用户名: 密码: 验证码:
Al-38.5%Cu过共晶合金恒速和跃迁变速定向凝固下的组织演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了Al-38.5%Cu过共晶合金在恒速和跃迁变速定向凝固下的组织演变,重点探讨了通过跃迁加速定向凝固过程来扩大共晶共生区的可行性,同时分析和研究了Al-38.5%Cu过共晶合金中Al_2Cu初生相的生长机理。
     定向凝固恒速实验中,Al-38.5%Cu过共晶合金在250K/cm的温度梯度和凝固速度1μm/s下,获得的最终凝固组织为规则的层片共晶,与理论计算结果合金凝固速度低于3.55μm/s时可得到耦合生长的共晶组织相一致。实验中当定向凝固速度在5~490μm/s时,Al-38.5%Cu合金中Al_2Cu初生相领先于共晶组织生长,并随着凝固速度的提高,初生相的形态由工字形向圆弧花形转变。
     考虑到恒速定向凝固下,Al-38.5%Cu过共晶合金中存在热溶质对流,结果合金凝固组织随凝固固相分数的增加由初生相+共晶组织向全耦合生长的共晶组织转变。采用Scheil方程分析和预测了该合余中不同凝固分数下的溶质分布,结果表明合金凝固速率在5μm/s和10μm/s下,凝固的固相分数分别大于0.62和0.7时,合金凝固组织就可转变为全耦合生长的共晶组织,而这与实验中凝固速率5μm/s和10μm/s时实测的固相分数大于0.49和0.66就可以得到全耦合生长的共晶组织相吻合。
     通过跃迁加速定向凝固抑制了Al-38.5%Cu过共晶合金中0.Al_2Cu初生相的生长,使得在较高的凝固速度下仍然能获得耦合生长的共晶组织,这为提高共晶自生复合材料的生产效率和扩大共晶共生区提供了一个新的技术途径。
     对比恒速和变速定向凝固下Al-38.5%Cu过共晶合金中层片问距的变化,可发现恒速定向凝固下,合金凝固组织中层片平均间距比跃迁变速定向凝固下相同速率获得的共晶层片间距要大,它们与JH模型的理论计算都比较接近。
In this paper, directionally solidified microstructures of Al-38.5%Cu hypereutectic alloys were investigated both at constant growth rates and at the change growth rates. The solidification behaviors of Al-38.5%Cu hypereutectic alloys, including coupled growth zone and adjustment mechanisms of lamellar spacing of eutectic were researched by an abruptly changing growth rate in directional solidification. The formation mechanism of primary Al_2Cu phase and the effect of thermosolutal convection on directionally solidified microstructures of Al-Al_2Cu hypereutectic alloys were presented and discussed.
    At a given temperature gradient of 250K/cm and the growth rate of 1μm/s, coupled growth lamellar eutectic of Al-38.5%Cu alloy was obtained, which was in agreement with the theoretical analysis result that indicated the growth rate should be less than 3.55μm/s. As the growth rate ranged from 5μm/s to 490μm/s, the primary Al_2Cu phase grew ahead of the growth interface of coupled eutectic and its morphology was changed at various growth rates.
    Thermosolutal convection has a remarkable effect on the directionally solidified microstructures of Al-38.5%Cu hypereutectic alloys. The results show that with the increase of solid fraction, the quantity of primary Al_2Cu phase was decreased gradually. Using the Scheil equation to predict and analyze the solute segregation in the solidified sample both at V=5 and V=10μm/s, the coupled growth lamellar eutectic could be obtained at the solid fraction larger than 0.62 and 0.7 respectively, which fit in with the experimental results of 0.49 and 0.66 in directional solidification of Al-38.5%Cu hypereutectic alloy.
    When the growth rate increased abruptly, the growth of θ- Al_2Cu phase was suppressed in directionally solidified microstructures of Al-38.5%Cu hypereutectic alloy. The results show that at higher growth rate, the coupled growth eutectic can keep growth without any coarse primary phases that illustrates the production of in-situ composite improved effectively.
    The eutectic lamellar spacing of solidified microstructure in Al-38.5%Cu alloy was refined by the abrupt increases of the growth rate. Both at constant growth rates and the abrupt increase growth rates, the values of eutectic lamellar spacing are close to the JH model analysis results.
