用户名: 密码: 验证码:
Mg-Zn-Al新型镁合金开发及半固态触变成形
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半固态成形技术被认为是一种最具先进性的金属成形加工技术,其特点是易于近终成形、成形温度低、节约能源等。镁合金在一般成形过程中容易氧化燃烧,而采用半固态成形可有效的解决此问题。目前,采用半固态成形的镁合金主要有AZ91、AM60和AM50等牌号合金,首先是这些合金对半固态成形可控性的要求不能够完全满足的,其次是合金本身的热处理强化效果不太明显,从而不能有效地发挥半固态成形材料可通过热处理强化的优势。因此,有必要开发一种适合半固态成形的高强镁合金。开发合金的思路主要是,先获得强度较高且热处理强化效果显著的镁合金,要求该合金满足半固态成形,并具有较强的可控性,然后利用半固态成形以及热处理提高其力学性能。Mg-Zn-Al合金具有较高的室温及高温力学性能,成本低廉,其研究和应用较为广泛,并且热处理强化效果较好,所以可利用半固态成形对其进一步强化。本课题系统地研究了Mg-Zn—Al合金铸态及热处理组织和力学性能,并且对其进行半固态组织非枝晶化研究,最终选择了热处理强化效果最好并满足半固态成形要求的ZA74合金进行触变压铸研究以及后期热处理强化。主要研究结果如下:
     1.对Mg-(5~20%)Zn-(0~6%)Al合金组织和性能进行系统地研究。表明,合金主要由α-Mg、MgZn、Mg32(Al,Zn)49及Mg17Al12相组成。随合金元素Zn和A1增加,合金由粗大的树枝晶向细小的等轴晶转变,晶粒尺寸逐渐减小,而晶界处的共晶相数量逐渐增多,尺寸逐渐增大。Mg-Zn-Al合金具有较高的室温抗拉强度,在180-240MPa之间,其中ZA54、ZA56以及ZA202合金的抗拉强度分别可达到227、228和237MPa;随着Zn含量的增加,合金的延伸率逐渐降低。
     2.Mg-Zn-Al合金经过热处理后,抗拉强度得到显著提高,其中ZA74和ZA72合金热处理后抗拉强度最高,分别为338MPa和337MPa,较铸态分别提高了68%和66%,其次抗拉强度较高的是ZA54和ZA56合金,分别可达到320MPa和305MPa,而随着合金元素的增多,热处理后晶界化合物相严重影响合金的力学性能。对ZA74合金热处理工艺研究,其最佳热处理工艺参数为:固溶工艺350℃+28h水淬,时效工艺165℃+24h。热处理强化主要是固溶强化和时效强化,时效过程中在晶界和基体内部析出细小弥散的强化相,对合金力学性能贡献较大。
     3.利用等温热处理法对Mg-Zn-Al合金半固态组织演变及机理进行研究。表明,颗粒尺寸与Zn含量有直接关系,随Zn含量增加,得到的固相颗粒尺寸逐渐减小,并且当Zn含量大于7%以后,固相颗粒尺寸在50μm以下,其中,ZA202合金的固相颗粒尺寸可达到28.9μm,Al元素可减小初生固相颗粒的粗化速率;Mg-Zn-Al合金半固态组织演变主要经历组织的粗化、分离、球化以及最终的合并、长大阶段。当液相较少,固相颗粒分离的机制主要是液相沿着晶界、亚晶界浸润和扩展;而有一定的液相存在时,根部重熔机制在固相颗粒分离中起主导作用。
     4.对ZA74合金进行半固态触变成形及热处理强化研究。表明,半固态成形可显著提高合金力学性能,ZA74合金触变压铸后的抗拉强度可达到256MPa,较金属型(201MPa)提高27%;经热处理抗拉强度可达到352MPa,较铸态提高了38%,与AZ91D半固态触变压铸热处理后的抗拉强度(230MPa)相比,提高幅度为53%。
The semi-solid forming technology has been considered to be one of the most advanced metal forming technology, which is characterized by easy to near-net shape, low molding temperature, and energy conservation. Magnesium alloy is easily oxidized and burned in the usual forming process, but the semi-solid forming technology is effective to solve this problem. At present, the semi-solid forming of magnesium alloys is mainly for the existing alloys of AZ91D, AM60and AM50. However, on the one hand, these alloys can not fully meet the requirements of semi-solid forming controllability, on the other hand, they can not give full play to the strengths advantage of semi-solid forming material by heat treatment because of their bad strengthening effect of heat treatment. Therefore, it is necessary to develop a high-strength magnesium alloy for semi-solid forming. First, to obtain the high strength magnesium alloys which have remarkable effect of heat treatment strengthening, then using semi-solid forming to improve its mechanical properties, and finally through the heat treatment further strengthened. Mg-Zn-Al alloy has higher mechanical properties at room temperature and high temperature, and it has low cost, therefore it widely researched and used, further strengthen it by semi-solid forming is feasible. The microstructure and mechanical properties of Mg-Zn-Al alloy at cast and heat-treated condition were investigated in this study. The main results are found as follows:
     1. The microstructure and mechanical properties of Mg-(5-20%)Zn-(0-6%)A1alloys were studied. The results indicated that the alloys are mainly composed of a-Mg、MgZn、Mg32(Al,Zn)49and Mg17Al12. With increasing of Zn and Al, the coarse dendrites transite to fine equiaxed grains and the grain size is gradually reduced; While the number of eutectic phase and its size both gradually increased. Mg-Zn-Al alloys have higher tensile strength at room temperature, which is between180-240MPa, the tensile strength of ZA54、ZA56and ZA202reaches to227,228and237MPa, respectively. The elongation of alloys decreased gradually with increasing of Zn content.
     2. The tensile strength of Mg-Zn-Al alloys has significantly improved by heat treatment, while the tensile strength of ZA74and ZA72alloy is338and337MPa, respectively. Compared to as-cast alloys, it has been improved by68and66%, respectively. The tensile strength of ZA54and ZA56alloy could get up to320MPa and305MPa. With the increasing of alloying elements, the compound phases distributed on the grain boundaries which seriously affect the mechanical properties of alloys. The heat treatment process parameters of ZA74alloy are:solution350℃+28h, aging165℃+24h. The main reasons of heat treatment strengthen are solution and aging strengthening. The precipitates at the grain boundaries and within the matrix during aging treatment, which benefit to the improved mechanical properties.
     3. The semisolid microstructure evolution process and mechanism analysis of ZA74magnesium alloy are investigated by isothermal heat-treatment. The results indicate that the particle size has a direct relationship with the Zn content. With the increasing of the Zn content, it could obtain fine particles, and when the Zn content is greater than7%, the size of particles is less than50μm, and the particle size of ZA202alloy is28.9μm. The coarsening rate of solid particles is reduced by Al element. During partial remelting, the main mechanism of Mg-Zn-Al alloy is eutectic microstructure solution, solute diffusion, coarsening, dendrite separation, spheroidization and final coarsening. Furthermore, the factor of solute diffusion, energy fluctuation and constituent fluctuation, which result in the appearance of subboundary and root remelting, which are the separation mechanism of particle during partial remelting. When the liquid phase is less, solid particle separation mechanism is liquid phase infiltrate liquid and extend along the grain boundary and sub-boundary; and when there is a certain liquid, root remelting mechanism plays a leading role in the separation of solid particles.
     4. Choosing the ZA74alloy to thixotropic forming and heat treatment, it show that the semisolid forming can significantly improve the mechanical properties of ZA74alloy. The tensile strength of ZA74alloy is256MPa used thixotropic die-casting, compared to the metal forming increased by27%. The tensile strength of semisolid thixoforming ZA74alloy is352MPa after heat treatment, which is increased by38%compared to the cast alloy, and compared with AZ91D alloy (230MPa) increased by53%.
引文
[1]徐红霞,张修丽.21世纪的绿色环保材料—镁合金[J].上海工程技术大学学报,2007,21(4):322-325.
    [2]T J R, D L A. High Ductility Magnesium alloys in Auto-motive application[J]. Advanced Material and Process,1999,145(6):28-33.
    [3]Mordikebl, Ebert. Magnesium Properties-application-potential[J]. Materials science and Engineering A,2001,302(1):37-45.
    [4]R W Cahn,丁道云等译.非铁合金的结构与性能[M].北京:科学出版社,1999.
