用户名: 密码: 验证码:
(TiB+TiC)/Ti复合材料高温变形行为及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原位自生钛基复合材料具有低密度、高比强度和比模量、优异的疲劳和蠕变性能,有望在航空航天、先进武器系统及汽车制造等领域获得广泛应用。然而,钛基复合材料室温塑性差,高温变形抗力大,限制了其大规模的工程化应用。本文采用真空感应熔炼技术制备了不同(TiC+TiB)含量的钛基复合材料,基体合金成分为Ti-6Al-2.5Sn-4Zr-0.7Mo-0.3Si。研究了增强相含量对铸态复合材料显微组织和力学性能的影响;阐明了(TiB+TiC)/Ti复合材料的热压缩变形行为及组织演变规律;探讨了热加工过程中的组织性能对应关系;开展了钛基复合材料板材的超塑性研究并揭示了其超塑性变形机理和失效机制。
     凝固析出的TiB和TiC相易于偏聚于原始β晶界处,TiB相主要呈晶须状,而TiC则为近等轴状,二者均与基体界面结合良好。TiB和TiC的引入细化了原始β晶粒和α片层,改变了α相的集束特征,并且使得α片层的取向更加随机。β晶粒的细化机制为C与B在先析出的β-Ti界面前沿富集引起成分过冷及抑制已析出的β-Ti生长。β晶粒的细化增多了β晶界,α相的形核位置增加,并且生长空间缩小,二者导致α片层发生细化。
     TiB和TiC的存在显著提高了铸态(TiB+TiC)/Ti复合材料的室温及高温强度。室温下,相比于基体合金,增强相体积分数分别为2.5%、5%、7.5%的复合材料的屈服强度分别提高了16.2%、20.2%、28.3%。室温屈服强度的提高主要是因为基体组织的细化。高温下,随测试温度升高,复合材料相对于基体合金的抗拉强度增幅呈先增加后降低趋势,在650℃时达到峰值。650℃以下复合材料强度提高主要归因于组织细化,增强相承载强化以及C的固溶强化,而700℃以上的原因是增强相承载强化和C的固溶强化。
     采用热物理模拟方法,研究了5vol.%(TiB+TiC)/Ti复合材料的热压缩变形行为,揭示了流变应力与变形温度和应变速率之间的关系,峰值应力和流变应力均随温度的升高和应变速率的减小而降低,且峰值应力σp与(1000/T)、ln之间都满足线性关系。该复合材料的热变形激活能为608.3kJ·mol-1,硬化因子为4.27,建立了该复合材料(α+β)相区热变形本构方程,为后续热变形参数的选择和设备吨位的确定提供了指导。
     阐明了5vol.%(TiB+TiC)/Ti复合材料热压缩过程中的组织演变规律和软化机制。该复合材料的变形组织是相变、动态回复和动态再结晶综合作用的结果,高温低应变速率有助于增强相与基体间的协调变形,且有利于动态再结晶过程的进行。(α+β)相区变形的软化机制主要是α相的动态再结晶,β相含量的提高有助于流变应力和热变形激活能的降低。TiB及TiC对基体热变形行为的影响依赖于α和β两相比例的变化。
     通过高温锻造及后续多道次轧制工艺,成功制备出高质量的TiB/Ti及(TiB+TiC)/Ti复合材料板材,最大尺寸可达2000mm×300mm×2mm。阐明了增强相含量、热加工温度、轧制变形量对钛基复合材料显微组织的影响规律,TiB及TiC增强相促进了(α+β)相区变形时α相的动态再结晶;提高轧制变形温度可明显减少增强相的折断比例;(α+β)相区轧制得到双态组织,β相区轧制得到片层组织;随轧制变形量的提高,增强相分布均匀性明显提高,基体组织得到了显著细化。
     多道次轧制的钛基复合材料板材具有优异的综合性能。对于7.5vol.%TiB/Ti复合材料板材,室温抗拉强度可达1342.4MPa,延伸率达5.73%,600℃时抗拉强度高达849.7MPa;对于β相区轧制的5vol.%(TiB+TiC)/Ti复合材料板材,室温抗拉强度达1298.6MPa、延伸率为4.94%;650℃下,抗拉强度仍可达660.5MPa。到700℃,各加工态复合材料强度差别不大。
     热变形引起的晶粒细化、位错增殖,增强相分布均匀性提高,有效地改善了钛基复合材料的强度和塑性。细晶强化效果随温度的升高而逐渐减弱,650℃及以上温度,细晶强化不再起作用;在界面结合良好的前提下,增强相的承载能力随温度的升高而逐渐提高,在700℃及以上温度,增强相与基体的脱粘降低了增强相的承载能力。
     研究了细晶5vol%(TiB+TiC)/Ti复合材料板材在900℃-1050℃,5×10~(-3)s~(-1)-10~(-4)s~(-1)条件下的超塑性变形行为及失效机制。发现该复合材料板材在1000℃、10~(-3)s~(-1)变形条件下获得最佳超塑性延伸率达328.8%;通过组织观察及超塑性变形激活能计算分析,超塑性变形机制主要是位错运动和动态再结晶共同协调的晶界滑动,高温低应变速率下,增强相与基体协调变形能力的提高有利于超塑性变形。对超塑性变形试样断裂前沿进行了组织观察,发现空洞主要形核于增强相与基体界面处、α晶/相界及三叉晶界处,空洞和空洞链的横向连接造成了复合材料的失效。
In situ synthesized titanium matrix composites have potential applicationprospects in aerospace, advanced weapons systems and automotive manufacture dueto their low density, high specific strength and modulus, excellent fatigue and creepproperties. However, poor room-temperature ductility and high high-temperaturedeformation resistance of titanium matrix composites limit their large-scaleengineering applications. In this paper, titanium matrix composites reinforced withdifferent volume fractions of (TiC+TiB) were prepared by vacuum induction meltingtechnology. Matrix nominal composition is Ti-6Al-2.5Sn-4Zr-0.7Mo-0.3Si. Theinfluence of reinforcement content on microstructures and mechanical properties ofas-cast composites was investigated. Hot compressive deformation behavior andmicrostructure evolution of (TiB+TiC)/Ti composites were studied. Thecorresponding relationship between microstructure and properties during thermalprocessing was discussed. In addition, superplasticity of titanium matrix compositesheets was researched and superplastic deformation and failure mechanisms wereanalyzed.
