用户名: 密码: 验证码:
基于IGCT的逆变技术若干应用问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究逆变技术在高压变频调速系统和光伏并网控制系统中应用的关键问题。
     能源危机日益严重。应付能源危机主要靠两方面:一是节约能源,一是开发利用新能源。节能的一项重要技术是基于逆变技术的变频调速。太阳能则是开发新能源方面的重点,而太阳能并网中的关键技术之一是逆变技术。而IGCT则是高压大功率逆变技术的主要器件。因此,迫切需要研究逆变技术在高压变频调速系统和光伏并网控制系统中的应用问题。
     在IGCT应用研究中,需要对其进行仿真。为了满足这一要求,本文提出了四模块封装的方法,将IGCT等效为稳态电路、开通暂态电路、关断暂态电路和开关信号延时电路四个电路,构建了IGCT的电路级模型,解决了IGCT性能仿真的难题。仿真波形与实验结果表明,该模型仿真精度高、速度快。研究成果可用于任何含有IGCT的电路中,包括逆变器。
     高压逆变器中,常使用IGCT双管串联来增大耐压。串联后,由于双管存在差异,必然会分压不均。因此必须设计动态均压电路来保护IGCT。本文设计了串联缓冲电路,并针对缓冲电路进行了PSIM仿真和试验,通过仿真波形和试验波形比较验证了缓冲电路对IGCT的保护效果。
     分析了常见的串联多重化结构、三电平结构以及多电平结构的主回路及其各自的优缺点。并通过分析比较,结合项目的实际情况和当前电力电子器件的发展水平,选定了中性点钳位(NPC)三电平结构作为变频器的拓扑结构。改善了高压变频器保护方案。方案对高压变频器的整流电路、逆变电路以及电动机负载等进行了全面有效保护。
     高压变频器的散热系统,直接关系到变频器能否安全稳定工作。针对主要热源功率二极管和IGCT,设计了高压变频器的散热系统。
     研究了IGCT在光伏并网控制中的应用问题。设计了光伏并网逆变电路。对光伏并网逆变器(含滤波器)进行了仿真研究。建立了电流滞环比较方式并网控制方式下的仿真模型,并利用仿真模型在不同滤波电路条件下对光伏并网逆变器进行仿真。仿真结果正确合理,仿真模型可用于光伏并网系统的进一步研究。
     总结了主要研究工作和重要结论,指出了未来研究工作的重点和方向。
The dissertation studies some key problems about the inverter applications in high voltage variable-frequency drives and photovoltaic systems.
     Energy crisis is becoming more and more serious. There are two approaches to the crisis. One is energy saving. The other one is new energy exploiting. Variable-frequency drives are important technology of energy saving. New energy exploiting focused on solar energy. Yet the key technology in solar energy exploiting is the inverter technology. IGCT is the main device in an inverter. Therefore, it is imperative to study the key problems about the inverter applications in high voltage variable-frequency drives and photovoltaic systems. It is necessary to simulate IGCTs in their applications. To satisfy this necessity, the dissertation proposes a novel method based on four-module package. The IGCT is equivalently divided into four modules. These are:steady-state circuit, turn-on transient circuit, turn-off transient circuit and time-delay circuit. The IGCT model is constructed and the difficult problem of IGCT simulation is solved. The experimental results verify the correctness of the simulation study. The IGCT model can be used in any circuits with IGCTs, including inverters.
     Two IGCTs in series are often used in high voltage variable-frequency drives to increase total voltage. Yet the voltage will be unevenly divided because of the difference between these two IGCTs. Therefore, it is necessary to design a snubber circuit to protect the IGCTs. A series snubber circuit is designed and simulated with PSIM. The experimental results show that the IGCTs are well protected by the proposed snubber circuit.
     The dissertation analyzes the common multiple-cascade structure, the three-level NPC structure and multi-level voltage structure of the main circuits, points out their respective advantages and disadvantages. After thorough analysis and careful comparison, the three-level NPC (neutral point clamped) structure is chosen as the converter topology structure according to the actual situations of this project and the current development of power electronics. Much attention is paid to the analysis and design of the main circuit with the chosen three-level NPC structure. The dissertation also designs the control, protection and monitoring system of the inverter, studies the protection algorithms, completes hardware design and software development. It designs the hardware design and develops the software of the protection for the transformer, the rectifier-inverter circuits, and the motor.
     Heat sinking is critical to the safety and stability of the high voltage variable-frequency drives. A heat sinking system is designed considering the power diodes and the IGCTs as the main heat sources.