    [5]陈振华.镁合金[M].北京:化学工业出版社,2004.
    [6]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002.
    [7]姚素娟,张英,褚丙武.镁及镁合金的应用和研究[J].世界有色金属.2005(1):26-30.
    [8]张津,章宗和等.镁合金及应用[M].北京:化学工业出版社,2004.
    [9]何曲波.ZA73镁合金组织与性能研究[D].重庆:重庆大学,2009.
    [10]Polmear J. hitroduction:History, Production, Applications andMarkcts:ASM Specialty Handbook Magnesium And Magnesium Alloys[Z]. Ohio:ASM International, Materials.Park:Michael M avedesian, Hugh Baker(ed),1999.
    [11]刘柞时,谢旭红.镁合金在汽车工业中的开发与应用[J].轻金属,1999(1):55-58.
    [12]Brungs D, Honsela, Mesehede. Opportunities for Magnesium Alloys in Bod Structure:Magnesium Alloys and Their Application:The Conference of Magnesium Alloys and Their Application[Z]. Frankfurt (Germany):Werkstoff-hiformationsgesell-schaft mbH:In:Mordike B L, Kainer K U(ed),1998.
    [13]Magers D, Willekens J. Global Outlook on the Use of Magnesium Diecastings In Automotive Applications:Magnesium Alloys and Their Application:The Conference of Magnesium Alloys and Their Application[Z]. Frankfurt:Werkstof-Information-sgesell-ehaft mbH, Germany:In:Mordike B L, Kainer KU(ed),1998.
    [14]陈礼清,赵志江.从镁合金在汽车及通讯电子领域的应用看其发展趋势[J].世界有色金属,2004(7):12-20.
    [15]王渠东,丁文江.镁合金及其成形技术的国内外动态与发展[J].世界科技研究与发展,2004,26:39-46.
    [16]刘向阳.镁合金压铸技术及应用[J].轻金属.2005(2):35-39.
    [17]韩夏云,龙晋明,薛方勤,等.镁及镁合金应用与表面处理现状及发展[J].轻金属.2003(2):48-51.
    [18]闰蕴琪,张廷杰,邓炬,等.耐热镁合金的研究现状与发展方向[J].稀有金属材料与工程.2004,33(6):561-565.
    [19]张新明,彭卓凯,陈健美,等.耐热镁合金及其研究进展[J].中国有色金属学报,2004,14(9):1443-1450.
    [20]Zhang Z, Couture A. An investigation of the properties of Mg-Zn-Al alloys[J]. Scripta Materialia,1998,39(1):45-53.
    [21]杨明波,潘复生,李忠盛,等.Zn与Al质量比对Mg-Zn-Al三元镁合金铸态组织和凝固行为的影响[J].中国有色金属学报,2008,18(7):1191-1198.
    [22]许春香,张志玮,鞠辉,等.稀土Ho对ZA52合金显微组织及力学性能的影响[J].铸造,2012,61(6):661-665.
    [23]Balasubramain N, Pillai UTS, Pai B C. Optimization of heat treatment parameters in ZA84 magnesium alloy[J]. Journal of Alloys and Compounds,2008,457(1-2):118-123.
    [24]Donnadieu P, Wuivy A, Tarfa T, et al. One the Crystal Structure and Solidibility Range of the Ternary Phase in the Mg-Al-Zn System[J]. Z Metal,1997,88(12):911-916.
    [25]Von Buch F, Lietzau J, Mordike B L. Development of Mg-Sc-Mn alloys[J]. Mater Sci Eng A,1999,263(1):1-7.
    [26]Clark J B. Transmission electron microscopy study of age hardening in a Mg-5wt%Zn alloy[J]. Acta Metall Sin,1993,29:A176:1281-1289.
    [27]Zhang J, Li Z S, Guo Z X. Solidification microstructural constituent and its crystallographic morphology of permanent-mould-cast Mg-Zn-Al alloys[J]. Trans. Nonferrous Met. Soc. Chain,2006,16(2): 452-458.
    [28]Zhang Z, Tremblay R. Solidification microstructure of ZA102 ZA104 and ZA106 magnesium alloys and its effect on creep defomation[J]. Canadian Metallurgical Quarterly,2000,39(4):503-512.