     Solidified TiB and TiC are prone to be segregated in primary β grain. TiBmainly exhibits whisker morphology, where as TiC shows near-equiaxed shape. Theinterface between reinforcements and matrix is very clean. The presence of TiB andTiC refines primary β grain and α lath, changes the colony characteristic of α phaseand makes the orientation of α lath more random. The refinement mechanism of βgrain is attributed to constitutional supercooling resulted from solute enrichment ofB and C in the solid-liquid interface and its impeditive effect on the growth ofprecipitated β grain. The refinement of prior β grain results in more grain boundariesacting as heterogeneous nucleation sites and narrower growth space for α phase,which leads to the refinement of α phase together.
     The introduction of TiB and TiC significantly improves the ambient and hightemperature strengths of as-cast (TiB+TiC)/Ti composites. Compared with matrixalloy, the yield strengths of composites with (TiB+TiC) volume fraction of2.5%,5%and7.5%increase by16.2%,20.2%and28.3%, respectively. The enhancementof room-temperature yield strength is mainly attributed to the refinement of matrixmicrostructure. Composites show advantages in strength below750℃compared tomatrix alloy and the strengths of composites increase with the increase ofreinforcements. With the raise in tensile temperature, the increments of tensile strengths of composites increase first and then decrease and reach to their maximumvalue at650℃. This is because the refinement of matrix microstructure still canmakes obvious contribution on strengths of composites and load-bearing role ofreinforcements can be enhanced.
     Thermal physics simulation method was employed to research hot compressivedeformation behavior of5vol.%(TiB+TiC)/Ti composite. The relationship amongflow stress and deformation temperature as well as strain rate is revealed. The peakand flow stresses all decline with increasing temperature and decreasing strain rate.The variations of peak stress σpwith (1000/T) and ln all meet the linearrelationship. Hot deformation activation energy and hardening factor of thiscomposite are608.3kJ·mol-1and4.27. In addition, constitutive equation of thiscomposite hot-deformed in α+β phase field is established. These can guide theselection of thermal deformation parameters and equipment tonnage.
     Microstructure evolution and softening mechanism of5vol.%(TiB+TiC)/Ticomposite during thermal compressive process were clarified. The formation ofdeformation microstructures results from the comprehensive role of phasetransformation, dynamic recovery and recrystallization. High temperature and lowstrain rate are conducive to the coordinated deformation between reinforcements andmatrix and dynamic recrystallization process. The softening mechanism of thecomposite deformed in α+β phase field is mainly dynamic recrystallization. Theimprovement of β phase content is helpful for the decrease of flow stress and hotdeformation activation energy. The influence of TiB and TiC on thermal deformationbehavior of matrix mainly depends on the variation of the ratio of α and β phase.
     TiB/Ti and (TiB+TiC)/Ti composite sheets with high quality were producedsuccessfully through isothermal forging and subsequent multi-pass rolling process.The maximum size of sheet reaches to2000mm×300m×2mm. The influence ofreinforcement content, thermal processing temperature and rolling deformation onmicrostructures of titanium matrix composites were revealed. The results show thatthe presence of TiB and TiC promotes the dynamic recrystallization of α phase whenthe composites were deformed in α+β phase field. Improving rolling temperaturecan decrease the content of fractured reinforcements obviously. Bi-modalmicrostructure can be obtained as the composites were rolled in α+β phase field,whereas lamellar microstructure can be obtained as the composites were rolled in βphase field. In addition, with the increase in rolling deformation, the distribution ofreinforcements is more homogeneous and matrix microstructure can be refinedremarkably.
     Titanium matrix composite sheets with multi-pass rolling exhibit excellent comprehensive performance. Room-temperature tensile strength of7.5vol.%TiB/Ti composite sheet is up to1342.4MPa and its elongation can reach to5.73%.As tensile temperature is600℃, its tensile strength can be up to849.7MPa. For5vol.%(TiB+TiC)/Ti composite sheet rolled in β phase field, its tensile strength andelongation are1298.6MPa and4.94%, respectively, at room temperature. At650℃,its tensile strength can attain660.5MPa. It should be noted that when temperatureincreases to700℃, the discrepancy in tensile strength of the composite withdifferent processing state is small.
     The strength and ductility can be meliorated effectively due to grain refinement,dislocation multiplication and the enhanced uniform distribution of reinforcementscaused by thermal deformation. Fine grain strengthening effect gradually decreaseswith increasing temperature. As temperature is higher than650℃, its role is notpositive. The load-bearing effect of reinforcements is enhanced gradually withtemperature under the condition that interface bonding is well. This role is decreaseddue to interface decohesion between reinforcements and matrix as temperatureexceeds700℃.
     Superplastic deformation behavior and failure mechanism of5vol.%(TiB+TiC)/Ti composite sheet with fine grain in the temperature range of900℃to1050℃and in the strain rate range of5×10~(-3)s~(-1)to10~(-4)s~(-1)were investigated. It is foundthat optimal superplastic elongation of328.8%is obtained when the composite sheetwas tested at1000℃and strain rate of10~(-3)s~(-1). Superplastic deformation mechanismis mainly grain boundary sliding coordinated by dislocation motion and dynamicrecrystallization together through microstructural observation and calculation ofsuperplastic deformation activation. The enhancement of coordinated deformationcapacity between reinforcements and matrix is in favor of superplastic deformationunder the condition of high temperature and low strain rate. The microstructuresahead the failed superplastic deformation samples were observed. It is found thatvoids mainly nucleate at the interface between reinforcements and matrix, α/βinterface and trigeminal grain boundary. Cross coalescence of adjacent voids leadsto the failure of the composite sheet.
引文
[1]付艳艳,宋月清,惠松骁,米绪军.航空用钛合金的研究与应用进展[J].稀有金属,2006,30(6):850-856.
    [2]钱九红.航空航天用新型钛合金的研究发展及应用[J].稀有金属,2000,24(3):218-223.
    [3] Tjong S C, Mai Y W. Processing-structure-property aspects of particulate-andwhisker-reinforced titanium matrix composites[J]. Composites Science andTechnology,2008,68(3-4):583-601.
    [4] Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situmetal matrix composites[J]. Materials Science and Engineering R,2000,29(3-4):49-113.
    [5] Morsi K, Patel V V. Processing and Properties of Titanium-titaniumBoride(TiBw) Matrix Composites-A Review[J]. Journal of Materials Science,2007,42:2037-2047.
    [6]肖代红,黄伯云.原位合成钛基复合材料的最新进展[J].粉末冶金技术,2008,26(3):217-223.
    [7] Kim Y W. Ordered intermetallic alloys, part III: Gamma titaniumaluminides[J]. Journal of the Minerals Metals&Materials Society.1994,46(7):30-39.
    [8] Vaccari J A. The challenges of orient express[J]. American Machinist,1990,134(1):55.
