用户名: 密码: 验证码:
镍基单晶高温合金的界面微结构及定向粗化行为分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍基单晶高温合金因具有优异的蠕变、疲劳、氧化及腐蚀抗力等综合性能,而被广泛应用于航空发动机和工业燃气轮机的叶片材料。它有一个引人注意的特征:在高温施加应力的条件下,γ'沉淀相会发生定向粗化形成筏状。这种筏化行为直接影响了合金的蠕变疲劳寿命,而且断裂面通常沿筏化方向发生。所以定向粗化行为一直是镍基单晶高温合金强化机制的研究重点。
     镍基单晶高温合金是一种两相复合材料,由软的γ基体相(Ni相)和均匀镶嵌在其中的立方状γ'沉淀相(Ni3Al相)组成。其中γ'沉淀相是重要的强化相,其体积分数约为70%。γ/γ'相界面的微观结构以及在载荷和温度条件下的演化决定了其力学性能。本文采用不同尺度的模型和方法研究了镍基单晶高温合金的定向粗化行为,分析了γ/γ'相界面微观结构及其在载荷和温度作用下的演化,探讨了界面微观结构演化与γ'相定向粗化以及合金宏观力学性能的关系,主要内容和结论包括:
     (1)采用分子动力学方法模拟了镍基单晶合金界面位错网结构,分析了加温和加载条件的影响。模拟结果表明:(100)、(110)和(111)三个不同相界面分别存在三种不同形式的位错网,分别为正方形、矩形和三角形位错网。它们在拉伸载荷和温度的作用下慢慢由规则变得不规则,直至损伤或消失。不同形式的位错网有不同形式和不同程度的变形和损伤。位错网的损伤过程与γ'相定向粗化以及合金的界面力学性能有密切的关系。
     (2)考虑到镍基单晶高温合金服役过程中复杂的受力形式和失效机制,采用分子动力学方法模拟了不同相界面在不同加载方式(拉伸、剪切和拉剪组合)作用下位错网结构的演化。结果表明:不同加载方式下,不同相界面位错网的损伤过程和损伤难易不同。(100)相界面形成的正方形位错网最不容易损伤和消失,它最能有效地强化界面。这种正方形位错网结构的损伤主要由[100]方向的轴向载荷引起,是镍基单晶高温合金在服役过程中主要由于承受[100]轴向离心载荷而引起失效的原因。
     (3)基于原子模拟,分析了应变率和温度对界面位错网结构演化和变形机制的影响及其与γ'相定向粗化行为以及宏观力学性能的关系。结果表明:不同应变率和温度下,位错网的损伤程度不同,γ'筏化的难易也不同。只有在相对较低的应变率下,γ'筏化才会发生,而且温度越高,筏化越容易。此外,不同应变率和温度下,位错运动和变形机制不同,从而引起界面宏观力学性能也不同。界面的屈服强度和最大拉伸强度随应变率的增加而增加,随温度的增加而降低;其塑性和延展性能随应变率的增加而减弱,随温度的增加而增加。
     (4)采用Eshelby等效夹杂原理和Mori-Tanaka平均场方法,计算了不同形状γ'颗粒的总势能,分析了具有不同弹性常数差的两类镍基单晶高温合金γ'相定向粗化行为及其形状稳定性。计算中考虑了基体塑性应变对沉淀形状稳定性的影响,此塑性应变由价’界面位错网形成而引起。结果表明:基体塑性变形对γ'沉淀形状的稳定性以及筏化行为具有重要作用。在外应力作用下,如果基于简单的弹性分析对γ'相筏化和形状稳定性进行预测,其预测结果不总是与实验结论一致;当引入基体塑性应变时,对两类合金都能给出与实验结论一致的准确预测。
     (5)建立了一个基于Eshelby等效夹杂理论的三相细观力学模型,该模型中将γ基体相看作两相夹杂,而将γ'沉淀相看作基体相,通过计算不同基体通道中的Mises应力、弹性应变能密度和静水压力,预测了不同应力轴取向下的γ'相定向粗化行为。结果表明:当外加应力沿[001]和[110]方向作用时,将发生定向粗化,其粗化方向取决于晶格错配的符号和外加应力的性质;当外加应力沿[111]方向时,不出现定向粗化。
     (6)采用有限元方法计算镍基单晶高温合金γ基体和γ'沉淀相的Mises应力和弹性应变能密度分布,并结合元素扩散性质探讨了γ'相定向粗化的驱动力。分析了温度和外载对定向粗化行为的影响,给出了启动蠕变位错的临界外加载荷。结果表明:外加应力改变了γ和γ'内Mises应力和弹性应变能密度的分布,其最大值出现在界面附近的基体通道处,该处的蠕变位错和筏化也优先启动。而且随温度的增加,Mises应力和应变能密度增加,蠕变和筏化也越容易。
Ni-based single crystal superalloys are widely used as advanced aircraft turbine blade materials for their excellent creep resistance behavior. They exhibit a remarkable character that theγcubic particles will transform into flat shapes (which are named rafts) under the combined influence of stresses and temperatures. This rafting behavior directly affects the creep fatigue life of Ni-based superalloys. The fracture surface is usually along the direction of rafting. Therefore, the directional coarsening mechanism is a key rule of precipitation hardening in Ni-based single crystal alloys.
     Ni-based single crystal superalloys are two-phase materials. The material is strengthened by a high volume fraction of hard cubicalγprecipitates (Ni3Al phase) embedded coherently in a softerγmatrix (Ni phase), where the volume fraction ofγphase may reach as high as 70%. The microstructure of theγ/γinterface as well as its evolution under external loading and temperature determines the mechanical properties of Ni-based superalloys. In this thesis, we study directional coarsening behavior of Ni-based superalloys as well as the interface microstructure and its evolution under the influence of temperatures and stresses, by using models and methods in different scales. The relationship between the microstructure evolution and the macroscopic mechanical behaviors is discussed. The main contents and results include:
     (1) The interface microstructure and its evolution under the influence of tensile loading and temperature are simulated by molecular dynamics. From the simulation we find that three dislocation network patterns, namely square, rectangle and triangle appear on the (100), (110) and (111) phase interfaces respectively. The three patterns of dislocation network change from regular to irregular or disappear under the influence of tensile loading and temperature. Different patterns of dislocation network show different degrees and patterns of damage. Theγrafts and mechanical properties are closely related to the damage process of the dislocation networks.
     (2) Taking into account the complex stress and failure mechanisms in-service of Ni-based single crystal superalloys, the structural evolution of dislocation networks are simulated under different ways of loading (tensile, shear, combined tensile and shear) by molecular dynamics. The results show that the damage processes of the dislocation networks are different for three different phase interfaces under different ways of loading. The square dislocation network at (100) phase interface is the most difficult to damage and disappear, so it is the most stable and strengthen interface effectively. The damage of this square dislocation network is mainly caused by [100] axial loading, which is the reason for the failure of Ni-based single crystal superalloys.
     (3) Based on atomistic simulation, the effects of strain rate and temperature on the structural evolution of interface dislocation networks and deformation mechanisms are investigated. The results indicate that the dislocation networks show different degrees of damage at different strain rates and temperatures, and the difficulty level ofγrafting is also different. Theγrafting occurs only in the smaller strain rate, and become easier at higher temperature. Moreover, dislocation motion and deformation mechanisms are different at different strain rates and temperatures, which lead to the change of maro-mechanical properties at interfaces. The yield strength and ultimate tensile strength increases with the increase of strain rate, while decreases with the increase of the temperature. The plasticity and ductility decreases with the increase of strain rate, while increases with the increase of the temperature.