引文
1. R.T.Quinn, R.W.Kraft and R.W.Herzberg, Structure and elevated-temperature mechanical behavior of unidirectionally solidified Ni-Ni3Nb eutectic alloy, Trans of ASM,1969, 62:38~44
    2. P.Annarumma ,M.Turpin, Structure anti high temperature mechanical behavior of Ni-Ni_3Nb unidirectional eutectic, Metall Trans A, 1972, 3:137~146
    3. F.D.Lemkey, E.R.Thompon, Nickel and cobalt eutectic alloys reinforced by refractory metal carnidies, Metall Trans,1971, 2:1537~1545
    4. F.Schmid, D.Viechnicki, Oriented eutectics microstructure in the system Al_2O_3/ZrO_2, J.Mater. Sci, 1970, 5:470~479
    5. B.M.Ditchek, M.Levinson, Si-TaSi2 in situ junction eutectic composite diodes, Appl.Phys.Lett, 1986, 24(49): 1656~1670
    6. Umehara, Yoshiaki and Kada, Directionally solidified InSb-Sb eutectic alloy, Metallography, 1987, 20(4):451~464
    7. K.A.Jackson, J.D.Hunt, Lamellar and rod eutectic growth, Trans.TMS-AIME, 1966, 236:1129~1142
    8.于金江,傅恒志,高温共晶自生复合材料的研究进展,材料导报,2003,17(2):52~53
    9.W.kurz,P.R.Same,定向凝固共晶材料,李新立译,冶金工业出版社,北京,1989
    10. H.E.Cline, the Formation of faults in eutectic alloys, Trans of Metall Soci, 1969, 245:2205~2216
    11. J.N.Clark, J.T.Edwards and R.Elliott, Eutectic solidification, Metallurgical Transactions A, 1975, 6A:232~234
    12. J.D.Hunt, The lamella-rod transformation in eutectics, Journal of the Institute of Metals, 1966, 94:125~127
    13.黄卫东,丁国陆,周尧和,非稳念过程与凝固界面形态选择,材料研究学报,1995,9(3):193~205
    14.胡汉起,会属凝固原理,机械工业出版社,北京,第2版,2000
    15.刘志恩,材料科学基础,西北工业大学出版社,1991
    16. R.Elliott, Eutectic solidification processing, Butterworths&Coltd, 1983
    17. R.W.Jordan, J.D.Hunt, The growth of lamellar eutectic structures in the Pb-Sn and Al-Al_2Cu Systems, Metallurgical Transactions, 1971,2:3401-3410
    18. L.A.Donaghey, W.A.Tiller, On the diffusion of solute during the eutectoid and eutectic transformations, Material Sci.Eng, 1969, 3:231-240
    19. R.W.Series, J.D.Hunt and K.A.Jackson, The use of an electric analogue to solve the lamellar eutectic diffusion problem, J crystal growth, 1977,40:221-233
    20. T.Sato, Y.Sayama, Completely and partially co-operative growth of eutectics, J crystal growth, 1974, 22:259-271
    21. D.J.Fisher, W.Kurz, A theory of branching limited growth of irregular eutectics, Acta Metallurgica, 1980,28(6):777-794
    22. GE.Nash, A self-consistent theory of steady-state lamellar solidification in binary Eutectics systems, J crystal growth, 1977, 38:155-180
    23. V.Datye, J.S.Langer, Stability of thin lamellar eutectic growth, Physical Review B, 1981,24:4155-4169
    24. L.Pandey ,P.Ramachandrarao, A model for lamellar eutectic solidification, Acta Metall, 1987,350:2549-2556
    25. Junmin Liu, Yaohe Zhou and Baolu Shang, Lamellar eutectic stable growth-Ⅰ modeling, Acta Metall Mater,1990, 38:1625-1630
    26. L.L.Zheng, D.J.Larson and H.Zhang, Revised form of Jackson-Hunt theory: application to directional solidification of MnBi-Bi eutectics, J crystal growth, 2000,209:110-121
    27. D.Magnin, R.Trivedi, Eutectic Growth: A modification of the Jackson and Hunt theory, Acta Metall Mater, 1991, 39:453-467