    [9] Chesnutt J C, William C. Titanium aluminides for advanced aircraft engines[J].Defence and Aeropsace,1990,(8):509.
    [10] Boyer R R. R&D and applications developments in the titanium industry inthe USA[J]. Titanium'95: Science and technology,1995:41-50.
    [11] Abkowitz S, Abkowitz S M, Fisher H. CermeTi (R) discontinuously reinforcedTi-matrix composites: Manufacturing, properties, and applications[J]. Journalof the Minerals Metals&Materials Society,2004,56(5):37-41.
    [12]张廷杰.宇航空间中的金属基复合材料[J].稀有金属快报,2001,(08):20-21.
    [13] Saito T, Takamiya H, Furuta T. Thermomechanical properties of P/M titaniummetal matrix composite[J]. Materials Science and Engineering A,1998,243(1-2):273-278.
    [14] Kao W H, Chang D J. Development of SiC reinforced titanium corrugatedstructures[J]. Journal of Composites Technology and Research,1988,10(2):47-53.
    [15] Pank D R, Jackson D J. Metal-Matrix composite processing technologies foraircraft engine applications[J]. Journal of Materials Engineering andPerformance,1993,2(3):341-346.
    [16] Peng H X, Dunne F P E, Grant P S, Cantor B. Dynamic densification of metalmatrix-coated fibre composites: Modeling and Processing[J]. Acta Materialia,2005,53(3):617-628.
    [17]朱艳. SiC纤维增强Ti基复合材料界面反应研究[D].西安:西北工业大学博士学位论文,2003.
    [18] Geng L, Ni D R, Zhang J. Hybrid effect of TiBw and TiCp on tensileproperties of in situ titanium matrix composites[J]. Journal of Alloy andCompounds,2008,463(1-2):488-492.
    [19] Huang L J, Geng L, Li A B. In situ TiBw/Ti-6Al-4V composites with novelreinforcement architecture fabricated by reaction hot pressing[J]. ScriptaMaterialia,2009,60(11):996-999.
    [20] Qi J Q, Wang H W, Zou C M. Influence of matrix characteristics on tensileproperties of in situ synthesized TiC/TA15composite[J]. Materials Scienceand Engineering A,2012,553(0):59-66.
    [21] Chen Y, Wang H M. Growth morphologies and mechanism of TiC in the lasersurface alloyed coating on the substrate of TiAl intermetallics[J]. Journal ofAlloys and Compounds,2003,351(1-2):304-308.
    [22]张小农,张荻,吴人洁,卞玉君,方平伟,吕维洁.原位合成TiB/Ti基复合材料增强体的生长机制[J].金属学报,2000,(01):104-118.
    [23]吕维洁,张小农,张荻,吴人洁,卞玉群,方平伟.原位合成TiC/Ti基复合材料增强体的生长机制[J].金属学报,1999,(05):536-540.
    [24] Zhu J H, Liaw P K, Corum J M, McCoy H E. High-temperature mechanicalbehavior of Ti-6Al-4V alloy and TiCp/Ti-6Al-4V composite[J]. Metallurgicaland Materials Transactions A,1999,30(6):1569-1578.
    [25] Saito T. The automotive application of discontinuously reinforced TiB-Ticomposites[J]. Journal of the Minerals Metals&Materials Society,2004,56(5):33-36.
    [26]汶建宏,杨冠军,葛鹏. β钛合金的研究进展[J].钛工业进展,2008,(01):010.
    [27]蔡建明,李臻熙,马济民.航空发动机用600℃高温钛合金的研究与发展[J].材料导报,2005,(01):50-53.
    [28]许国栋,王凤娥.高温钛合金的发展和应用[J].稀有金属,2008,(06):774-780.
    [29] Rosenberg H W. Titanium alloying in theory and practice[C]. In the science,technology and application of titanium, New York,1970:851-859.
    [30] Srivatsan T S, Ibrahim I A, Mohamed F A. Processing techniques forparticulate reinforced metal aluminum matrix composites[J]. Journal ofMaterials Science,1991,26(22):5965-5978.
    [31] Ranganath S. A review on particulate-reinforced titanium matrixcomposites[J]. Journal of Materials Science,1997,32(1):1-16.
    [32] Wanjara P. Characterization of Ti-6%Al-4%V-TiC particulate reinforced metalmatrix composites consolidated by sintering and thermomechanicalprocessing[D]. Ph.D Thesis, McGill University,1999:10-11.
    [33] Lin Y, R. Zee H, Chin B A. In situ formation of three-dimensional TiCreinforcements in Ti-TiC composites[J]. Metallurgical and MaterialsTransactions A,1991,22(4):859-865.
    [34] Tsang H T, Chao C G, Ma C Y. In situ fracture observation of a TiC/Ti MMCproduced by combustion synthesis[J]. Scripta Materialia,1996,35(8):1007-1012.
    [35] Ranganath S, Vijayakumar M, Subrahmanyan J. Combustion-assistedsynthesis of Ti-TiB-TiC composite via the casting route[J]. Materials Scienceand Engineering A,1992,149(2):253-257.
    [36] Chen W, Boehlert C J, Payzant J, Howe J Y. The455℃tensile and fatiguebehavior of boron-modified Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt.%). InternationalJournal of Fatigue,2010,32(5):799-807.
    [37] Ivasishin O M, Teliovych R V, Ivanchenko V G. Processing, microstructure,texture, and tensile properties of the Ti-6Al-4V-1.55B eutectic alloy[J].Metallurgical Transactions a-Physical Metallurgy and Materials Science A,2008,39A(2):402-416.
    [38] Chandravanshi V K, Sarkar R, Ghosal P, et al. Effect of minor additions ofboron on microstructure and mechanical properties of as-cast near α titaniumalloy. Metallurgy and Materials Science A,2010,41(4):936-946.
    [39] Wang M M, Lu W J, Qin J N, Zhang D, Ji B, Zhu F. The effect ofreinforcements on superplasticity of in situ synthesized (TiB+TiC)/Ti matrixcomposite[J]. Scripta Materialia,2006,54(11):1955-1959.
    [40] Wang M M, Lu W J, Qin J N, Zhang D, Ji B, Zhu F. Superplastic behavior ofin situ synthesized (TiB+TiC)/Ti matrix composite[J]. Scripta Materialia,2005,53(2):265-270.
    [41] Xiao L, Lu W J, Qin J N. Steady state creep of in situ TiB plus La2O3reinforced high temperature titanium matrix composite[J]. Materials Scienceand Engineering A,2009,499(1-2):500-506.