    [29]Zhang J, Guo Z X, Pan F S, et al. Effect of composition on the microstructure and mechanical properties of Mg-Zn-Al alloys[J]. Materials Science and Engineering A,2007,456(1-2):43-51.
    [30]陈吉华.Mg-Zn-Al-X合金的组织、性能及其蠕变行为研究[D].长沙:湖南大学,2009.
    [31]杨光昱,介万奇,郝启堂.Mg-5Zn-3Al-0.2Mn铸造合金的组织和室温力学性能[J].中国有色金属学报,2006,16(2):205-212.
    [32]杨光昱,郝启堂,介万奇,等.Mg-x Ca-5Zn-3A1-0.2Mn镁合金砂型铸造组织和力学性能研究[J].稀有金属材料与工程,2006,35(2):217-222.
    [33]吴有伍,刘放军.ZA85镁合金压铸工艺研究[J].铸造,2006,55(4):350-354.
    [34]Lou A, Shinoda T. SAE Technical Paper series[P].:No:980086.
    [35]Lou A, Shinoda, T. Development of a Creep-Resistant Magnesium Alloy for Die Casting Applications:Magnesium alloys and their applications, B.L.Mordike and K. U. Kainer, ed.[Z]. Werkstoff-Informations gesers chaft, Wolfsburg, Germany:1998.
    [36]Lou A. Resent magnesium alloy development for elevated temperature application[J]. International Materials Reviews,2004,49(1):13-30.
    [37]Vogel M, Kraft O, Arzt E. Effect of calcium additions on the creep behavior of magnesium die-cast alloy ZA85[J]. Metallurgical and Materials Transactions A,2005,36(7):1713-1719.
    [38]吕宜振.Mg-Al-Zn合金的组织、性能、变形和断裂行为研究[D].上海:上海交通大学,2001.
    [39]刘宏伟.铝锌比以及稀土和钇对镁铝锌合金组织与性能的影响[D].广州:华南理工大学,2003.
    [40]赵玮霖,杨明波,潘复生,等.合金元素对Mg-Zn-Al(ZA)系耐热镁合金组织及性能的影响[J].材料导报,2007,21(7):70-72.
    [41]Clark J B, Zahfyr L, Moser Z. Binary Alloy Phase Diagrams [M]. Ohio:American society for metals:1987.
    [42]虞觉奇,易文质.二元合金状态图集[M].上海:上海科学技术出版社,1987.
    [43]诺维柯夫,王子祐,译.金属热处理理论[M].北京:机械工业出版社,1987.
    [44]Gao X, Nie J F. Structure and thermal stability of primary intermetallic particles in an Mg-Zn casting alloy[J]. Scripta Materialia, 2007,57(7):655-658.
    [45]Gao X, Nie J F. Characterization of strengthening precipitate phases in a Mg-Zn alloy[J]. Scripta Materialia,2007,56(8):645-648.
    [46]Li J, DU Wenbo, Li S, et al. Effect of aging on microstructure of Microstructure of Mg-Zn-Er alloys[J]. Journal of Rare Earths,2009, 27(6):1042-1045.
    [47]Hidetoshi S, Alok S, Toshiji M. Microstructure evolution of Mg-Zn binary alloy during a direct extrusion process[J]. Scripta Materialia. 2009,60(6):411-414.
    [48]Wei L Y, Dunlop G L, Westengen H. Precipitation hardening of Mg-Zn and Mg-Zn-RE alloy [J]. Metallurgcal and Materlals Transactions A,1995,26(7):1705-1716.
    [49]Wei L Y, Dunlop G L, Westengen H. The Intergranular Microstructure of Cast Mg-Zn and Mg-Zn-Rare Earth Alloys[J]. Metallurgical and Materials Transaction A,1996,26(8):1947-1955.
    [50]张青辉,黄维刚,郑天群,等.热处理对Mg-Zn-Al合金力学性能的影响[J].热加工工艺,2007,36(8):62-67.
    [51]杨明波,潘复生,白亮,等.热处理工艺对Mg-8Zn-4Al-0.25Mn合金组织和性能的影响[J].金属热处理,2007,32(10):62-65.
