acoustical Society of America, v72, n3, 1982:870-878.
    [74] CM. Sayers. On the propagation of ultrasound in highly concentrated mixtures and suspensions. J. Phys. D: Appl. Phys. v13, n2,1980:179-184.
    [75] P. Lloyd, M. V. Berry. Wave propagation through an assembly of spheres IV. Relation between different multiple scattering theories. Proc. Phys. Soc, v91, 1967: 678-688.
    [76] V. Twersky. Acoustic bulk parameters in distributions of pair-correlated scatters. The Journal of the Acoustical Society of America, v64, n6, 1978:1710-1719.
    [77] Y. Ma, V. K. Varadan, V.V. Varadan. Application of Twersky's multiple scattering formalism to a dense suspension of elastic particles in water. The Journal of the Acoustical Society of America, v75, n2,1984:335-339.
    [78] C. Javanaud, A.Thomas. Multiple scattering using the Foldy-Twersky integral equation. Ultrasonics, v26, n11, 1988: 341-343.
    [79] L. Tsang, J,A, Kong, T.Habashy. Multiple scattering of acoustic waves by random distribution of distrete spherical scatterers with the quasicrystalline and Percus-Yevick approximation. The Journal of the Acoustical Society of America, v71, n3,1982:552-558.
    [80] A. K. Hipp. On multiple-particle effects in the acoustic characterization of colloidal dispersions. Journal of Physics D: Applied Physics, v32, n5, 1999: 568-576.
    [81] R.L. Urick. The absorption of sound in suspensions of irregular particles. The Journal of the Acoustical Society of America, v20, n3,1948:283-289.
    [82] R. J. Urick, W. S. Ament. The Propagation of Sound in Composite Media. The Journal of the Acoustical Society of America, v21,1949:62.
    [83] Avtar S. Ahuja. Formulation of wave equation for calculating velocity of sound in suspensions. The Journal of the Acoustical Society of America, v51, n3,1972: 916-919.
    [84] Avtar S. Ahuja. Wave equation and propagation parameters for sound propagatioon in suspensions. J. Appl. Phys., v44, n11, 1973: 4863-4868.
    [85] A.H. Harker, J.A.G Temple. Velocity and attenuation of ultrasound in suspensions of particles in fluids. J.Phys.D: Appl.Phys, v21, 1988:1576-1588.
    [86] R.L. Gibson. Viscous attenuation of acoustic waves in suspensions. The Journal of the Acoustical Society of America, v85, n5, 1989:1925-1934.
    [87] C.M. Atkinson, H.K. Kytomaa. Acoustic wave speed and attenuation in suspensions. J.Multiphase Flow, vl8,1992:577-592.
    [88] H.K.Kytomaa. Theory of sound propagation in suspensions: a guide to particle size and concentration characterization. Powder Technology, v82, 1995:115-121.
    [89] 苏明旭,蔡小舒.超细颗粒悬浮液中声衰减和声速的数值模拟-4种模型的比较,上海理工大学学报v24,n1,2002:21-30.
    [90] T.A. Strout. Attenuation of sound in high-concentration suspensions: Development and application of an oscillatory cell model. Ph.D. thesis, University of Maine, 1991.
    [91] J.M. Evans, K. Coupled phase theory for sound propagation in emulsions. Journal of the Acoustical Society of America, v102, n1, 1997:278-282.
    [92] L.W. Anson, R.C. Chivers. Ultrasonic propagation in suspensions-A comparison of a multiple scattering and an effective medium approach, Journal of the Acoustical Society of America, v85, n2, 1989: 535-540.
    [93] D.J. McClements. Comparison of multiple scattering theories with experimental measurements in emulsions. Journal of the Acoustical Society of America, v91, n2, 1992: 849-853.
    [94] D. G. Aggelis, S. V. Tsinopoulos, and D. Polyzos. An iterative effective medium approximation (IEMA) for wave dispersion and attenuation predictions in particulate composites, suspensions and emulsions. Journal of the Acoustical Society of America, v116, n6, 2004: 3443-3452.
    [95] D.J.McClements, Y.Hemar, and N.Herrmann. Incorporation of thermal overlap effects into multiple scattering theory. The Journal of the Acoustical Society of America, v105, n2, 1999: 915-918.
    [96] Y. Hemar, N.Herrmann, P.Lemarechal, R.Hocquart. Effective medium model for ultrasonic attenuation due to the thermo-elastic effect in concentrated emulsions. Journal De Physique Ⅱ, v7, n4, 1997:637-647.
    [97] 蔡武昌等.流量测量方法和仪表的选用.北京:化学工业出版社,20013.
    [98] 王铁峰.超声多普勒测速仪在液-固和气-液两相流测量中的应用.化工学报,v53,n4,2001:427-432.
    [99] S.R. Woodhead. Laser doppler velocimetry measurements of particle velocity profiles in gas-solid two-phase flows. Proceedings of the 1995 IEEE Instrumentation and Measurement Technology Conference, Naltham, MA, USA: IEEE, 1995:770-773.