    [42] Li Y G, Xiao L, Lu W J, Qin J N, Zhang D. Creep rupture property of in situsynthesized (TiB+La2O3)/Ti composite[J]. Materials Science and EngineeringA,2008,488(1-2):415-419.
    [43] Lu W J, Zhang D, Zhang X N, Wu R J, Sakata T, Mori H. Microstructure andtensile properties of in situ (TiB+TiC)/Ti6242(TiB:TiC=1:1) compositesprepared by common casting technique[J]. Materials Science and EngineeringA,2001,311(1-2):142-150.
    [44] Wang L Q, Lu W J, Qin J N. Microstructure and superelasticity of in situsynthesized (TiB+La2O3)/Ti-alloy composites with different mass fraction ofLaB6[J]. Materials Science and Engineering A,2010,527(4-5):1058-1062.
    [45] Yang Z F, Lu W J, Qin J N, Zhang D. Oxidation behavior of in situsynthesized (TiC+TiB+Nd2O3)/Ti composites[J]. Materials Science andEngineering A,2008,472(1-2):187-192.
    [46] Geng K, Lu W J, Zhang D. Microstructure and tensile properties of in situsynthesized (TiB+Y2O3)/Ti composites at elevated temperature[J]. MaterialsScience and Engineering A,2003,360(1-2):176-182.
    [47] Zhang Z G, Qin J N, Zhang Z W, Chen Y F, Lu W J, Zhang D. Microstructureeffect on mechanical properties of in situ synthesized titanium matrixcomposites reinforced with TiB and La2O3[J]. Materials Letters,2010,64(3):361-363.
    [48] Wang L, Niinomi M, Takahashi S, Hagiwara M, Emura S, Kawabei Y, Kim S J.Relationship between fracture toughness and microstructure ofTi-6Al-2Sn-4Zr-2Mo alloy reinforced with TiB particles[J]. Materials Scienceand Engineering A,1999,263(2):319-325.
    [49] Kobayashi M, Funami K, Suzuki S, Ouchi C. Manufacturing process andmechanical properties of fine TiB dispersed Ti-6Al-4V alloy compositesobtained by reaction sintering[J]. Materials Science and Engineering A,1998,243(1-2):279-284.
    [50] Gorsse S, Miracle D B. Mechanical properties of Ti-6Al-4V/TiB compositeswith randomly oriented and aligned TiB reinforcements[J]. Acta Materialia,2003,51(9):2427-2442.
    [51]倪丁瑞.反应热压(TiB+TiC)/Ti复合材料的制备及力学性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007.
    [52] Ma Z Y, Tjong S C, Gen L. In-situ Ti-TiB metal-matrix composite prepared bya reactive pressing process[J]. Scripta Materialia,2000,42(4):367-373.
    [53] Radhakrishna B V, Subramanyam J, Bhanu V V. Preparation of Ti-TiB-TiC&Ti-TiB composites by in-situ reaction hot pressing[J]. Materials Science andEngineering A,2002,325(1-2):126-130.
    [54] Boehlert C J, Tamirisakandala S, Curtin W A. Assessment of in situ TiBwhisker tensile strength and optimization of TiB-reinforced titanium alloydesign[J]. Scripta Materialia,2009,61(3):245-248.
    [55] Godfrey T M T, Wisbey A, Goodwin P S, Bagnall K, Ward C M.Microstructure and tensile properties of mechanically alloyed Ti-6Al-4V withboron additions[J]. Materials Science and Engineering A,2000,282(1-2):240-250.
    [56] Jia D C, Feng H B, Zhou Y. Influence factors of ball milling process on BEpowder for reaction sintering of TiB/Ti-4.0Fe-7.3Mo composite. Journal ofMaterials Processing Technology,2007,182(1-2):79-83.
    [57] Subrahmanyam J, Vijayakumar M. Self-propagating high-temperaturesynthesis. Journal of Materials Science,1992,27(23):6249-6273.
    [58] Yamamoto T, Otsuki A, Ishihara K, Shingu P H. Synthesis of near net shapehigh density TiB/Ti composite[J]. Materials Science and Engineering A,1997,239-240:647-651.
    [59]张小农,张荻,吴人洁,卞玉君,方平伟,吕维洁.原位合成TiC和TiB增强钛基复合材料[J].材料工程,1999,(08):9-11.
    [60]张二林,金云学,曾松岩,朱兆军,李东,康强.碳含量对自生TiC_P增强钛基复合材料组织的影响[J].材料工程,2000,(06):7-12.
    [61] Ochonogor O F, Meacock C, Abdulwahab M. Effects of Ti and TiC ceramicpowder on laser-cladded Ti6Al4V in situ intermetallic composite[J]. AppliedSurface Science,2012,263(0):591-596.
    [62] Feng H B, Zhou Y, Jia D C. Microstructure and mechanical properties of insitu TiB reinforced titanium matrix composites based on Ti-FeMo-B preparedby spark plasma sintering[J]. Composites Science and Technology,2004,64(16):2495-2500.
    [63] Rangarajan S, Aswath P B, Soboyejo W O. Microstructure development andfracture of in-situ reinforced Ti-8.5Al-1B-1Si[J]. Scripta Materialia,1996,35(2):239-245.
    [64] Dubey S, W. Soboyejo O, Srivatsan T S. Deformation and fracture propertiesof damage tolerant in-situ titanium matrix composites[J]. Applied CompositeMaterials,1997,4(6):361-374.
    [65] Liu H Z, Yao B, Wang L H. In situ formation of nanometer size TiCreinforcements in Ti matrix composites[J]. Materials Letters,1996,27(4-5):183-186.
    [66] Chung H, Kim Y J, Kang S J L. Processing and mechanical properties ofTi-6Al-4V/TiC in situ composite fabricated by gas-solid reaction[J]. MaterialsScience and Engineering A,2002,333(1-2):343-350.
    [67] Kim Y J, Chung H, Kang S J L. In situ formation of titanium carbide intitanium powder compacts by gas-solid reaction[J]. Composites Part A:Applied Science and Manufacturing,2001,32(5):731-738.
    [68] Panda K B, Chandran R K S. First principles determination of elasticconstants and chemical bonding of titanium boride (TiB) on the basis ofdensity functional theory[J]. Acta Materialia,2006,54(6):1641-1657.
    [69] Lu W J, Zhang D, Zhang X N, Wu R J, Sakata T k, Mori H. Microstructuralcharacterization of TiB in in situ synthesized titanium matrix compositesprepared by common casting technique[J]. Journal of Alloys and Compounds,2001,327(1-2):240-247.