     (4) The Eshelby's inclusion theory and Mori-Tanaka's mean field method are used to evaluate the elastic energy caused by a change in the shape ofγprecipitates. The shape stability and directional coarsening ofγprecipitate in Ni-based superalloys with two types of elastic constant are investigated. Moreover, the plastic strain caused by the formation of dislocation networks at theγ-γinterface is taken into account. The effect of matrix plastic strain on the shape stability of y precipitates is considered. The results suggest that the plastic strain plays an important role on the shape stability and rafting behavior. The predictions based on a simple elastic analysis do not always agree with the experimental results regarding shape stability and rafting behavior. However, if the plastic matrix strain is introduced, the results are perfectly consistent with experimental observations for alloys with two types of elastic constant.
     (5) A new three-phase micromechanical model based on the Eshelby's equivalent inclusion method has been developed to study the directional coarsening behavior in Ni-based single crystal superalloys. In this model, theγmatrix as two-phase inclusion, while theγprecipitate as the matrix phase. The von Mises stress, elastic strain energy density and hydrostatic pressure in different matrix channels are calculated to predict the directional coarsening behavior of different stress axis orientations. The calculated results indicate that the directional coarsening ofγprecipitate occurs when the external stress is applied along the [001] and [110] directions, respectively. The rafting direction depends on the sign of the misfit and the type of the external stress. However, no rafts occurs when the external stress is applied along the [111] direction.
     (6) The finite element method has been applied to calculate the Mises stress and strain energy density distributions of theγandγphases in Ni-based single crystal superalloys. The analysis of directional coarsening behavior ofγparticles and driving force are performed based on the element diffusion behavior. The effects of the temperature and external loading on the directional coarsening behavior are considered. The critical external loading for start-up creep dislocations is obtained. The results show that the application of an external stress leads to differential levels of Mises stress and strain energy density, and the largest value of the Mises stress and strain energy density appears at the corners of the matrix near the interface. Creep dislocations penetrate preferentially into the most highly stressed matrix channels where theγphase rafting is also enlarged. The Mises stress and strain energy density of theγandγphases increase with the temperature increasing, thus the creep and rafting becomes easier at a higher temperature.
引文
[1]周瑞发,韩雅芳,李树索.高温结构材料[M].国防工业出版社:北京,2006.
    [2]Zhao J C, Westbrook J H. Ultrahigh-temperature materials for jet engines [J]. Marerials Research Society Bulletin,2003,9:622-630.
    [3]陈章荣.单晶高温合金发展现状[J].材料工程,1995,8:3-12.
    [4]胡壮麒,刘丽荣,金涛,孙晓峰.镍基单晶高温合金的发展[J].航空发动机,2005,31:1-7.
    [5]Busso E P, Meissonnier F T, O'Dowd N P. Gradient-dependent deformation of two-phase single crystals [J]. Journal of the Mechanics and Physics of Solids,2000,48:2333-2361.
    [6]Tien J K, Copley S M. The effect of uniaxial stress on the periodic morphology of coherent gamma prime precipitates in nickel-base superalloy crystals [J]. Metallurgical and Materials Transactions B,1971,2:215-219.
    [7]Mackay R A, Ebert L J. The development of directional coarsening of the γ'precipitate in superalloy single crystals [J]. Scripta Metallurgica,1983,17:1217-1222.
    [8]Pollock T M, Argon A S. Directional coarsening in Nickel-base single crystals with high volume fractions of coherent precipitates [J]. Acta Metallurgica et Materialia,1994,42: 1859-1874.
    [9]Feller-Kniepmeier M, Link T. Correlation of microstructure and creep stages in the<100> oriented superalloy SRR 99 at 1253K [J]. Metallurgical and Materials Transactions A, 1989,20:1233-1238.
    [10]Tian S G, Yu X F, Yang J H, Zhao N R, Xu Y B, Hu Z Q. Deformation features of a nickel base superalloy single crystal during compression creep [J]. Materials Science and Engineering:A,2004,379:141-147.
    [11]Fredholm A, Strudel J L. On the creep resistance of some nickel-base single crystals, Superalloys 1984 [C]. Proceedings of Fifth International Symposium on Superalloys, Pennsylvania, Gell M. et al, eds,1984,211-220.
    [12]Jackson M, Reed R. Heat treatment of Udimet 720 LI:the effect of microstructure on properties [J]. Materials Science and Engineering:A,1999,259:85-97.
    [13]Torster F, Baumeister G, Albrecht J, Lutjering G, Helm D, Daeubler M. Influence of grain size and heat treatment on the microstructure and mechanical properties of the nickel-base superalloy U 720 LI [J]. Materials Science and Engineering:A,1997,234-236:189-192.
    [14]Nathal M V, Mackay R A, Miner R V. Influence of precipitate morphology on intermediate temperature creep properties of a nickel-base superalloy single crystal [J]. Metallurgical and Materials Transactions A,1989,20:133-141.
    [15]Mukherji D, Rosler J. Effect of the γ'volume fraction on the creep strength of Ni-base superalloys [J]. Zeitschrift fur Metallkunde,2003,94:478-484.
    [16]Murakumo T, Kobayashi T, Harada H. Effect of γ'volume fraction for creep strength of Ni-base superalloys at 800℃ [J]. Journal of the Japan Institute of Metals,2005,69: 763-768.
    [17]岳珠峰,吕震宙,周利,郑长卿.镍基单晶合金的厚度效应[J].金属学报,1997,33:265-270.
    [18]Mackay R A, Ebert L J. The development of γ-γ'lamellar structures in superalloy during elevated temperature mechanical testing [J]. Metallurgical and Materials Transactions A, 1985,16:1969-1982.
    [19]Masso di L, Coluzzi B, Mazzolai F M. Ultrasonic investigation of CMSX-6 superalloy at low and high temperatures [J]. Journal of Physical Ⅳ,1996,6:C8-247-250.
    [20]Pyczak F, Neumeier S, Goeken M. Influence of lattice misfit on the internal stress and strain states before and after creep investigated in nickel-base superalloys containing rhenium and ruthenium [J]. Materials Science and Engineering:A,2009,510-511: 295-300.
    [21]Erickson G L. A new third-generation single crystal casting superalloy [J]. Journal of Metals,1995,47:36-39.
    [22]Probst-Hein M, Dlouhy A, Eggeler G. Interface dislocations in superalloy single crystals [J]. Acta Materialia,1999,47:2497-2510.
    [23]Shibuya S, Kaneno Y, Tsuda H. Microstructural evolution of dual multi-phase intermetallic alloys composed of geometrically close packed Ni3X (X:Al and V) type structures [J]. Intermetallics,2007,15:338-348.
    [24]胡壮麒,彭平,刘轶,金涛,孙晓峰,管恒荣.镍基合金中γ'相界面的强化设计[J].金属学报,2002,38:1121-1126.
    [25]Mott N F, Nabarro F R N. Report of Bristol Conference on the Strength of Solids [M]. London:Physical Society,1948.
    [26]Fleischer R L. Substitutional solution hardening [J]. Acta Metallurgica,1963,11: 203-209.
    [27]Blavette D, Caron P and Khan T. An atom probe investigation of the role of Rhenium additions in improving creep resistance of Ni-base superalloys [J]. Scripta Metallurgica, 1986,20:1395-1400.
    [28]彭志方,严演辉.镍基单晶高温合金CMSX-4 γ'相形态演变及蠕变各向异性[J].金属学报,1997,33:1147-1154.