    [100] L.A. Xu. Clamp-on ultrasound cross-correlation flowmeter for liquid/solid two-phase flow measurement. Flow Measurement and Instrumentation, v5, n 3, 1994:203-208.
    [101] 王丰尧.新型超声波相关流量仪.上海工业大学学报.v15,n1,1994:61-66.
    [102] 黄宝森等.电磁流量计.北京:原子能出版社.1981.
    [103] R.Krafft. Investigation into the use of the electromagnetic flowmeter for two-phase flow measurements. IEE Colloquium (Digest), n092, 1996: 51-54.
    [104] Ahn, Yeh-Chan. A current-sensing electromagnetic flowmeter for two-phase flow and numerical simulation of the three-dimensional virtual potential distribution: I. Fundamentals and annular flow. Measurement Science and Technology, v14, n3, 2003: 239-250.
    [105] Yukio Sai. Electromagnetic flowmeter. Int.CL6 G01F 1/56, US Patent No. 5,880,376. 1999.5.9.
    [106] Teshima Taiichi. Electromagnetic flowmeter with multiple poles and electrodes. Proceedings of the 1994 IEEE Instrumentation and Measurement Technology Conference, Piscataway, NJ, USA: IEEE, 1994:1221-1224.
    [107] B Homer. A novel profile-insensitive multi-electode induction flowmeter suitable for industrial use, Measurement., 1998, 24:131-137.
    [108] T.J. Cox. An electromagnetic flowmeter with insulated electrodes of large surface area. J Phys. E: Sci. Instrum. v17, 1984:488-503.
    [109] 小林保等.电磁流量计.中国(发明)专利.87101677.X.
    [110] 李斌.反馈式信号放大处理方法.中国(发明)专利,99113868.6.
    [111] 李斌.一种集成式浆体浓度流量传感器.中国(实用新型)专利.02217816.3.
    [112] R.P. Liu. A neural network to correct mass flow errors caused by two-phase flow in a digital coriolis mass flowmeter. Flow Measurement and Instrumentation, v 12, n1,2001: 53-63.
    [113] M.Henry. Correcting for two-phase flow in a digital flowmeter, Int. CL. G01F 1/84 Patent No. 6,505,519. 2003.1.14
    [114] 李昌禧.基于流变介质声阻尼的质量流量测量新方法.华中理工大学学报,v24,n10,1996:88-90.
    [115] A.R.Guilbert. A high accuracy ultrasonic mass flowmeter for liquids, Proceeding of 8th International Conference on Flow Measurement (FLOWMEKO'96). Beijing: 1996:244-249.
    [116] Michael Hirnschrot. Resonance Anti-Reflection for Ultrasonic Density Measurement. Proceedings of the 1999 IEEE Ultrasonics Symposium, Caesars Tahoe, NV, USA: IEEE: 517-520.
    [117] DeltaMass MT Series Mass Flow & Density Sensor, Advanced Flow Technology Company.
    [118] 李昌禧.纸浆质量流量计试验与标定.中国造纸,n6,1995:20-23.
    [119] P.M.莫尔斯,K.U.英格特.理论力学.北京:科学出版社,1984.
    [120] 何祚庸,赵玉芳.声学理论基础.北京:国防工业出版社,1981.
    [121] 易家训.流体力学.北京:高等教育出版社,1982.
    [122] 马大猷.现代声学理论基础.北京:科学出版社,2004.
    [123] C. Javanaux, A. Thomas. Multiple scattering theory using the Foldy-Tweersky integral equation. Ultrasonics, v26, n11, 1988: 341-343.
    [124] 卢寿慈.工业悬浮液-性能,调制及加工.北京:化学工业出版社,2003.
    [125] A.石丸.随机介质中波的传播和散射.北京:科学出版社,1986.
    [126] 杨淑蕙.植物纤维化学.北京:中国轻工业出版社,2001.
    [127] 复平乐,陈克复,刘焕彬.纸浆悬浮液的多相流动分析及其物理模型.广东造纸,n2,1998:12-14.
    [128] 李太宝.计算声学-声场的方程和计算方法.北京:科学出版社,2005.
    [129] W.H. Lin, A.C. Raptis. Thermoviscous effects on acoustic scattering by thermoelastic solid cylinders and spheres. The Journal of the Acoustical Society of America, v74, n5, 1983: 1542-1554.
    [130] 《数学手册》编写组.数学手册.北京:高等教育出版社,2004.
    [131] E. W. Montroll, R. W. Hart. Scattering of plande waves by soft obstacles. Ⅱ. Scattering by cylinders, spheroids, and disks. J. Appl. Phys. v22, 1951: 1278-1289.
    [132] H. A. Schenck. Improved integral formation for acoustic radiation problems. The Journal of the Acoustical Society of America, v44, 1968: 41-58.
    [133] M. F. Werby, R. B. Evans. Scattering from objects in submerged unbounded and bounded oceans. IEEE J. Ocean. Eng. OE-12, 1987: 380-394.
    [134] G.. C. Gaunaurd. Sonar cross sections of bodies partially insonified by finite sound beams. IEEE J. Ocean. Eng. OE-10, 1985: 380-394.