    [70] Sen I, Tamirisakandala S, Miracle D B, Ramamurty U. Microstructural effectson the mechanical behavior of B-modified Ti-6Al-4V alloys[J]. ActaMaterialia,2007,55(15):4983-4993.
    [71] Zhang E L, Jin Y X, Wang H W. Microstructure and hardness of as-cast in situTiB short fibre reinforced Ti-6Al matrix composites[J]. Journal of MaterialsScience,2002,37(9):1861-1867.
    [72]张虎,高文理,张二林. Ti-Al-B合金空心管状初生TiB的生长机制[J].复合材料学报,2001,18(4):50-53.
    [73] Banerjee R, Genc A, Collins P C, Fraser H L. Comparison of microstructuralevolution in laser-deposited and arc-melted in-situ Ti-TiB composites[J].Metallurgical and Materials Transactions A,2004,35A(7):2143-2152.
    [74]金云学. TiCP/Ti复合材料TiC生长形态及其控制[D].哈尔滨:哈尔滨工业大学,2002.
    [75]山口正治,马越佑吉.金属间化合物[M].科学出版社,1991:77-79.
    [76]曹磊.熔铸法制备TiC/Ti-6Al-4V复合材料组织与力学性能研究[D].哈尔滨:哈尔滨工业大学,2010.
    [77] Wang P P, Wang L Q, Lu W J, Qin J N, Chen Y F, Zhang Z W, Zhang D. Theeffect of heat treatment on mechanical properties of in situ synthesized7715Dtitanium matrix composites[J]. Materials Science and Engineering A,2010,527(16-17):4312-4319.
    [78] Li J X, Wang L Q, Qin J N, Chen Y F, Lu W J, Zhang D. Effect of TRIPLEXheat treatment on tensile properties of in situ synthesized (TiB+La2O3)/Ticomposite[J]. Materials Science and Engineering A,2010,527(21-22):5811-5817.
    [79] Liu D, Zhang S Q, Li A, Wang H M. Microstructure and tensile properties oflaser melting deposited TiC/TA15titanium matrix composites[J]. Journal ofAlloys and Compounds,2009,485(1-2):156-162.
    [80] Tamirisakandala S, Bhat R B, Tiley J S, Miracle D B. Grain refinement of casttitanium alloys via trace boron addition[J]. Scripta Materialia,2005,53(12):1421-1426.
    [81] Zhu J, Kamiya A, Yamada T, Shi W, Naganuma K. Influence of boron additionon microstructure and mechanical properties of dental cast titanium alloys[J].Materials Science and Engineering A,2003,339(1-2):53-62.
    [82] Hill D, Banerjee R, Huber D, Tiley J, Fraser H L. Formation of equiaxed alphain TiB reinforced Ti alloy composites[J]. Scripta Materialia,2005,52(5):387-392.
    [83] Tang C Y, Wong C T, Zhang L N. In situ formation of Ti alloy/TiC porouscomposites by rapid microwave sintering of Ti6Al4V/MWCNTs powder[J].Journal of Alloys and Compounds,2013,557:67-72.
    [84] Wang X, Ma X L, Nie Q D. Effects of Y addition on microstructure andmechanical properties of TiC/Ti6Al4V composites[J]. Intermetallics,2012,31(0):242-248.
    [85] Matsumoto H, Yoneda H, Sato K. Room-temperature ductility of Ti-6Al-4Valloy with α martensite microstructure[J]. Materials Science and EngineeringA,2011,528(3):1512-1520.
    [86] Wang J, Li K Z, Li W. The preparation and mechanical properties ofcarbon/carbon composite joints using Ti-Si-SiC-C filler as interlayer[J].Materials Science and Engineering A,2013,574(1):37-45.
    [87] Sui Y W, Yuan F, Li B S. Physical Simulation Similar Theory and Experimentduring Centrifugal Casting Ti Alloy Melts Filling Flow[J]. Rare MetalMaterials and Engineering,2012,41(8):1351-1356.
    [88] Panda K B, Chandran K S R. Synthesis of ductile titanium-titanium boride(Ti-TiB) composites with a beta-titanium matrix: The nature of TiB formationand composite properties. Metallurgy and Materials Science A,2003,34(6):1371-1385
    [89] Ni D R, Geng L, Zhang J. Effect of B4C particle size on microstructure of insitu titanium matrix composites prepared by reactive processing of Ti-B4Csystem[J]. Scripta Materialia,2006,55(5):429-432.
    [90]曾泉浦,毛小南,张廷杰.热处理对TP-650钛基复合材料组织与性能的影响[J].稀有金属材料与工程,1997,26(04):18-21.
    [91] Chen W, Boehlert C J. Effect of boron on the elevated-temperature tensile andcreep behavior of cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si. Metallurgy and MaterialsScience A,2009,40(7):1568-1578.
    [92] Ma F C, Lu W J, Qin J N, Zhang D. Strengthening mechanisms of carbonelement in in situ TiC/Ti-1100composites[J]. Journal of Material Science,2006,41:5395-5398.
    [93]曾立英,毛小南,戚运莲,张鹏省,张廷杰. TiC粒子增强钛基复合材料的显微组织与性能研究[J].稀有金属,2004,(01):5-8.
    [94] Ma F C, Lu W J, Qin J N, Zhang D. Effect of forging and heat treatment onthe microstructure of in situ TiC/Ti-1100composites[J]. Journal of Alloys andCompounds,2007,428(1-2):332-337.
    [95] Geng L, Huang L J, Peng H X, Kaveendran B. High temperature tensileproperties of in situ TiBw/Ti6Al4V composites with a novel networkreinforcement architecture[J]. Materials Science and Engineering A,2012,534:688-692.
    [96] Nardone V C. Assessment of models used to predict the strength ofdiscontinous silicon carbide reinforced aluminum alloys[J]. ScriptaMetallurgica,1987,21(10):1313-1318.
    [97] Nardone V C, Prewo K M. On the strength of discontinuous silicon carbidereinforced aluminum composites[J]. Scripta Metallurgica,1986,20(1):43-48
    [98]李荣久,陶瓷-金属复合材料[M].冶金工业出版社,1995:119-121.
    [99] Wei Z J, Cao L, Wang H W, Zou C M. Microstructure and mechanicalproperties of TiC/Ti-6Al-4V composites processed by in situ casting route[J].Materials Science and Technology,2011,27(8):1321-1327.
    [100] Johnson A J W, Kumar K S, Briant C L. Deformation mechanisms inTi-6Al-4V/TiC composites[J]. Metallurgical and Materials Transactions A,2003,34(9):1869-1877.