    [29]田素贵,周惠华,张静华,杨洪才,徐永波,胡壮麒.一种单晶镍基合金蠕变初期的位错组态[J].金属学报,1998,34:123-128.
    [30]王开国,李嘉荣,曹春晓.单晶高温合金蠕变行为研究现状[J].材料工程,2004,1:3-7.
    [31]Cottrell A H. Report of a Conference on Strength of Solids [M]. Physical Society, London.1948.
    [32]Saito M, Aoyama T, Hidaka K, Hidaka K, Tamaki H, Ohashi T, Nakamura S, Suzuki T. Concentration profiles and the rafting mechanism of Ni base superalloys in the initial stage of high temperature creep tests [J]. Scripta Materialia,1996,34:1189-1194.
    [33]Nathal M V, Ebert L J, Gamma prime shape changes during creep of a nickel-base superalloy [J]. Scripta Metallurgica,1983,17:1151-1154.
    [34]Fahrmann M, Hermann W, Fahrmann E, Boegli A, Pollock T M, Sockel H G. Determination of matrix and precipitate elastic constants in (γ-γ') Ni-base model alloys, and their relevance to rafting [J]. Materials Science and Engineering:A,1999,260: 212-221.
    [35]Peng Z F, Ren Y Y, Mei Q S, Fan B Z, Yan P, Zhao J C, Wang Y Q, Sun J H. Directional coarsening of γ'precipitates in typical regions of original dendritic structure of CMSX-2 [J]. Scripta Materialia,2000,42:1059-1064.
    [36]Zhang Y, Wanderka N, Schumacher G, Schneider R, Neumann W. Phase chemistry of the superalloy SC16 after creep deformation [J]. Acta Materialia,2000,48:2787-2793.
    [37]Paris O, Fahrmann M, Fahrmann E, Pollock T M and Fratzl P. Early stages of precipitate rafting in a single crystal Ni-AI-Mo model alloy investigated by small-angle X-ray scattering and TEM [J]. Acta Materialia,1997,45:1085-1097.
    [38]Buffiere J Y, Ignat M. A dislocation based criterion for the raft formation in nickel-based superalloys single crystals [J]. Acta Metallurgica et Materialia,1995,43:1791-1797.
    [39]岳珠峰,胡卫兵,吕震宙.镍基单晶合金筏化规律及蠕变持久寿命模型在复杂应力状态下的考核[J].稀有金属材料与工程,2002,31:419-422.
    [40]Kolling S, Gross D. Simulation of microstructural evolution in materials with misfitting precipitates [J]. Probabilistic Engineering Mechanics,2001,16:313-322.
    [41]Arrell D J, Valles J L. Interfacial dislocation based criterion for the prediction of rafting behavior in superalloys [J]. Scripta Metallurgica et Materialia,1994,30:149-153.
    [42]Zhu J Z, Wang T, Ardell A J, Zhou S H, Liu Z K, Chen L Q. Three-dimensional phase field simulations of coarsening kinetics of y particles in binary Ni-Al alloys [J]. Acta Materialia,2004,52:2837-2845.
    [43]Mueller L, Glatzel U, Feller-Kniepmeier M. Modelling thermal misfit stresses in nickel-base superalloys containing high volume fraction of γ'phase [J]. Acta Metallurgica et Materialia,1992,40:1321-1327.
    [44]Socrate S, Parks D M. Numerical determination of the elastic driving force for directional coarsening in Ni-superalloys [J]. Acta Metallurgica et Materialia,1993,41:2185-2209.
    [45]Gayda J, Mackay R A. Analysis of γ'phase changes in a single crystal Ni-base superalloy [J]. Scripta Metallurgica,1989,23:1835-1838.
    [46]Feng H, Biermann H, Mughrabi H. Computer simulation of the initial rafting process of a nickel-base single-crystal superalloy [J]. Metallurgical and Materials Transactions A, 2000,30:585-597.
    [47]田素贵,陈昌荣,杨洪才,胡壮麒.单晶Ni基合金高温蠕变期间丫'相定向粗化驱动力的有限元分析[J].金属学报,2000,36:465-471.
    [48]沙玉辉,陈昌荣,张静华,徐永波,胡壮麒.镍基单晶高温合金定向粗化行为的取相依赖性Ⅱ有限元分析[J].金属学报,2000,36:258-261.
    [49]Nouailhas D, Cailletaud G. Finite element analysis of the mechanical behavior of two-phase single-crystal superalloys [J]. Scripta Materialia,1996,34:565-571.
    [50]Zhou L, Li S X, Chen C R, Wang Y C, Zang Q S, Lu K. Finite element analysis of y' directional coarsening in Ni-based superalloys [J]. Z. Metall,2002,93:315-321.
    [51]Li D Y, Chen L Q. Computer simulation of morphological evolution and rafting of y' particles in Ni-based superalloys under applied stress [J]. Scripta Materialia,1997,37: 1271-1277.
    [52]Mueller R, Gross D.3D simulation of equilibrium morphologies of precipitates [J]. Computional Materials Science,1998,11:35-44.
    [53]Veron M, Brechet Y, Louchet F. Directional coarsening of Ni-based superalloys computer simulation at the mesoscopic level [J]. Acta Materialia,1996,44:3633-3641.
    [54]Sakaguchi M, Okazaki M. Fatigue life evaluation of a single crystal Ni-based superalloy, accompanying with change of microstructural morphology [J]. International Journal of Fatigue,2007,29:1959-1965.
    [55]Epishin A, Link T, Nolze G. SEM investigation of interfacial dislocations in nickel-base superalloys [J]. Journal of Microscopy,2007,228:110-117.
    [56]Zhang J H, Hu Z Q, Xu Y B, Wang Z G. Dislocation structure in a single-crystal nickel-base superalloy during low cycle fatigue [J]. Metallurgical and Materials Transactions A,1992,23:1253-1258.
    [57]Lasalmonie A, Strudel J L. Interfacial dislocation networks around y precipitates in nickel-base alloys [J]. Philosophical Magazine,1975,32,937-949.
    [58]Singh A K, Louat N, Sadananda K. Dislocation network formation and coherency loss around gamma-prime precipitates in a nickel-base superalloy [J]. Metallurgical and Materials Transactions A,1988,19:2965-2973.
    [59]Gabrisch H, Mukherji D, Wahi R P. Deformation-induced dislocation networks at the γ-γ interfaces in the single crystal superalloy SC16:A mechanism based analysis. Philosophical Magazine A,1996,74:229-249.
    [60]Keller R R, Maier H J, Mughrabi H. Characterization of interfacial dislocation networks in a creep-deformed nickel-base superalloy [J]. Scripta Metallurgica et Materialia,1993, 28:23-28.
    [61]Luo Z P, Tang Y L, Wu Z, Kramer M J, McCallum R W. The dislocation structure of a single-crystal γ-γ'two-phase alloy after tensile deformation [J]. Materials Characterization,1999,43:293-301.
    [62]Zhang J X, Murakumo T, Koizumi Y, Harada H, Masaki Jr S. Interfacial dislocation networks strengthening a fourth-generation single-crystal TMS-138 superalloy [J]. Metallurgical and Materials Transactions A,2002,33:3741-3746.
    [63]Luo Z P, Wu Z T, Miller D J. The dislocation microstructure of a nickel-base single crystal superalloy after tensile fracture [J]. Materials Science and Engineering:A,2003,354: 358-368.
    [64]Gabb T P, Draper S L, Hull D R, Mackay R A, Nathal M V. The role of interfacial dislocation networks in high temperature creep of superalloys [J]. Materials Science and Engineering:A,1989,118:59-69.