    [135] D. Brill, G. C. Gaunaurd. Approximate descriptions of the sound fields scattered by insonified, submerged, ribbed, flat-ended cylindrical structures. The Journal of the Acoustical Society of America, v93, n1, 1993: 71-79.
    [136] T. K. Stanton. Sound scattering by cylinders of finite length. I. Fluid cylinders. The Journal of the Acoustical Society of America, v83, n1, 1988: 55-63.
    [137] Zhen Ye. A novel approach to sound scattering by cylinders of finite length. The Journal of the Acoustical Society of America, v102, n8, 1997: 877-884.
    [138] C. Partridge, E. R. Smith. Acoustic scattering from bodies: Range of validity of the deformed cylinder method. The Journal of the Acoustical Society of America, v92, n2, 1995: 784-795.
    [139] T. K. Stanton. Sound scattering by cylinders of finite length. Ⅲ. Deformed cylinders. The Journal of the Acoustical Society of America, v86, n8, 1989: 690-705.
    [140] J.D.杰克逊.经典电动力学.北京:人民教育出版社,1978.
    [141] 玻恩.光学原理.北京:科学出版社.1978.
    [142] J. T. Verbis, S. E. Kattis and S. V. Tsinopoulos. Wave dispersion and attenuation in fiber composites. Computational Mechanics, v27, n3, 2001: 244-252.
    [143] S. V. Tsinopoulos, J. T. Verbis and D. Polyzos. An iterative effective medium approximation for wave dispersion and attenuation predictions in particulate compostites. Advanced Composites Letters, v9, n3, 2000: 193-200.
    [144] Twersky. On Scattering of wave by random distributions. Ⅰ. Free-space scatter formalism. J. Math Phys, v3, 1962: 700-715.
    [145] J. Y. Kim, J. G. Ih and B. H. Lee. Dispersion of elstic waves in random particulate composites. The Journal of the Acoustical Society of America, v97, n3, 1995: 1380-1388.
    [146] J. Y. Kim. Dynamic self-consistent analysis for elastic wave propagation in fiber composites. The Journal of the Acoustical Society of America, v100, n4, 1996: 2002-2010.
    [147] L. Schwartz, T. J. Plona. Ultrasonic Propagation in close-packed disordered suspensions. Journal of Applied Physics, v55, n11, 1984: 3971-3977.
    [148] Z. Hashin. Analysis of properties of fiber composites with anisotropic constituents. Journal of Applied Mechanics, v46, n9, 1979: 543-550.
    [149] S. G. Shaqfeh, G. H. Fredrickson. The hydrodynamic stress in a suspension of rods. Phys. Fluids A, v2, n1, 1990: 7-24.
    [150] R. M. Christensen. Mechanics of composite materials. New York: John Wiley & Sons, Inc. 1979.
    [151] 滕志斌,忻元华等.新编常用材料手册.北京:金盾出版社,1994.
    [152] 董均果.实用材料手册.北京:机械工业出版社,2000.
    [153] 易大有等.数值方法.杭州:浙江科学技术出版社,1984.
    [154] Terry J. O'Neill, J. S. Tebbutt and R. E. Challis. Convergence criteria for scattering models of ultrasonic wave propagation in suspensions of particles. IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, v48, n2, 2001: 419-424.
    [155] Jan Niemi, Yvonne Aitomaki and Torbjorn Lofqvist. Ultrasonic measurements and modeling of attenuation and phase velocity in pulp suspensions. 2005 IEEE Ultrasonics Symposium, 2005: 775-779.
    [156] 蔡武昌,马中元等.电磁流量计.北京:中国石化出版社,2003.
    [157] 马大猷,沈豪.声学手册.北京:科学出版社,1983.
    [158] 冯若.超声手册.南京:南京大学出版社,1999.
    [159] 栾桂冬,张金铎,王仁乾.压电换能器和换能器阵.北京:北京大学出版社,1990.
    [160] 林书玉,张福成.压电超声换能器的电端匹配电路及其分析.压电与声光,v14,n4,1992:29-32.
    [161] L. Capineri, L. Masotti, and M. Rinieri. Ultrasonic transducer as a black-box: equivalent circuit synthesis and matching network design. IEEE Transactions on Ultrasnics, Ferroelectrics, and Frequency Control, v40, n6, 1993: 694-703..
    [162] GB/T 18660-2002.封闭管道中导电液体流量的测量 电磁流量计的使用方法.北京:中国标准出版社,2002.
    [163] GB/T 18659-2002.封闭管道中导电液体流量的测量 电磁流量计的性能评定方法.北京:中国标准出版社,2002.
    [164] 罗守南.基于超声多普勒方法的管道流量测量研究[博士学位论文].清华大学,2004.
    [165] 张权.超声波浆体浓度检测系统的研究[硕士学位论文].上海大学,2005.
    [166] 王竹溪.统计物理学导论.北京:人民教育出版社,1978.
    [167] 朱文浩,顾毓沁.统计物理学基础.北京:清华大学出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700