    28. W.J.Boettinger, S.R.Coriell and R.Trivedi, In rapid solidification processing: principles and technologies, edited by R.Mehrabian and P.A.Pavish, Claitor's Publishing Division,Santa Barbara, 1987
    29. R.Trivedi, P.Magnin and W.Kurz, Theory of eutectic conditions, Metall Trans, 1991, 22 A:3051-3057
    30. R.Trivedi, P.Magnin and W.Kurz, Theory of eutectic growth under rapid solidification conditions, Acta Metall,1987, 35:971-980
    31. W.J.Boettinger, D.Shechtman, R.J.Schaeffer, The effect of rapid solidification velocity on the microstructure of Ag-Cu alloys, Metall Trans, 1984, 15A:55-66
    32. H.E.Cline, Theory of lamellar dendrite transition in eutectic alloys, Trans of the Metall Soc of AIME,1968,242:1613-1618
    33. H.E.Cline, Stability of lamellar eutectics, Journal of Applied Physics, 1979, 51: 4780~4785
    34. H.E.Cline, Growth of eutectics alloy thin films, Materials Science and Engineering, 1984, 65:93~100
    35. S.Strassler, W.R.Schneider, Proceedings of the international conference on low temperature physics, Phys.cond.Matter, 1974, 17:153~160
    36.刘俊明,层片共晶定向凝固,物理学报,1992,41(5):861~868
    37.马东,介万奇,定向凝固规则共晶生长相间距的选择,金属学报,1996,32:790~798
    38. Y.J.Chen, S.H.Davis, Instability of triple junctions in lamellar eutectic growth, Acta Mater,2001, 49:1363~1372
    39. S.Akamatsu, M.Plapp, G.Faivre, A.Kama, Overstability of lamellar eutectic growth below the minimum-undercooling spacing, Metall Mat Tran A:Phy Metall Mat Soc, 2004, 35:1815~1828
    40. A.Ourdjini, Jincheng Liu and R.Elliott, Eutectic spacing selection in AI-Cu system, Materials Science and Technology, 1994, 10:312~318
    41. D.D.Double, Imperfections in lamellar eutectic crystal, Mater Sci.Eng,1973, 11: 325~335
    42. A.Karma, Solidification processing of eutectic alloys, Am.Inst.Min-Engrs Warrendate, 1988
    43. Jinchen Liu, R.Elliott, Selfconsistent solution for lamellar eutectic growth, Metall Mater, 1995, 26A:471~476
    44. Jinchen Liu, R.Elliott, A numerical model for eutectic spacing selection in the CBr_4-C_2Cl_6 eutectic system, J crystal growth, 1995, 43:3301~3311
    45. W.G.Smith, W.A.Tiller and J.W.Rutter, The redistribution of solute atoms during the solidification of metals, Acta metallurgica, 1953, 16:428~437
    46. F.R.Mollard, Growth of composites from the melt-part Ⅰ, Trans.Metall.Soc, 1967, 239:1526~1533
    47. F.R.Mollard, Growth of composites from the melt-part Ⅱ, Trans.Metall.Soc, 1967, 239:1534~1546
    48.徐达鸣,曹福祥,变速生长条件下Al-Cu合金的定向凝固枝晶组织,余属学报,1995,3 1(11):501~507
    49.潘冶,孙国雄,变速生长的MnSb/Sb共晶相间距选择,稀有金属材料与工程,1999,28(2):85~88
    50. V.Datye, J.S.Mathur and L.S.Langer, Stability of thin lamellar eutectic growth, Physical review B, 1981, 24:4155~4169
    51. R.Trivedi, J.T.Mason, J.D.Verhoeren, Eutectic spacing selection in lead-based alloy systems, Metall Trans,1991, 22A:2523~2533
    52. B.Cantor, G.A.Chaswick, The growth crystallography of unidirectionally solidified Al-Al_3Ni and Al-Al_2Cu eutectic, J crystal growth, 1974, 23:12
    53.朱玮玮,任忠鸣,仁维丽等,强磁场对定向凝固Al-Al_2Cu共晶合金位错的影响,上海金属,2006,28:23~27
    54. R.W.Kraft, D.L.Albright, Microstructure of unidirectionally solidified Al-Al_2Cu eutectic, Transactions of the Metallurgical Society of AIME,1961, 221:95~102