    [52]Yang M B, Bai L, Pan F S. Effects of heat treatment on the microstructure and mechanical properties of ZA84 magnesium alloy [J]. Journal of University of Science and Technology,2008,15(6): 747-752.
    [53]Spencer D B, Mehrabian R, Flemings M C. Rheological behavior of Sn-15 Pct Pb in the crystallization range[J]. Metallurgical Transactions, 1972,3(7):1925-1932.
    [54]毛卫民.半固态金属成形技术[M].北京:机械工业出版社,2004.
    [55]胥锴,王小平,刘徽平,等.半固态合金非枝晶组织制备方法及形成机理研究进展[J].南方金属,2009(167):14-19.
    [56]杨明波,赵玮霖,唐利文,等.基于半固态等温热处理工艺制备镁合金非枝晶组织坯料的研究进展[J].铸造技术,2006,27(8):874-877.
    [57]李元东.AZ91 D镁合金触变成形工艺与热处理研究[D].兰州:兰州理工大学,2005.
    [58]Chen T J, Jiang X D, Ma Y, et al. Effect of initial as-cast microstructure of AZ91D magnesium alloy on its semisolid microstructure[J]. Journal of Alloys and Compounds,2010,505(1-2): 476-482.
    [59]Chen T J, Ma Y, Wang R Q, et al. Microstructural evolution during partial remelting of AM60B magnesium alloy refined by MgCO3[J]. Trans. Nonferrous Met. Soc. China,2010,20(9):1615-1621.
    [60]Chen T J, Jiang X D, Ma Y, et al. Microstructural evolution and phase transformations during partial remelting of AZ91D magnesium alloy refined by SiC[J]. Journal of Alloys and Compounds,2010,497(2): 147-154.
    [61]李元东,郝远,陈体军,等.原始组织对半固态AZ91 D镁合金重熔行为的影响[J].中国有色金属学报,2004,14(3):366-371.
    [62]郝远,狄杰建,陈体军,等.ZA27合金在半固态等温热处理中的相变研究[J].材料科学与工程,2001,19(3):69-73.
    [63]陈体军,郝远,狄杰建.变质剂对ZA27合金半固态等温热处理组织的影响[J].热加工工艺,2001(4):23-25.
    [64]李元东,郝远,陈体军.等温热处理工艺对AZ91 D镁合金半固态组织演变和成形性的影响[J].中国有色金属学报,2002,12(6):1143-1148.
    [65]李元东,郝远,闫峰云.AZ91 D镁合金在半固态等温处理中的组织演变[J].中国有色金属学报,2001,11(4):571-575.
    [66]李元东,郝远,金玉花.半固态等温热处理对AZ91 D镁合金组织的影响[J].甘肃工业大学学报,2001,27(1):27-30.
    [67]朱鸣芳,苏华钦.半固态等温热处理对ZA 12合金组织和性能的影响[J].金属热处理,1996(1):33-36.
    [68]朱鸣芳,苏华钦.半固态等温热处理制备粒状组织ZA 12合金的研究[J].铸造,1996(4):1-5.
    [69]许广济,陆松,陈体军.硼、钛对半固态ZA27组织演变的影响[J].甘肃工业大学学报,2000,26(1):19-23.
    [70]刘勇,杨湘杰.液固两相区等温热处理对ZA101枝晶形貌的影响[J].铸造工程,2002,26(4):21-23.
    [71]谢辉,许丽君,袁中岳.预变形及液固两相区等温处理对ZA27合金铸态组织的影响[J].中国有色金属学报,2001,11(1):47-50.
    [72]黄乃瑜,罗吉荣.第九界国际铸造博览会(GFIA’99)综述[J].特种铸造与有色合金,1999,5:48-52.
    [73]汪之清.国外镁合金压铸技术的发展[J].铸造,1997,8:48-51.
    [74]吕宜振,魏撒红,曾小勤,等.镁合金铸造成形技术的发展[J].铸造,2000,49(7):383-387.
    [75]毛卫民,赵爱民,钟雪友.半固态金属成形应用的新进展与前景展望[J].特种铸造及有色合金,压铸专刊,2002:245-248.
    [76]王金国.应变诱发法镁合金AZ91 D半固态组织演变机制[D].长春:吉林大学,2005.