    [101] Gu D D,Shen Y F,Meng G B. Growth morphologies and mechanisms of TiCgrains during Selective Laser Melting of Ti-Al-C composite powder[J].Materials Letters,2009,63(29):2536-2538.
    [102] Lütjering G. Influence of processing on microstructure and mechanicalproperties of (α+β) titanium alloys[J]. Materials Science and Engineering A,1998,243(1-2):32-45.
    [103] Weinem D, Kumpfert J, Peters M, Kaysser W A. Processing window of thenear-[alpha]-titanium alloy TIMETAL-1100to produce a fine-grained
    [beta]-structure[J]. Materials Science and Engineering A,1996,206(1):55-62.
    [104] Chandravanshi V K, Sarkar R, Kamat S V. Effect of boron on microstructureand mechanical properties of thermomechanically processed near alphatitanium alloy Ti-1100[J]. Journal of Alloy and Compounds,2011,509(18):5506-5514.
    [105] Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation formicrostructural control[J]. International Materials Reviews,1998,43(6):243-258.
    [106] Wang M M, Lu W J, Qin J N. The effect of reinforcements on superplasticityof in situ synthesized (TiB+TiC)/Ti matrix composite[J]. Scripta Materialia,2006,54(11):1955-1959.
    [107] Huang L J, Geng L, Zheng P Q. Hot tensile characterization ofTi-6.5Al-3.5Mo-1.5Zr-0.3Si alloy with an equiaxed microstructure[J].Materials and Design,2009,30(3):838-841.
    [108] Huang L J, Geng L, Li A B. Characteristics of hot compression behavior ofTi-6.5Al-3.5Mo-1.5Zr-0.3Si alloy with an equiaxed microstructure[J].Materials Science and Engineering A,2009,505(1-2):136-143.
    [109] Niu Y, Li M Q. Effect of0.16wt%hydrogen addition on high temperaturedeformation behavior of the Ti600titanium alloy[J]. Materials Science andEngineering A,2009,513-514:228-232.
    [110] Kumari S, Prasad N E, Chandran K S R. High-temperature deformationbehavior of Ti-TiBw in-situ metal-matrix composites[J]. Journal of theMinerals Metals and Materials Society,2004,56(5):51-55.
    [111] Ma F C, Lu W J, Qin J N, Zhang D. Hot deformation behavior of in situsynthesized Ti-1100composite reinforced with5vol.%TiC particles[J].Materials Letters,2006,60(3):400-405.
    [112] Roy S, Suwas S. The influence of temperature and strain rate on deformationresponse and microstructural evolution during hot compression of a titaniumalloy Ti-6Al-4V-0.1B. Journal of Alloy and Compounds,2013,548:110-145.
    [113]奚正平,王蕊宁,赵永庆. TiC颗粒增强钛基复合材料的热变形行为研究[J].稀有金属材料与工程,2009,(08):1338-1342.
    [114] Liu B, Li Y P, Matsumoto H. Thermomechanical response of particulatereinforced powder metallurgy titanium matrix composites--A study usingprocessing map[J]. Materials Science and Engineering A,2010,527(18-19):4733-4741.
    [115] Bhat R, Tamirisakandala S, DanielB Miracle. Thermomechanical response ofa powder metallurgy Ti-6Al-4V alloy modified with2.9pct boron[J].Metallurgical Transactions a-Physical Metallurgy and Materials Science A,2005,36(3):845-857.
    [116] Ma Z Y, Mishra R S, Tjong S C. High-temperature creep behavior of TiCparticulate reinforced Ti-6Al-4V alloy composite[J]. Acta Materialia,2002,50(17):4293-4302.
    [117] Yang Z F, Lu W J, Qin J N, Zhang D. Microstructure and tensile properties ofin situ synthesized (TiB+TiC+Nd2O3)/Ti-alloy composites at elevatedtemperature[J]. Materials Science and Engineering A,2006,425(1-2):185-191.
    [118] Huang L J, Geng L, Peng H X. In situ (TiBw+TiCp)/Ti6Al4V composites witha network reinforcement distribution[J]. Materials Science and Engineering A,2010,527(24-25):6723-6727.
    [119] Xie L, Jiang C H, Lu W J. Investigation on the residual stress andmicrostructure of (TiB+TiC)/Ti-6Al-4V composite after shot peening[J].Materials Science and Engineering A,2011,528(9):3423-3427.
    [120] Zhang Y Z, Sun J C, Vilar R. Characterization of (TiB+TiC)/TC4in situtitanium matrix composites prepared by laser direct deposition[J]. Journal ofMaterials Processing Technology,2011,211(4):597-601.
    [121] Wang H W, Qi J Q, Zou C M, Wei Z J. Effect of microstructural characteristicson room-temperature tensile properties of in situ synthesized TiC/TA15composite[J]. Materials Science and Technology,2012,28:597-602.
    [122] Sun Z, Sui Y W, Liu A H. Research of mechanical property gradientdistribution of Al-Cu alloy in centrifugal casting[J]. Surface Review andLetters.2011,18(6):297-301.
    [123]叶大伦.实用无机物热力学数据手册(第2版)[M].冶金工业出版社,2002:188-526.
    [124] Cai L F, Zhang Y Z, Shi L K. Research on development of in situ titaniummatrix composites and in situ reaction thermodynamics of the reactionsystems. Journal of University of Science and Technology Beijing,2006,13(6):551-557.
    [125] Duschanek H, Rogl P, Lukas H L. A critical assessment and thermodynamiccalculation of the boron-carbon-titanium [B-C-Ti] ternary system[J]. Journalof Phase Equilibria and Diffusion,1995,16(1):46-60.
    [126] Lu W j, Zhang D, Zhang X N, Wu R J, Sakata T, Mori H. Microstructuralcharacterization of TiC in in situ synthesized titanium matrix compositesprepared by common casting technique[J]. Journal of Alloys and Compounds,2001,327(1-2):248-252.
    [127] Qi J Q, Wang H W, Zou C M. Temperature dependence of fracture behavior ofin situ synthesized TiC/Ti-alloy matrix composite[J]. Materials Science andEngineering A,2011,528(25-26):7669-7673.
    [128]杨志峰,张荻,张小农,吴人洁,吕维洁.原位合成钛基复合材料增强体TiC的微结构特征[J].中国有色金属学报,2002,(03):511-515.
    [129] Badini C, Ubertalli G, Puppo D, Fino P. High Temperature Behaviour of aTi-6Al-4V/TiCp Composite Processed by BE-CIP-HIP Method[J]. Journal ofMaterials Science,2000,35:3903-3912.
    [130] Burgers W G. On the process of transition of the cubic-body-centeredmodification into the hexagonal-close-packed modification of zirconium[J].Physica,1934,1(7):561-586.