    [65]Mardhand N, Esperance G L, Pelloux M. Thermal-mechanical cyclic stress-stain responses of cast B-1900+Hf [J]. ASTM (American Society for Testing and Materials) special technical publication,1988,942:638-656.
    [66]Kraft S, Altenberger I, Mughrabi H. Directional γ-γ coarsening in a monocrystalline nickel-based superalloy during low-cycle thermomechanical fatigue [J]. Scripta Metallurgica et Materialia,1995,32:411-416.
    [67]Ignat M, Bffiere J Y, Chaix J M. Microstructures induced by a stress gradient in a nickel-based superalloy [J]. Acta Metallurgica et Materialia,1993,41:855-862.
    [68]Royer A, Bastie P, Varon M. In situ determination of γ'phase volume fraction and of relations between lattice parameters and precipitate morphology in Ni-based single crystal superalloy [J]. Acta Materialia,1998,46:5357-5368.
    [69]Carry C, Strudel J L. Apparent and effective creep parameters in single crystals of a nickel base superalloy—Ⅰ Incubation period [J]. Acta Metallurgica,1977,25:767-777.
    [70]Buffiere J Y, Cheynet M C, Ignat M. Stem analysis of the local chemical composition in nickel-based superalloy CMSX-2 after creep at high temperature [J]. Scripta Metallurgica et Materialia,1996,34:349-356..
    [71]Svoboda J, Lukas P. Modelling of Kinetics of directional coarsening in Ni-superalloys [J]. Acta Materialia,1996,44:2557-2565.
    [72]田素贵,周惠华.一种单晶镍基合金蠕变期间γ'相的定向粗化机制[J].金属学报,1998,34:591-596.
    [73]Ohashi T, Hidaka K, Imano S. Elastic stress in single crystal Ni-base superalloys and the driving force for their microstructural evolution under high temperature creep conditions. Acta Materialia,1997,45:1801-1810.
    [74]Ohashi T, Hidaka K, Saito M. Quantitative study of the plastic slip deformation and formation of internal stresses in Ni-base superalloys [J]. Materials Science and Engineering:A,1997,238:42-49.
    [75]Gayda J, Srolovitz D J. A Monte Carlo-finite element model for strain energy controlled microstructural evolution:"rafting" in superalloys [J]. Acta Metallurgica,1989,37: 641-650.
    [76]Schmidt I, Gross D. Directional coarsening in Ni-base superalloys:analytical results for an elasticity-based model [J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,1999,455:3085-3106.
    [77]Ratel N, Bruno G, Bastie P, Mori T. Plastic strain-induced rafting of γ'precipitates in Ni superalloys:Elasticity analysis [J]. Acta Materialia,2006,54:5087-5093.
    [78]Ratel N, Bastie P, Mori T, Withers P J. Application of anisotropic inclusion theory to the energy evolution for the matrix channel deformation and rafting geometry of γ/γ'Ni superalloys [J]. Materials Science and Engineering:A,2009,505:41-47.
    [79]岳珠峰,吕震宙,何健.镍基单晶合金的γ'相筏化准则及蠕变性能的晶体取向相关性[J].金属学报,1999,35:585-588.
    [80]Ichitsubo T, Koumoto D, Hirao M, Tanaka K, Osawa M, Yokokawa K, Harada H. Rafting mechanism for Ni-base superalloy under external stress:elastic or elastic-plastic phenomena? Acta Materialia,2003,51:4033-4044.
    [81]文玉华,朱弢,曹立霞,王崇愚.镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟[J].物理学报,2005,54:2520-2523.
    [82]耿翠玉,王崇愚,朱弢.镍基单晶高温合金γ/γ'(001)相界面上原子构型的分子动力学研究[J].物理学报,2003,52:1320-1324.
    [83]Xie H X, Wang C Y, Yu T. Motion of misfit dislocation in an Ni/Ni3Al interface:a molecular dynamics simulations study [J]. Modelling and Simulation in Materials Science and Engineering,2009,17:055007.
    [84]Zhu T, Wang C Y. Molecular dynamics study of mosaic structure in the Ni-based single crystal superalloy [J]. Chinese Physics,2006,15:2087-2091.
    [85]朱弢,王崇愚,干勇.镍基单晶高温合金相界面错配位错网络的演化[J].物理学报,2009,58:S156-S160.
    [86]Zhu T, Wang C Y. Misfit dislocation networks in the γ'phase interface of a Ni-based single-crystal superalloy:Molecular dynamics simulations [J]. Physical Review B,2005, 72:014111-6.
    [87]Yashiro K, Naito M, Tomita Y. Molecular dynamics simulation of dislocation nucleation and motion at γ/γ'interface in Ni-based superalloy [J]. International Journal of Mechanical Sciences,2002,44:1845-1860.
    [88]Yashiro K, Kurose F, Nakashima Y, Kubo K, Tomita Y, Zbib H M. Discrete dislocation dynamics simulation of cutting of γ'precipitate and interfacial dislocation network in Ni-based superalloys [J]. International Journal of Plasticity,2006,22:713-723.
    [89]Nabarro F R N. Rafting in superalloys [J]. Metallurgical and Materials Transactions A, 1996,27:513-530.
    [90]Nabarro F R N, Cress C M, Kotschy P. The thermodynamic driving force for rafting in superalloys [J]. Acta Materialia,1996,44:3189-3198.
    [91]彭志方,任遥遥,樊宝珍,燕平,赵京晨,王延庆,孙家华.镍基单晶高温合金γ'的定向粗化机理[J].金属学报,1999,35:9-14.
    [92]Schmidt I, Mueller R, Gross D. The effect of elastic inhomogeneity on equilibrium and stability of a two particle morphology [J]. Mechanics of Materials,1998,30:181-196.
    [93]Feng H, Biermann H, Mughrabi H. Computer simulation of the initial rafting process of a nickel-base single-crystal superalloy [J]. Metallurgical and Materials Transactions A, 2000,30:585-597.
    [94]Caron P, Khan T. Improvement of creep strength in a nickel-base single crystal superalloy by heat treatment [J]. Materials Science and Engineering,1983,61:173-184.
    [95]Nathal M V, Mackay R A, Garlick R G. Temperature dependence of γ-γ'lattice mismatch in Nickel-base superalloys [J]. Materials Science and Engineering,1985,75:195-205.
    [96]Acharya M V, Fuchs G E. The effect of stress on the microstructural stability of CMSX-10 single crystal Ni-base superalloys [J]. Scripta Materialia,2006,54:61-64.
    [97]Li D Y, Chen L Q. Shape evolution and splitting of coherent particles under applied stresses [J]. Acta Materialia,1999,47:247-257.
    [98]Qiu Y Y. The effect of the lattice strains on the directional coarsening of γ'precipitates in Ni-based alloys [J]. Journal of Alloys and Compounds,1996,232:254-263.
    [99]Mughrabi H. Microstructural aspects of high temperature deformation of monocrystalline nickel base superalloys:some open problems [J]. Materials Science and Technology,2009, 25:191-204.
    [100]Su C H, Voorhees P W. The dynamics of precipitate evolution in elastically stressed solids-I. Inverse coarsening [J]. Acta Materialia,1996,44:1987-1999.
    [101]Su C H, Voorhees P W. The dynamics of precipitate evolution in elastically stressed solids-Ⅱ. Particle alignment [J]. Acta Materialia,1996,44:2001-2016.