    [77]曲俊峰,李元东,邢博,等.自孕育法流变压铸AZ91 D镁合金微观组织特征[J].铸造,2010,59(5):454-458.
    [78]窦建文,李艳磊,李元东,等.自孕育法流变压铸2024变形铝合金微观组织特征[J].热加工工艺,2011,40(17):23-26.
    [79]李春.Mg-9Zn-xAl镁合金的自孕育凝固及半固态压铸研究[D].兰州:兰州理工大学,2012.
    [80]文靖.半固态触变压铸AZ91D镁合金组织与性能的研究[D].兰州:兰州理工大学,2009.
    [81]Kikwood D H. Semisolid metal processing[J]. Inter Mater Rev.1994, 39(5):173-189.
    [82]Cerri E, Evangelista E, Spigarelli S. Effects of thermal treatments on microstructure and mechanical properties in a thixocast 319 aluminum alloy[J]. Materials Science and Engineering A,2000,284(1-2): 254-260.
    [83]张恒华,许珞萍,邵光杰,等.AlSi7Mg合金半固态压铸件热处理强化机理研究[J].材料热处理学报,2003,24(2):64-67.
    [84]张友法,刘勇兵,曹占义,等.触变注射成形AZ91D的固溶和时效热处理[J].特种铸造及有色合金,2009(7):601-604.
    [85]倪红军,王渠东.镁合金半固态铸造成形技术(SSP)的研究与应用[J].铸造技术,2000(5):36-39.
    [86]李元东,唐钟雪,郝远,等.触变成形AZ91 D镁合金的固溶和时效热处理研究[J].兰州理工大学学报,2005,31(5):15-18.
    [87]Wang Y, Liu G, Fan Z. Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment[J]. Acta Materialia, 2006,54(3):689-699.
    [88]Wang Y, Liu G, Fan Z. A new heat treatment procedure for rheo-diecast AZ91D magnesium alloy[J]. Scripta Materiali,2006, 54(5):903-908.
    [89]王开,刘昌明,翟彦博.AZ91 D镁合金铸造件热处理前后的组织与 性能[J].特种铸造及有色合金,2008,28(1):28-30.
    [90]唐钟雪,李元东,郝远.时效处理对触变成形AZ91D镁合金组织和力学性能的影响[J].热加工工艺,2005(3):4-7.
    [91]杨丽景,卫英慧,侯利锋,等.触变成型镁合金铸件热处理显微组织的演变[J].材料热处理学报,2010,31(4):100-104.
    [92]王金国,王建国,张胜男.热处理对半固态触变成形镁合金组织与力学性能的影响[J].热加工工艺,2006,35(24):46-49.
    [93]黄晓锋,付彭怀,卢晨,等.Nd对AM50力学性能及高温性能的影响[J].材料研究学报,2004,18(16):593-596.
    [94]Zhang J,Pan F S,Yang M B,et al.As-cast microstructure of Mg-Al-Zn magnesium alloy[J].Trans.Nonferrous Met. Soc. China, 2006,16(z3):1655-1659.
    [95]曾小勤,丁文江,姚正裔,等Mg-Zn-Al系合金组织和力学性能[J].上海交通大学学报,2005,39(1):46-51.
    [96]Becerra A.Effects of zinc,lithium,and indium on the grain size of magnesium[J].Journal of Materials Research,2009,24(5):1722-1729.
    [97]Oh-Ishi K,Hono K,Shin K S.Effect of pre-aging and Al addition on age-hardening and microstructure in Mg一6wt%Zn alloys[J].Materials Science and Engineering A,2008,496(1-2):425-433.
    [98]崔忠圻.金属学与热处理[M].北京:机械工业出版社,2001.
    [99]朱蓓蓓,孙扬善,万晓峰,等Mg-Zn-Al系变形镁合金的显微组织和力学性能[J].东南大学学报(自然科学版),2010,40(3):640-645.
    [100]张俊善.材料的高温变形与断裂[M].北京:科学出版社,2007.
    [101]Bourgeois L,Muddle B C,Nie J F.The crystal structure of the equilibrium phase in Mg-Zn-Al casting alloys[J].Acta Mater,2001, 49(14):2701.