     The dissertation also studies problems in the inverter applications in photovoltaic systems. A grid-connected inverter is designed for the photovoltaic system. A model based on current hysteresis control is constructed and simulated with different filters. Simulation results are correct and rational. The model can be used in further researches on grid-connected photovoltaic systems.
     Finally, the dissertation summarizes the main research works and the obtained important conclusions, proposes the future research emphases and directions.
引文
[1]董立国,朱万清,孙秋琦.变频调速器与节约能源、环境保护[N].黑龙江环境通报,2004,(04):28-29.
    [2]尹项根,程汉湘.变频调速展望[J].电力自动化设备,2002,(04):61-66
    [3]钱照明,盛况.大功率半导体器件的发展与展望[J].大功率变流技术,2010,(1):1-9.
    [4]刘伟,李健.现代电力电子器件的现状与发展浅析[J],周口师范学院学报,2007,2(24):46-49.
    [5]张明,陈芳林,李继鲁,蒋谊,陈彦,赵燕峰.国内IGCT器件的新进展[J].大功率变流技术,2008,(6):1-5.
    [6]吴琳,王相森,吴春瑜.大功率集成器件--集成门极换流晶闸管IGCT[J].微处理机,2009,30(4):13-14.
    [7]张琦,田永洙,张晓冬.电力电子器件的发展及其在动车组中的应用[J].铁道车辆,2006,44(11):24-27.
    [8]李洪建,王世强,余世科.IGCT及IGCT变频器[J].半导体技术,2004.5(3):89-92
    [9]吴琳,宋恺.集成门极换流晶闸管的工艺模拟[J],大众科技,2010,4:13-16.
    [10]张婵,童亦斌,金新民.集成门极换流晶闸管门极驱动电路[J],电力电子技术,2007,9:104-105.
    [11]兰志明,李崇坚,绳伟辉,王成胜,朱春毅.集成门极换向晶闸管开关特性[J],电工技术学报,2007,7:93-97.
    [12]楚子林,徐道恒,赵相宾,许希,伍丰林两种IGCT三电平变频产品功率部分的比较[J],电气传动,2008,4(38):8-11.
    [13]吕中宾,周勇.逆变器中杂散电感对IGCT端部电压的影响[J],电力电子技术,2006,5(40):138-140.
    [14]雷云,蒋谊,陈芳林.逆导型IGCT器件结构分析及制造工艺[J],大功率变流技 术,2009,6:11-13.
    [15]胡家喜,宋娇.三电平IGCT变流器换流研究[J],大功率变流技术,2009(5):5-9.
    [16]郭涛.基于IGCT的STATCOM主电路结构研究[D].江苏:江苏大学2007:22-27
    [17]张文龙.基于IGCT的STATCOM保护设计和空间矢量调制策略的研究[D].江苏:江苏大学2007:49-59
    [18]项小龙.基于IGCT的6KV双三电平逆变器的改进型PWM调制有其仿真[J].仪表技术2009,(6):67-71
    [19]李国栋.基于IGCT的6kV高压变频器[D].湖北:华中科技大学:2007:99-107
    [20]李国栋,毛承雄,陆继明,崔艳艳.基于IGCT串联的三电平高压变频器直流环节研究[J].中国电机工程学报,2007,27(1):82-88.
    [21]张平军.基于IGCT串联的高压变频调速系统[J].电机与控制应用2008,35(7):34-38.
    [22]张明,戴小平,李继鲁,蒋谊,陈芳林.1100A/4500V逆导型IGCT组件的研究[J].变流技术与电力牵引.2007:15-20.
    [23]张明,戴小平,李继鲁,蒋谊,陈芳林.KIc400045非对称型IGCT组件的研究[J].变流技术与电力牵引,2007,2:22-26.
    [24]柯国琴,柯勇.在大功率应用时IGBT和IGCT的选择[J].芜湖职业技术学院学报,2009,11(2):42-45.
    [25]Yuxin Li, Alex Q. Huang, Kevin Motto. Series and Parallel Operation of the Emitter Turn-Off (ETO) Thyristor [J]. IEEE Transactions on Industry Applications,2002, 38(3):706-712.
    [26]Bin Zhang, Yunfeng Liu, Xigen Zhou, Josh Hawley, Alex Q. Huang. The High Power and High Frequency Operation of the Emitter Turn-off (ETO) Thyristor[C]. 29th Annual Conference IEEE Industrial Electronics Society,2003:1167-1172
    [27]昊煜东.中国IGCT的发展状况[C].中国电力电子产业发展高峰论坛论文集.2008:64-70.
    [28]王成飞.变频器技术现状及未来发展与需求分析[J].工业技术,2010,(16):120
    [29]李晓迅.高压变频器综述[J].科技信息,2010,(8):85-86.