    [102]Ichitsubo T, Koumoto D, Hirao M, Tanaka K, Osawa M, Yokokawa K, Harada H. Elastic anisotropy of rafted Ni-base superalloy at high temperatures [J]. Acta Materialia,2003,51: 4863-4869.
    [103]Reed R C. The superalloys:fundamentals and applications [M]. Cambridge, Cambridge University Press,2006.
    [104]Kamaraja M. Rafting in single crystal nickel-base superalloys-An overview. Sadhana, 2003,28:115-128.
    [105]王跃臣,李守新,艾素华,刘峰,周丽,张辉.DD8单晶镍基高温合金热机械疲劳后的微观结构[J].金属学报,2003,39:337-341.
    [106]Klarstrom D L, Ishwar V R and Rowe M D. Properties, weldability and applications of advanced wrought superalloys for gas turbine engines [J]. Acta Metallurgica Sinica (English letters),2005,18:1-14.
    [107]Acharya M V, Fuchs G E. The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys. Materials Science and Engineering:A,2004,381:143-153.
    [108]Zhang G Q. Research and development of high temperature structural materials for aero-engine applications [J]. Acta Metallurgica Sinica (English letters),2005,18: 443-452.
    [109]郑云荣,韩雅芳.燃气涡轮用单晶高温合金的成本因素[J].金属学报,2002,38:1203-1209.
    [110]刘刚,刘林,赵新宝.难熔元素对镍基单晶高温合金凝固特性及组织的影响[J].材料导报,2008,22:38-42.
    [111]马文有,韩雅芳,李树索,郑运来,宫声凯.Mo含量对一种镍基单晶高温合金显微组织和持久性能的影响[J].金属学报,2006,42:1191-1196.
    [112]魏朋义,钟振刚,桂钟楼,刘荣敏,劳日玲,李嘉荣.合金成分对含铼镍基单晶合金高温持久及断裂性能的影响[J].材料工程,1999,4:3-6.
    [113]Carroll L J, Feng Q, Mansfield J F and Pollock T M. Elemental partitioning in Ru-containing nickel-base single crystal superalloys [J]. Materials Science and Engineering:A,2007,457:292-299.
    [114]Woellmer S, Mack T, Glatzel U. Influence of tungsten and rhenium concentration on creep properties of a second generation superalloy [J]. Materials Science and Engineering: A,2001,319-321:792-795.
    [115]Liu L R, Jin T, Zhao N R, Sun X F, Guan H R, Hu Z Q. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy [J]. Materials Science and Engineering:A,2003,361:191-197.
    [116]Pyczak F, Devrient B, Neuner F C, Mughrabi H. The influence of different alloying elements on the development of the γ/γ'microstructure of nickel-base superalloys during high-temperature annealing and deformation [J]. Acta Materialia,2005,53:3879-3891.
    [117]胡壮麒,孙文儒,宋洪伟.一种新的变形高温合金强化方法——磷硼微合金复合强化[J].中国工程科学,2005,7:17-26.
    [118]Yu J J, Sun X F, Jin T, Zhao N,Guan H R, Hu Z Q. Effect of Re on deformation and slip systems of a Ni base single-crystal superalloy [J]. Materials Science and Engineering:A, 2007,458:39-43.
    [119]田素贵,杜洪强,王春涛,孟凡来,水丽,胡壮麒.W含量对单晶镍基合金组织与性能的影响[J].航空材料学报,2006,26:16-19.
    [120]Murakami H, Yamagata T, Harada H, Yamazaki M. The influence of Co on creep deformation anisotropy in Ni-base single crystal superalloys at intermediate temperatures [J]. Materials Science and Engineering:A,1997,223:54-58.
    [121]Wang W Z, Jin T, Liu J L, Sun X F, Guan H R, Hu Z Q. Role of Re and Co on microstructures and γ'coarsening in single crystal superalloys [J]. Materials Science and Engineering:A,2008,479:148-156.
    [122]Shui L, Tian S G, Jin T, Hu Z Q. Influence of pre-compression on microstructure and creep characteristic of a single crystal nickel-base superalloy [J]. Materials Science and Engineering:A,2006,418:229-235.
    [123]Mughrabi H, Ott M, Tetzlaff U. New microstructural concepts to optimize the high temperature strength of y'-hardened monocrystalline nickel-based superalloys [J]. Materials Science and Engineering:A,1997,234-236:434-437.
    [124]Henderson P, Berglin L, Jansson C. On rafting in a single crystal nickel-base superalloy after high and low temperature creep [J]. Scripta Materialia,1999,40:229-234.
    [125]Yu X F, Tian S G, Du H Q, Yu H C, Wang M G, Shang L J, Cui S S. Microstructure evolution of a pre-compression nickel-base single crystal superalloy during tensile creep [J]. Materials Science and Engineering:A,2009,506:80-86.
    [126]Shui L, Jin T, Tian S G, Hu Z Q. Influence of precipitate morphology on tensile creep of a single crystal nickel-base superalloy [J]. Materials Science and Engineering:A,2007, 454-455:461-466.
    [127]水丽,田素贵,金涛,胡壮麒.预压缩单晶镍基合金的组织结构及在拉伸蠕变期间的粗化特征[J].稀有金属材料与工程,2006,35:1182-1186.
    [128]Sass V, Feller-Kniepmeier M. Orientation dependence of dislocation strctures and deformation mechanisms in creep deformed CMSX-4 single crystals [J]. Materials Science and Engineering:A,1998,245:19-28.
    [129]沙玉辉,张静华,徐涛波,胡壮麒.镍基单晶高温合金定向粗化行为的取向依赖性Ⅰγ'形态的SEM观察[J].金属学报,2000,36:254-257.
    [130]沙玉辉.镍基单晶高温合金高温变形、定向粗化及疲劳裂纹扩展行为的研究[D].中国科学院金属研究所博士学位论文,1999.
    [131]Liu J L, Jin T, Sun X F, Zhang J H, Guan H R and Hu Z Q. Anisotropy of stress rupture properties of a Ni base single crystal superalloy at two temperatures [J]. Materials Science and Engineering:A,2008,479:277-284.
    [132]Veron M, Brechet Y, Louchet F. Strain induced directional coarsening in Ni based superalloys [J]. Scripta Materialia,1996,34:1883-1886.
    [133]Veron M, Bastie P. Strain induced directional coarsening in nickel based superalloys; Investigation on kinetics using the small angle neutron scattering (SANS) technique [J]. Acta Materialia,1997,45:3277-3282.
    [134]Tinga T, Brekelmans W A M, Geers M G D. Directional coarsening in nickel-base superalloys and its effect on the mechanical properties [J]. Computional Materials Science, 2009,47:471-481.
    [135]Zhou N, Shen C, Mills M J, Wang Y. Contributions from elastic inhomogeneity and from plasticity to γ'rafting in single crystal Ni-Al [J]. Acta Materialia,2008,56:6156-6173.
    [136]Fahrmann M and Kissinger R D, Superalloys 1996 [M]. Pennsylvania:Warrrendale,1996, p191-199.
    [137]Carry C, Strudel J L. Apparent and effective creep parameters in single crystals of a nickel base superalloy-Ⅱ secondary creep [J]. Acta Metallurgica,1978,26:859-870.
    [138]Matan N, Cox D C, Carter P, Rist M A, Rae C M F, Reed R C. Creep of CMSX-4 superalloy single crystals:effects of misorientation and temperature [J]. Acta Materialia, 1999,47:1549-1563.
    [139]Matan N, Cox D C, Rae C M F, Reed R C. On the kinetics of rafting in CMSX-4 superalloy single crystals [J]. Acta Materialia,1999,47:2031-2045.