    [131] Warrier S G, Maruyama B, Majumdar B S. Behavior of several interfacesduring fatigue crack growth in SiC/Ti-6Al-4V composites[J]. MaterialsScience and Engineering A,1999,259(2):189-200.
    [132] Konitzer D G, Loretto M H. Interfacial interactions in titanium-based metalmatrix composites[J]. Materials Science and Engineering A,1989,107:217-223.
    [133]毛小南,周廉,曾泉浦,魏海荣. TiCp颗粒增强钛基复合材料的强化机理研究[J].稀有金属材料与工程,2000,(06):378-381.
    [134]毛小南,张廷杰,金城,蒋为吉,曾泉浦. Tp-650钛基复合材料中的界面[J].稀有金属材料与工程,1997,(02):8-11.
    [135] Ni D R, Geng L, Zhang J, Zheng Z Z. Fabrication and tensile properties of insitu TiBw and TiCp hybrid-reinforced titanium matrix composites based onTi-B4C-C[J]. Materials Science and Engineering A,2008,478(1-2):291-296.
    [136]马凤仓.热加工对原位自生钛基复合材料组织和力学性能影响的研究[D].上海:上海交通大学,2006.
    [137] Li B S, Shang J L, Guo J J, Fu H Z. In situ observation of fracture behavior ofin situ TiBw/Ti composites[J]. Materials Science and Engineering A,2004,383:316-322.
    [138] Razaghian A, Yu D, Chandra T. Fracture behaviour of a SiC particlereinforced aluminium alloy at high temperature[J]. Composites Science andTechnology,1998,58(2):293-298.
    [139] Wang H W, Qi J Q, Zou C M. High-temperature tensile strengths of in situsynthesized TiC/Ti-alloy composites[J]. Materials Science and Engineering A,2012,545(0):209-213.
    [140] Silva A A M d, Santos J F, Strohaecker T R. Microstructural and mechanicalcharacterisation of a Ti6Al4V/TiC/10p composite processed by the BE-CHIPmethod[J]. Composites Science and Technology,2005,65(11-12):1749-1755.
    [141] Llorca J, Gonzalez C. Microstructural factors controlling the strength andductility of particle-reinforced metal-matrix composites[J]. Journal of theMechanics ans Physics of Solids,1998,46(1):1-28.
    [142] Babout Y B L, Fougères E M R. On the competition between particle fractureand particle decohesion in metal matrix composites[J]. Acta Materialia,2004,52(15):4517-4525.
    [143] Huang L J. Geng L, Peng H X. Room temperature tensile fracturecharacteristics of in situ TiBw/Ti6Al4V composites with a quasi-continuousnetwork architecture[J]. Scripta Materialia,2011,64(9):844-847.
    [144] Rhee S I, Nam S W, Hagiwara M. Effect of TiBp particle reinforcement on thecreep resistance of near α titanium alloy made by blended elemental powdermetallurgy[J]. Journal of Alloys and Compounds,2003,359(1-2):186-192.
    [145] Liu D, Zhang S Q, Li A. High temperature mechanical properties of a lasermelting deposited TiC/TA15titanium matrix composite[J]. Journal of Alloysand Compounds,2010,496(1-2):189-195.
    [146] Clegg W J. A stress analysis of the tensile deformation of metal-matrixcomposites[J]. Acta Metallurgica,1988,36(8):2141-2149.
    [147] Kelly A, Tyson W R. Tensile properties of fibre-reinforced metals:Copper/tungsten and copper/molybdenum[J]. Journal of the Mechanics andPhysics of Solids,1965,13(6):329-338.
    [148] Vedani M, D'Errico F, Gariboldi E. Mechanical and fracture behaviour ofaluminium-based discontinuously reinforced composites at hot workingtemperatures[J]. Composites Science and Technology,2006,66(2):343-349.
    [149] Cabibbo M, Spigarelli S. A TEM quantitative evaluation of strengthening inan Mg-RE alloy reinforced with SiC[J]. Materials Characterization,2011,62(10):959-969.
    [150] Ramakrishnan N. An analytical study on strengthening of particulatereinforced metal matrix composites[J]. Acta Materialia,1996,44(1):69-77.
    [151]周惠久,黄明志.金属材料强度学[M].科学出版社,1989:34-36.
    [152] Konitzer D G, Loretto M H. Microstructural Assessment of Ti6a14v-Tic MetalMatrix Composite[J]. Acta Metallurgica,1989,37(2):397-406.
    [153] Xiao L, Lu W J, Qin J N, Zhang D, Wang M M, Zhu F, Ji B. High-temperaturetensile properties of in situ-synthesized titanium matrix composites withstrong dependence on strain rates[J]. Journal of materials research,2008,23(11):3066-3074.
    [154] Vaidya M L, Murty K Linga, Dorn J E. High-temperature deformationmechanisms in superplastig′n-22Al eutectoid[J]. Acta Metallurgica,1973,21(12):1615-1623.
    [155]克莱因,威瑟斯.金属基复合材料导论[M].冶金工业出版社,1996:61-65,67-82.
    [156]胡加瑞,肖来荣,罗锴. TiC颗粒增强钛基复合材料的高温变形行为[J].中国有色金属学报,2010,20(S1):193-197.
    [157] Villars P, Prince N, Oktmoto H. Handbook of ternary phase diagrams[M].Materials Park, OH, ASM Intermational,1995,3:2907.
    [158] Weiss I, Semiatin S L. Thermomechanical processing of alpha titaniumalloys-An overview[J]. Materials Science and Engineering A,1999,263(2):243-256.
    [159] Lu J Q, Qin J I, Lu W J. Effect of hydrogen on microstructure and hightemperature deformation of (TiB+TiC)/Ti-6Al-4V composite[J]. MaterialsScience and Engineering A,2009,500(1-2):1-7.
    [160]张志强,董利民,杨洋.淬火温度对TC16钛合金显微组织及变形行为的影响[J].金属学报,2011,47(10):1257-1262.
    [161] Miller R M, Bieler T R, Semiatin S L. Flow softening during hot working ofTi-6Al-4V with a lamellar colony microstructure[J]. Scripta Materialia,1999,40(12):1387-1393.
    [162]周军. Ti-17钛合金片状组织球化规律研究[D].西安:西北工业大学硕士,2005.
    [163]潘雅琴,杨昭苏. TC4钛合金热压变形行为的研究[J].稀有金属材料与工程,1993,(05):45-51.
    [164]王春艳. Al18B4O33w/Mg复合材料热压缩变形行为与微观机制[D].哈尔滨:哈尔滨工业大学博士,2007.