    55. J.N.Clark, R.Elliott, Interlamellar spacing measurements in the Sn-Pb and Al-Al_2Cu eutectic Systems, Metallurgical Transactions A, 1976, 7A:1197~1202
    56.张伟强,杨院生,胡壮麒,Al-Al_2Cu共晶层片间距的数值模拟,金属学报,1998,34:1~7
    57.蔡淑惠,刘春万,某些Al_2Cu型和CrSi_2型化合物的能带结构研究,化学学报,1998,56:117~123
    58.王明章,材实,钱任根,Al-Al_2Cu自生复合材料弹塑性变形的晶体细观力学模拟,金属学报,1995,31:77~86
    59. R.Hamar, Faceting behavior of Al_2Cu during solidification, J crystal growth. 1981, 53:586~590
    60. F.Yilmaz, R.Elliott, Faceting in the Al-CuAl_2 system, J crystal growth,1984, 66: 465~468
    61. R.M.Jordan, J.D.Hunt, Morphological observations of the eutectic-dendrite breakdown in the Al-Al_2Cu System, J crystal growth,1971, 11:141~146
    62. D.T.J.Hurle, E.Jakeman, Morphological stability of lamellar eutectics, J crystal growth,1968, 3-4:71~81
    63. T.Carlberg, H.Fredriksson, On the mechanism of lamellar spacing adjustment in eutectic Alloys, J crystal growth, 1977, 42:526~535
    64. S.C.Gill, M.Zimmermann and W.Kurz, Laser resolidification of the Al-CuAl_2 eutectic: The Couple Zone, Acta Metall Mater, 1992, 40:2895~2906
    65. S.C.Gill, W.Kurz, Rapidly solidified Al-Cu alloys-Ⅰ experimental determination of the microstructure selection map, Acta Metall Mater, 1993, 41:3563~3573
    66. S.C.Gill, W.Kurz, Rapidly solidified AI-Cu alloys-Ⅱ Calculation of the microstructure selection map, Acta Metall Mater ,1995, 43:139~151
    67. W.Kurz, D.J.Fisher, Dendrite growth in eutectic alloys: the coupled zone, International Metals Reviews, 1979, 5-6:177~202
    68. R.Trivedi, P.Mazumder, S.N.Tewari, The effect of convection on disorder in primary cellular and dendritic arrays, Metall Mater Trans A, 2002, 33A:3763~3765
    69. J-H Lee, Shan Liu, H.Miyahara, R.Trivedi, Diffusion-coefficient measurements in liquid metallic alloys, Metall Mater Trans B,2004, 35B: 909~917
    70. J-H Lee, Shan Liu, and R.Trivedi, The effect of fluid flow on eutectic growth, Metall Mater Trans A, 2005, 36A: 3111~3125
    71. W.Kurz, D.J.Fisher, Fundamentals of Solidification, Trans.Tech. Aedermannsdorf 1989
    72. M.Gaumann, R.Trivedi and W.Kurz, Nucleation ahead of the advancing interface in directional solidification, Materials Science and Engineering A,1997, 226A: 763~769
    73. M.H.Burden, J.H.Hunt, Cellular and dendritic growth, J crystal growth, 1974, 22:109~116
    74. W.Kurz, D.J.Fisher, Dendrite growth at the limit of stability: tip radius and spacing, Acta Metall, 1981, 29:11~20
    75.李双明,马伯乐等,定向凝固下共晶合金中相的竞争生长,中国科学,E辑,2005,35:479~489.
    76. R.Trivedi, W.Kurz, Modeling of solidification microstructures in concentrated solutions and intermetallic systems, Metall Trans A, 1990, 21 A: 1311~1318
    77.M.麦克莱思著,陈石卿译,定向凝固高温材料,冶会工业出版社,北京,1989
    78. S.H.Han, R.Trivedi, Banded microstructure formation in off-eutectic alloys, Metallurgical and Materials Transaction A, 2000, 33A: 1819~1831
    79. R.S.Fidler, M.N.Croker and R.W.Smith, The thermodynamics and morphologies of eutectics containing compound phases, J crystal growth, 1972, 13-14:739~746
    80. W.H.S.Lawson, H.K.Kerr, Cellular morphologies in rapidly solidified Al-Al_2Cu eutectic alloys, J crystal growth, 1972, 12:209~216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700