    [140]Tanaka K, Ichitsubo T, Kishida K, Inui H, Matsubara E. Elastic instability condition of the raft structure during creep deformation in nickel-base superalloys [J]. Acta Materialia, 2008,56:3786-3790.
    [141]岳珠峰,吕震宙,郑长卿,镍基单晶高温合金的蠕变损伤规律研究[J].金属学报,1995,31:A370-A375.
    [142]田素贵,杨洪才,周惠华,张静华,徐永波,胡壮麒.一种单晶镍基合金高温蠕变相关参数的试验研究[J].东北大学学报(自然科学版),1998,19:146-148.
    [143]胡南昌.单晶镍基高温合金蠕变行为的预测[D].沈阳工业大学硕士学位论文,2006.
    [144]Rae C M F, Reed R C. Primary creep in single crystal superalloys:Origins, mechanisms and effects [J]. Acta Materialia,2007,55:1067-1081.
    [145]Diologent F, Caron P. On the creep behavior at 1033 K of new generation single crystal superalloys [J]. Materials Science and Engineering:A,2004,385:245-257.
    [146]Safari J, Nategh S. Microstructure evolution and its influence on deformation mechanisms during high temperature creep of a nickel base superalloy [J]. Materials Science and Engineering:A,2009,499:445-453.
    [147]Lin T L, Wen M. Dislocation structure due to high temperature deformation in γ'phase of a nickel-base superalloy [J]. Acta Metallurgica,1989,37:3099-3105.
    [148]夏丹,田素贵,李唐,钱本江.一种镍基单晶合金的组织演化与蠕变行为[J].材料与冶金学报,2008,3:196-205.
    [149]水丽,郑鹏.一种镍基单晶合金的拉伸蠕变特征[J].沈阳理工大学学报,2009,28:21-23+31.
    [150]田素贵,杨洪才,张静华,徐永波,胡壮麒.单晶镍基合金高温蠕变期间的组织结构及演化[J].材料工程,1998,8:3-6.
    [151]Lin T L, Mao W. The deformation mechanism of a γ'precipitation-hardened nickel-base superalloy [J]. Materials Science and Engineering:A,1990,128:23-31.
    [152]任英磊.一种镍基单晶高温合金的组织演化及高温力学性能[D].中国科学院金属研究所博士学位论文,2002.
    [153]田素贵,张静华,杨洪才,徐永波,胡壮麒.单晶镍基合金拉伸蠕变期间γ'相定向粗化的特征及影响因素[J].航空材料学报,2000,20:1-7.
    [154]田素贵,周惠华,张静华,杨洪才,徐永波,胡壮麒.一种单晶镍基合金蠕变期间γ'相的定向粗化机制[J].金属学报,1998,34:591-596.
    [155]Tian S G, Zhang J H, Zhou H H. Aspects of primary creep of a single crystal nickel-base superalloy [J]. Materials Science and Engineering:A,1999,262:271-276.
    [156]Zhang J X, Murakumo T, Kobayashi T, Harada H. Slip geometry of dislocations related to cutting of the γ'phase in a new generation single-crystal superalloy [J]. Acta Materialia, 2003,51:5073-5081.
    [157]Okazaki M, Sakaguchi M. Thermo-mechanical fatigue failure of a single crystal Ni-based superalloy [J]. International Journal of Fatigue,2008,30:318-323.
    [158]Meissonnier F T, Busso E P, O'Doed. Finite elemnt implementation of a generalized nono-local rate-dependent crystallographic formulation for finite strains [J]. International Journal of Plasticity,2001,17:601-640.
    [159]Harris K, Erickson G L, Schwer R E. in Superalloy 1992, Edited by Kissinger R D et al. TMS [M]. Warrendale, Pennsylvania,1992.
    [160]Nathal M V. Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys [J]. Metallurgical Transactions A,1987, 18:1961-1970.
    [161]Murakumo T, Kobayashi T, Koizumi Y and Harada H. Creep behavior of Ni-base single-crystal superalloys with various γ'volume fraction [J]. Acta Materialia,2004,52: 3737-3744.
    [162]Kakehi K. Effect of primary and secondary precipitates on creep strength of Ni-base superalloy single crystals [J]. Materials Science and Engineering:A,2000,278:135-141.
    [163]刘金来,金涛,张静华,胡壮麒.一种镍基单晶高温合金高温持久性能的各向异性[J].金属学报,2001,37:1233-1237.
    [164]Zhang J X, Murakumo T, Harada H, Koizumi Y. Dependence of creep strength on interfacial dislocations in a fourth generation SC superalloy TMS-138 [J]. Scripta Materialia,2003,48:287-293.
    [165]Zhang J X, Wang J C, Harada H, Koizumi Y. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep [J]. Acta Materialia,2005, 53:4623-4633.
    [166]Pollock T M, Argon A S. Creep resistance of CMSX-3 Nickel base superalloy single crystals [J]. Acta Metallurgica et Materialia,1992,40:1-30.
    [167]Mukherji D, Jiao F, Chen W, Wahi R P. Stacking fault formation in γ'phase during monotonic deformation of IN738LC at elevated temperatures [J]. Acta Metallurgica et Materialia,1991,39:1515-1524.
    [168]Rouault-Rogez H, Dupenux M, Ignat M. High temperature tensile creep of CMSX-2 Nickel base superalloy single crystals [J]. Acta Metallurgica et Materialia,1994,42: 3137-3148.
    [169]Reed R C, Matan N, Cox D C, Rist M A, Rae C M F. Creep of CMSX-4 superalloy single crystals:effects of rafting at high temperature [J]. Acta Materialia,1999,47:3367-3381.
    [170]Feller-Kniepmeier M, Kuttner T. [011] creep in a single crystal nickel base superalloy at 1033K [J]. Acta Metallurgica et Materialia,1994,42:3167-3174.
    [171]Lukas P, Cadek J, Sustek V, Kunz L. Creep of CMSX-4 single crystals of different orientations in tensile and compression [J]. Materials Science and Engineering:A,1996, 208:149-157.
    [172]Kuttner T, Feller-Kniepmeier M. Microstructure of a nickel-base superalloy after creep in [011] orientation at 1173K [J]. Materials Science and Engineering:A,1994,188:147-152.
    [173]水丽,杨彦红,于金江.[110]取向镍基单晶合金在蠕变过程中的组织演变[J].机械工程材料,2009,33:6-9.
    [174]岳珠峰,吕震宙.复合应力状态下镍基单晶合金蠕变损伤规律研究[J].机械工程材料,1997,21:13-15.
    [175]Courbon J, Ignat M, Louchet F. Compression creep of<110> oriented single crystals of nickel-base superalloy CMSX-2 [J]. Acta Metallurgica et Materialia,1990,38:663-670.
    [176]Sass V, Glatzel U, Feller-Kniepmeier M. Anisotropic creep properties of the nickel-base superalloy CMSX-4 [J]. Acta Materialia,1996,44:1967-1977.
    [177]Stevens R A, Flewitt P E J. The effects of γ'precipitate coarsening during isothermal aging and creep of the nickel-base superalloy IN-738 [J]. Materials Science and Engineering,1979,37:237-247.
    [178]Sullivan C P, Rowe G M. Dislocation structure of a high-temperature nickel-base alloy fatigued at several temperatures [J]. Materials Science and Engineering,1967,2:169-171.
    [179]Webster G A, Sullivan C P. Some effects of temperature cycling on creep behaviour of a Nickel-base alloy [J]. Journal Institute of Metals,1967,95:138-142.