    [165]张俊善.材料的高温变形与断裂[M].北京:科学出版社,2007.
    [166] Lu J Q, Qin J N, Lu W J. Hot deformation behavior and microstructureevaluation of hydrogenated Ti-6Al-4V matrix composite[J]. InternationalJournal of Hydrogen Energy,2009,34(22):9266-9273.
    [167] Ma F C, Lu W J, Qin J N. Hot deformation behavior of in situ synthesized Ticomposite reinforced with5vol.%(TiB+TiC) particles[J]. Journal ofMaterials Science,2007,42(16):6901-6906.
    [168] Ma F C, Lu W J, Qin J N. Hot deformation behavior of in situ synthesizedTi-1100composite reinforced with5vol.%TiC particles[J]. Materials Letters,2006,60(3):400-405.
    [169]张长江. Y含量对Ti-6Al-2.5Sn-4Zr-0.7Mo-0.3Si钛合金组织性能的影响[D].哈尔滨:哈尔滨工业大学硕士,2009.
    [170] Flower H M. Microstructural development in relation to hot working oftitanium alloys[J]. Materials Science and Technology,1990,6(11):1082-1092.
    [171] Jonas J J, Sellars C M, Tegart W J. Strength and structure under hot-workingconditions[J]. International Materials Reviews,1969,14(1):1-24.
    [172] Seshacharyulu T, Medeiros S C, Frazier W G. Microstructural mechanismsduring hot working of commercial grade Ti-6Al-4V with lamellar startingstructure[J]. Materials Science and Engineering A,2002,325(1):112-125.
    [173] Wang K X, Zeng W D, Zhao Y Q. Flow behaviour and microstructuralevolution of Ti-17alloy with lamellar microstructure during hot deformationin α+β phase field[J]. Materials Science and Technology,2011,27(1):21-28.
    [174] Jia W J, Zeng W D, Liu J R. Influence of thermal exposure on the tensileproperties and microstructures of Ti60titanium alloy[J]. Materials Scienceand Engineering A,2011,530:511-518.
    [175] Weiss I, Semiatin S L. Thermomechanical processing of beta titaniumalloys-an overview[J]. Materials Science and Engineering A,1998,243(1):46-65.
    [176] Liu Y L, Hansen N, Jensen D J. Recrystallization microstructure in cold-rolledaluminum composites reinforced by silicon carbide whiskers[J]. Metallurgyand Materials Science A,1989,20(9):1743-1753.
    [177]卢俊强.原位自生钛基复合材料的热氢处理研究[D].上海:上海交通大学博士,2010.
    [178] Ranganath S, Roy T, Mishra R S. Microstructure and deformation of TiB+Ti2C reinforced titanium matrix composites[J]. Materials Science andTechnology,1996,12(3):219-226.
    [179] Yang Z, Lu W, Zhao L. Microstructure and mechanical property of in situsynthesized multiple-reinforced (TiB+TiC+La2O3)/Ti composites[J]. Journalof Alloy and Compounds,2008,455(1-2):210-214.
    [180] Huang L J, Geng L, Wang B. Effects of extrusion and heat treatment on themicrostructure and tensile properties of in situ TiBw/Ti6Al4V composite witha network architecture[J]. Composites A,2012,43(3):486-491.
    [181] Srinivasan R, Bennett M D, Tamirisakandala S. Rolling of Plates and Sheetsfrom As-Cast Ti-6Al-4V-0.1B[J]. Journal of Materials Engineering andPerformance,2009,18(4):390-398.
    [182] Doherty R D, Hughes D A, Humphreys F J. Current issues in recrystallization:a review[J]. Materials Science and Engineering A,1997,238(2):219-274.
    [183] Poorganji B, Yamaguchi M, Itsumi Y. Hot deformation behavior of near-alphaTi-Fe alloy in (α+β) two-phase region with different Fe content[J]. Thermec,2009,638-642:310-314.
    [184] Bermingham M J, McDonald S D, Nogita K, John D H, Dargusch M S. Effectsof boron on microstructure in cast titanium alloys[J]. Scripta Materialia,2008,59(5):538-541.
    [185] Huang L J, Cui X P, Geng L. Effects of rolling deformation on microstructureand mechanical properties of network structured TiBw/Ti composites[J].Transactions of Nonferrous Metals Society of China,2012,22: S79-S83.
    [186] Guo X L, Wang L Q, Wang M M. Effects of degree of deformation on themicrostructure, mechanical properties and texture of hybrid-reinforcedtitanium matrix composites[J]. Acta Materialia,2012,60(6-7):2656-2667.
    [187] Xiao L, Lu W J, Qin J N. High-temperature tensile properties of insitu-synthesized titanium matrix composites with strong dependence on strainrates[J]. Journal of Materials Research,2008,23(11):3066-3074.
    [188] Ye H Z, Liu X Y. Review of recent studies in magnesium matrix composites[J].Journal of Materials Science,2004,39(20):6153-6171.
    [189] Schuh C, Dunand D C. Whisker alignment of Ti-6Al-4V/TiB compositesduring deformation by transformation superplasticity[J]. International Journalof Plasticity,2001,17(3):317-340.
    [190] Machida N, Funami K, Kobayashi M. Grain refinement and superplasticity ofreaction sintered TIC dispersed Ti alloy composites using hydrogenationtreatment[J]. Superplasticity in Advanced Materials, Icsam-2000.2001,357-3:539-544.
    [191]郑镇洙,耿林,王桂松.原位生成(TiBw+TiCp)/Ti复合材料的高应变速率超塑性[J].材料科学与工艺,2006,(04):397-399.
    [192] Lu J Q, Qin J N, Chen Y F. Superplasticity of coarse-grained(TiB+TiC)/Ti-6Al-4V composite[J]. Journal of Alloy and Compounds,2010,490(1-2):118-123.
    [193] Whittenberger J D. The influence of grain-size and composition on slowplastic-flow in feal between1100K and1400K[J]. Materials Science andEngineering A,1986,77(1-2):103-113.
    [194]赵敏,严峰,吴昆. SiCw/MB15镁基复合材料超塑性变形空洞行为[J].材料科学与工艺,2003,(04):403-405.
    [195] Yousefiani A, Earthman J C, Mohamed F A. Formation of cavity stringersduring superplastic deformation[J]. Acta Materialia,1998,46(10):3557-3570.
    [196] Niu H Z, Kong F T, Chen Y Y. Low-temperature superplasticity of forgedTi-43Al-4Nb-2Mo-0.5B alloy[J]. Journal of Alloy and Compounds,2012,543:19-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700