    [102]戚正凤.固态金属中的扩散与相变[M].北京:机械工业出版社,1997.
    [103]刘智恩.材料科学基础[M].西安:西北工业大学出版社,2003.
    [104]石德珂.材料科学基础[M].北京:机械工业出版社,2003.
    [105]Buha J.The effect of micro-alloying addition of Cr on age hardening of an Mg-Zn alloy[J].Materials Science and Engineering A,2008, 492(1-2):293-299.
    [106]李松瑞,周善初.金属热处理[M].长沙:中南大学出版社,2003.
    [107]Buha J.Characterisation of precipitates in an aged Mg-Zn-Ti alloy[J]. Journal of Alloys and Compounds,2009,472(1-2):171-177.
    [108]Buha J. Reduced temperature (22-100℃) ageing of a Mg-Zn alloy [J]. Materials Science and Engineering A.2008,492(1-2):11-19.
    [109]J D费豪文,卢光熙译.物理冶金学基础[M].上海:上海科学技术出版社,1980,1.
    [110]Fan Z. Semisolid metal processing[J]. Int Mater Rev.2002,47(2): 49-85.
    [111]Flemings M C. Behavior of metal alloys in the semisolid state[J]. Metall Trans A.1991, A22:957-981.
    [112]Fan Z, Liu G, Wang Y. Micro structure and mechanical properties of rheo-diecast AZ91D magnesium alloy[J]. Journal of Materials Science, 2006,41(12):3631-3644.
    [113]Shahrooz N, Reza G. The microstructural characterization of semi-solid slurries[J]. Journal of The Minerals, Metals and Materials Society,2006,58(6):24-30.
    [114]Shigeharu K, Naoyuki I, Rachmat S R, et al. Application of semi-solid forming to Mg-Zn-Al-Ca alloys[J]. Materials Science Forum,2000, 350-351:205-214.
    [115]Yang M B, Pan F S, Cheng R J, et al. Effects of holding temperature and time on semi-solid isothermal heat-treated microstructure of ZA84 magnesium alloy[J]. Trans. Nonferrous Met. Soc. China,2008,18(3): 566-572.
    [116]Chen T J, Jiang X D, Ma Y, et al. Microstructural evolution and phase transformations during partial remelting of AZ91D magnesium alloy refined by SiC[J]. Journal of Alloys and Compounds,2010,497(2): 147-154.
    [117]Yang M B, Shen J, Pan F S. Effects of Sb on microstructure of semi-solid isothermal heat-treated AZ61-0.7Si magnesium alloy[J]. Trans. Nonferrous Met. Soc. China,2009,19(1):32-39.
    [118]Atkinson H V, Liu D. Microstructural coarsening of semi-solid aluminium alloys[J]. Materials Science and Engineering A,2008, 496(1-2):439-446.
    [119]王顺成,李元元,陈维平,等.升温速度对半固态2024铝合金部分重熔组织的影响[J].金属学报,2008,44(8):905-910.
    [120]Hee-Soo K, Ian C S, Brian C. Microstructural evolution in semi-solid AA7034[J]. J Mater Sci,2008,43(4):1292-1304.
    [121]张小立,李廷举,藤海涛,等.等温热处理过程中铸态AZ91镁合金的微观组织演化[J].铸造,2007,56(10):1048-1052.
    [122]Luo W R, Suery M. Microstructural evolution during partial remelting of A12Si7Mg alloys[J]. Materials Science and Engineering A,1996, 203(1-2):1-13.
    [123]Garabedian H, Strickland-Constable R F. Collision breeding of crystal nuclei:Sodium chlorate[J]. Crystal Growth.1972,13(1): 506-509.
    [124]Vogel A, Doherty R D, Cantor B. Stir-cast microstructure and slow crack growth[J]. Metals Society,1979:518-525.
    [125]Kattamis. Rheology of semisolid Al-45% Cu-1.5% Mg alloy[J]. Materials Science and Engineering A,1991,131(2):265-272.
    [126]李元东,陈体军,马颖,阎峰云,郝远.触变成形AZ91 D镁合金的组织与二次凝固行为[J].中国有色金属学报,2008,18(1):18-23.
    [127]黄海军.半固态成形AM60B镁合金热处理研究[D].兰州:兰州理工大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700