    [180]Henderson P J, McLean M. Microstructural contributions to friction stress and recovery kinetics during creep of the nickel-base superalloy IN 738 LC [J]. Acta Metallurgica et Materialia,1983,31:1203-1219.
    [181]Pearson D D, Kear B H, Lemkey F D. In Creep and Fracture of Engineering Materials and Structure (edited by Wilshire B and Owen D R) [M]. Pineridge Press, Swansea, UK, 1983.
    [182]Pearson D D, Lemkey F D, Kear B H. Superalloys 1980 [J]. The Minerals, Metal & Materials Society,1980,15:513-520.
    [183]Nathal M V, Ebert L J. Elevated temperature creep-rupture behavior of the single crystal nickel-base superalloy NASAIR 100 [J]. Metallurgical and Materials Transactions A, 1985,16:427-439.
    [184]Veron M, Brechet Y, Louchet F. Superalloys 1996 [M]. Edited by Kissinger R D et al, the Minerals, Metals & Materials Society,1996.
    [185]Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B, Hu Z Q. Formation and role of dislocation networks during high temperature creep of a single crystal nickel-base superalloy [J]. Materials Science and Engineering:A,2000,279:160-165.
    [186]Parrinello M, Rahman A. Polyrnorphic transitions in single crystals:A new molecular dynamics method [J]. Journal of Applied Physics,1981,52:7182-7190.
    [187]Alder B J, Wainwright T E. Studies in molecular dynamics. Ⅰ. General method [J]. Journal of Chemical Physics,1959,31:459-466.
    [188]Alder B J, Wainwright T E. Studies in molecular dynamics. Ⅱ. Behavior of a small number of elastic spheres [J]. Journal of Chemical Physics,1960,33:1439-1451.
    [189]Hoover W G. Molecular Dynamics, Lecture Notes in Physics Volume 258 [M]. Springer-Verlag, Berlin,1986.
    [190]Sankey O F, Niklewski D J. Ab initio multicenter tight-binding model for molecular dynamics simulations and other applications in covalent systems [J]. Physical Review B, 1989,40:3979-3995.
    [191]Schonfelder B, Wolf D, Phillpot S R, Furtkamp M. Molecular-dynamics method for the simulation of grain-boundary migration [J]. Interface Science,1997,5:245-262.
    [192]Doyama M, Kogure Y. Embedded atom potentials in fcc and bcc metals [J]. Computational Materials Science,1999,14:80-83.
    [193]Daw M S, Foiles S M, Baskes M I. The embedded atom method:a review of theory and applications [J]. Materials Science Reports,1993,9:251-310.
    [194]文玉华,朱如曾,周富信,王崇愚.分子动力学模拟的主要技术[J].力学进展,2003,33:65-73.
    [195]Ackland G J, Vitek V. Many-body potentials and atom-scale relaxations in noble-metal alloys [J]. Physical Review B,1990,41:10324-10333.
    [196]Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for thefcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys [J]. Physical Review B,1986,33:7983-7991.
    [197]Daw M S, Baskes M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals [J]. Physical Review Letters,1983,50:1285-1288.
    [198]Daw M S, Baskes M I. Embedded atom method:derivation and application to impurities, surfaces, and other defects in metals [J]. Physical Review B,1984,29:6443-6453.
    [199]杨顺华,丁棣华.晶体位错理论基础(第二卷)[M].科学出版社:北京,1998.
    [200]朱弢.单晶镍基高温合金界面结构与掺杂效应的研究[D].钢铁研究总院博士学位论文,2006.
    [201]Voter A F, Chen S P. In High Temperature Ordered Intermetallic Alloys [M]. MRS Symposia Proceedings, Siegel R.W., et al., Ed., Pittsburgh,1987.
    [202]Angelo J E, Moody N R, Baskes M I. Trapping of hydrogen to lattice defects in nickel [J]. Modelling and Simulation in Materials Science and Engineering,1995,3:289-307.
    [203]Angelo J E, Baskes M I. Interfacial studies using the EAM and MEAM [J]. Interface Science,1996,4:47-63.
    [204]http://xmd.sourceforge.net/
    [205]Feller-Kniepmeier M, Link T, Poschmann I, Scheunemann-Frerker G, Schulze C. Temperature dependence of deformation mechanisms in a single crystal nickel-base alloy with high volume fraction of γ'phase [J]. Acta Materialia,1996,44:2397-2407.
    [206]Epishin A, Link T. Mechanisms of high-temperature creep of nickel-based superalloys under low applied stresses [J]. Philosophical Magazine,2004,84:1979-2000.
    [207]He L Z, Zheng Q, Sun X F, Guan H R, Hu Z Q, Tieu A K, Lu C, Zhu H T. High-temperature creep deformation behavior of the Ni-base superalloy M963 [M]. Metallurgical and Materials Transactions A,2005,36:2385-2391.
    [208]Louchet F, Hazotte A. A model for low stress cross-diffusional creep and directional coarsening of superalloys [J]. Scripta Materialia,1997,37:589-597.
    [209]沙玉辉,左良,张静华,徐永波,胡壮麒.一种镍基单晶高温合金压缩蠕变强度的各向异性[J].金属学报,2001,37:1142-1146.
    [210]Xia P C, Yu J J, Sun X F, Guan H R, Hu Z Q. Influence of γ'precipitate morphology on the creep property of a directionally solidified nickel-base superalloy [J]. Materials Science and Engineering:A,2008,476:39-45.
    [211]Albert D E, Gray Ⅲ G T. Mechanical and microstructural response of Ti-24Al-11Nb as a function of temperature and strain rate [J]. Acta Materialia,1997,45:343-356.
    [212]Nazmy M, Kunzler A, Denk J, Baumann R. The effect of strain rate on the room temperature tensile properties of single crystal superalloys [J]. Scripta Materialia,2002, 47:521-525.
    [213]Wang Y, Shao W Z, Zhen L, Yang C, Zhang X M. Tensile deformation behavior of superalloy 718 at elevated temperatures [J]. Journal of Alloys and Compounds,2009,471: 331-335.
    [214]Zhang X, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Effect of strain rate on the tensile behavior of a single crystal nickel-base superalloy [J]. Materials Science and Engineering:A,2008,492:364-369.
    [215]Ro Y, Koizumi Y, Harada H. High temperature tensile properties of a series of nickel-base superalloys on a γ/γ'tie line [J]. Materials Science and Engineering:A,1997,223:59-63.
    [216]Sun J, Lee C S, Hu G X. The dependence of tensile behavior of LI2 compound Al67Ti25 Mn8 on the strain rate at 1173 K [J]. Scripta Materialia,1997,37:645-650.
    [217]Wahi P, Auerswald J, Mukherji D, Dudkat A, Fechtf H J, Chent W. Damage mechanisms of single and polycrystalline nickel base superalloys SC16 and IN738LC under high temperature LCF loading [J]. International Journal of Fatigue,1997,19:S89-S94.
    [218]Jiao F, Bettge D, Oesterle W, Ziebs J. Tension-compression asymmetry of the (001) single crystal nickel base superalloy SC16 under cyclic loading at elevated temperatures [J]. Acta Materialia,1996,44:3933-3942.
    [219]Sastry D H, Prasad Y V R K, Deevi S C. Influence of temperature and strain rate on the flow stress of an FeAl alloy [J]. Materials Science and Engineering:A,2001,299: 157-163.
    [220]Zhang J M, Gao Z Y, Zhuang J Y, Zhong Z Y, Janschek P. Strain-rate hardening behavior of superalloy IN718 [J]. Journal of Materials Processing Technology,1997,70:252-257.
    [221]Sajjadi S A, Nategh S, Isac M, Zebarjad S M. Tensile deformation mechanisms at different temperatures in the Ni-base superalloy GTD-111 [J]. Journal of Materials Processing Technology,2004,155-156:1900-1904.
    [222]Clemens H, Glatz W, Appel F. Tensile properties and strain rate sensitivity of Ti-47Al-2Cr-0.2Si sheet material with different microstructures [J]. Scripta Materialia, 1996,35:429-434.
    [223]Voyiadjis G Z, Abed F H. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency [J]. Mechanics of Materials,2005,37:355-378.
    [224]Kikuchi S, Ando S, Futami S, Kitamura T, Koiwa M. Superplastic deformation and microstructure evolution in PM IN-100 superalloy [M]. Journal of Materials Science, 1990,25:4712-4716.
    [225]Maloy S A, Gray Ⅲ T G. High strain rate deformation of Ti-48Al-2Nb-2Cr [J]. Acta Materialia,1996,44:1741-1756.
    [226]Nag K A, Praveen K V U, Singh V. Effect of heat treament on tensile behavior of Ti-6Al-5Zr-0.5Mo-0.25Si alloy [J]. Bulletin of Materials Science,2006,29:147-154.
    [227]Vaidya R U, Jin Z. A comparative study of the strain rate and temperature dependent compression behavior of Ti-46.5Al-3Nb-2Cr-0.2W and Ti-25Al-10Nb-3V-1Mo intermetallic alloys [J]. Scripta Materialia,1999,41:569-574.
    [228]Moshtaghin S R, Asgari S. The influence of thermal exposure on the y precipitates characteristics and tensile behavior of superalloy IN-738LC [J]. Journal of Materials Processing Technology,2004,147:343-350.
    [229]Shankar V, Valsan M, Bhanu K, Rao S, Mannan S L. Effect of temperature and strain rate on tensile properties and activation energy for dynamic strain aging in alloy 625 [J]. Metallurgical and Materials Transactions A,2004,35:3129-3139.
    [230]Roy A K, Pal J, Mukhopadhyay C. Dynamic strain ageing of an austenitic superalloy— Temperature and strain rate effects [J]. Materials Science and Engineering:A,2008,474: 363-370.
    [231]Roy A K, Venkatesh A, Marthandam V, Ghosh A. Tensile deformation of a nickel-base alloy at elevated temperatures [J]. Journal of Materials Engineering and Performance, 2008,17:607-611.
    [232]Lian Z W, Yu J J, Sun X F, Guan H R, Hu Z Q. Temperature dependence of tensile behavior of Ni-based superalloy M951 [J]. Materials Science and Engineering A,2008, 489:227-233.
    [233]Miyazaki T, Nakamura K, Mori H. Experimental and theoretical investigations on morphological changes of γ'precipitates in Ni-Al single crystals during uniaxial stress-annealing [J]. Journal of Materials Science,1979,14:1827-1837.
    [234]Schmidt I, Gross D. The equilibrium shape of an elastically inhomogeneous inclusion [J]. Journal of the Mechanics and Physics of Solids,1997,45:1521-1549.
    [235]Mueller R, Gross D.3D inhomogeneous, misfitting second phase particles-equilibrium shapes and morphological development [J]. Computational Materials Science,1999,16: 53-60.
    [236]Pineau A. Influence of uniaxial stress on the morphology of coherent precipitates during coarsening-elastic energy considerations [J]. Acta Metallurgica,1976,24:559-564.
    [237]Chang J C, Allen S M. Elastic energy changes accompanying the gamma-prime rafting in nickel-base superalloys [J]. Journal of Materials Research,1991,6:1843-1855.
    [238]Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems [J]. Proceedings of the Royal Society A,1957,241:376-396.
    [239]Eshelby J D. The elastic field outside an ellipsoidal inclusion [J]. Proceedings of the Royal Society A,1957,252:561-569.
    [240]Eshelby J D. Elastic inclusions and inhomogeneities [J]. Progress in Solid Mechanics, 1961,2:89-140.
    [241]Johnson W C, Berkenpas M B, Laughlin D E. Precipitate shape transitions during coarsening under uniaxial stress [J]. Acta Metallurgica,1988,36:3149-3162.
    [242]Tien J K, Gamble P R. The influence of applied stress and stress sense on grain boundary precipitate morphology in a Nickel-base superalloy during creep [J]. Metallurgical and Materials Transactions B,1971,2:1663-1667.
    [243]Tien J K, Gamble P R. Effects of stress coarsening on coherent particle strengthening [J]. Metallurgical and Materials Transactions B,1972,3:2157-2162.
    [244]Sakaguchi M, Okazaki M. Micromechanics of the damage induced cellular microstructure in single crystal Ni-based superalloys [J]. Acta Metallurgica Sinica (English Letters), 2004,17:361-368.
    [245]Dupeux M, Henriet J, Ignat M. Tensile stress relaxation behavior of Ni-based superalloy single crystals between 937 and 1273 K [J]. Acta Metallurgica,1987,35:2203-2212.
    [246]Wakashima K, Tsukamoto H. Mean-field micromechanics model and its application to the analysis of thermomechanical behavior of composite materials [J]. Materials Science and Engineering A,1991,146:291-316.
    [247]Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions [J]. Acta Metallurgica,1973,21:571-574.
    [248]Gross D, Seelig T H. Fracture Mechanics with an Introduction to Micromechanics [M]. Berlin Heidelberg:Springer,2006.
    [249]Brown L M. Back stress, image stress and work hardening [J]. Acta Metallurgica,1973, 21:879-885.
    [250]Mura T. Micromechanics of defects in solids.2nd revised ed [M]. The Hague:Martinus Nijhoff Publisher,1987.
    [251]杜善义,王彪.复合材料细观力学[M].科学出版社:北京,1998.
    [252]杨庆生.复合材料细观结构力学与设计[M].中国铁道出版社:北京,2000.
    [253]Zhao Y H, Tandon G P, Weng G J. Elastic moduli for a class of porous materials [J]. Acta Mechanica,1989,76:105-130.
    [254]Martin D E. American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section Ⅲ [J]. Journal of Basic Engineering,1961,83:565-571.
    [255]Ichitsubo T, Tanaka K. Interpretation in elastic regime for rafting of Ni-base superalloy based on the external-stress-free dimensional change due to internal-stress equilibration [J]. Acta Materialia,2005,53:4497-4504.
    [256]朱玉萍.形状记忆合金材料的细观力学模型若干问题研究[D].北京交通大学博士学位论文,2008.
    [257]Zhou L, Li S X, Chen C R, Wang Y C, Zang Q S, Lu K. Three-dimensional finite element analysis of stress and energy density distributions around γ'before coarsening loading in the [110]-direction in Ni-based superalloy [J]. Materials Science and Engineering:A,2003, 352:300-307.
    [258]Glatzel U, Feller-Kniepmeier M. Calculations of internal stresses in the γ/γ' microstructure of a nickel-base superalloy with high volume fraction of γ'phase [J]. Scripta Metallurgica,1989,23:1839-1844.
    [259]工程材料实用手册.第二卷,变形高温合金、铸造高温合金[M].中国标准出版社:北京,2002.
    [260]Chen C R, Li S X. Distribution of stress and elastic strain energy in an ideal multicrystal model [J]. Materials Science and Engineering:A,1998,257:312-321.
    [261]万建松.基于有限变形晶体滑移理论的单晶力学行为及应用研究[D].西北工业大学博士学位论文,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700