    [30]刘健.新型三电平高压变频调速关键技术及成套装备研发[D].华中科技大学.2008.
    [31]白华,赵争鸣,胡斯登,易荣,袁立强.高压三电平逆变器中IGCT串联动态均压电路设计[J].变流技术与电力牵引,2007,(3):21-25.
    [32]李田雨,金新民,童亦斌.IGCT测试用高压电源模块[J].电力电子技术,2007,41(4):100-102.
    [33]柯勇,陶以彬,钟国基.大功率IGCT三电平变流器缓冲电路研究[J].煤矿机电,2008:27-29.
    [34]绳伟辉,李崇坚,朱春毅,王成胜,兰志明.大功率IGCT三电平变流器空间矢量PWM调制算法[J].电工技术学报,2007,22(8):1-6.
    [35]兰志明,李崇坚,朱春毅,王成胜,绳伟辉.大功率IGCT高压变流器的研究[J].浙江大学学报,2007,41(10):1674-1678.
    [36]Wanmin Fei, Yanli Zhang. A Novel IGCT-based Half-controlled Bridge Type Fault Current Limiter[C].CES/IEEE 5th International Power Electronics and Motion Control Conference,2006:1-5.
    [37]Cailin Wang, Ruliang Zhang, YongGao, Tao.An. Analysis of Current Commutation Mechanism and Design Consideration of IGCT[C].IEEE 6th International Power Electronics and Motion Control Conference-ECCE Asia,2009:1242-1245.
    [38]S. Barto-s, V. Jehli-cka, J.-Skramlk, and V. Valouch. EMI in Induction Motor Drive Fed from IGCT Voltage Source Inverter[C].Progress In Electromagnetism Research Symposium,2007:117-121.
    [39]张婵童,亦斌,金新民.GCT门极驱动特性研究[C].第一届中国高校电力电子与电力传动学术年会论文集,2006:14-17.
    [40]Wang Chengsheng, Li Chongjian, Li Yaohua, ZhuChunyil, Lan Zhiming. Investigation on the Switching Property of IGCT Used in Large Power Voltage Source Inverter[C].IEEE 6th International Power Electronics and Motion Control Conference-ECCE Asia,2009:291-294.
    [41]刘文华,宋强,张东江,陈天锦,滕乐天,郑东润.350MVA静止同步补偿器链节的等 价试验[J].中国电机工程学报,2006,26(12):73-78.
    [42]Shutian Zhang,Qiongxuan Ge,Yaohua Li. Three-level NPC Inverter with IGCT for High PowerAC Drives[C].11th International Conference on Electrical Machines and Systems,2008:1562-1566
    [43]石新春,周国梁,王娟,付超,王毅.VSC—HVDC大功率拓扑结构研究[J].高电压技术,2008,34(8):1622-1627.
    [44]王连符,肖峻.一种大容量变流器[J],高电压技术,2007,5(33):180-183.
    [45]张天凤,李鹏,何增科,张曦.一种新型故障电流限制器的原理研究[J],电力自动化设备,2008,8(28):56-59.
    [46]白华,赵争鸣,张永昌,张海涛,袁立强.最小脉宽特性对高压三电平变频器的影响[J],电工技术学报,2006,12(21)60-65.
    [47]林雪岩.基于DSP的矿井提升机变频调速系统研究[D].辽宁:辽宁工程技术大学,2006:29-59
    [48]师龙生.高压变颇器用的功率器件[C].2006首届中国变频技术应用暨企业家论坛,陕西西安,2006:136-138
    [49]黄炜,何人望,周瑜.高压变频器散热系统的研究与设计[J].华东交通大学学报,2006,23(5):105-108
    [50]邵卫东.多电平高压变频器的开发和仿真研究[D]苏州大学2008:18-53
    [51]钱照明,张帆.中大功率变流技术的发展[J].变流技术与电力牵引,2007:1-6.
    [52]张可程.中压大功率防爆变频器在井下大型运输防爆变频驱动系统中的应用[J].电气防爆,2009:21-23.
    [53]朱希荣,姜华,周渊深.中压大功率同步电动机三电平变频调速系统分析[J].山东冶金,2007,3(29):33-35.
    [54]朱鸿波,曹鹏.ACS 1000变频器部件的工作原理分析及[J].石油化工应用,2010,9(29):96-98.
    [55]白华,赵争鸣,张永昌,张海涛,袁立强.最小脉宽特性对高压三电平变频器的影响[J].电工技术学报,2006,21(12):60-65.
    [56]毛承雄,李时华,陆继明,李国栋.中性点箝位型三电平高压变频器实验分析[J].电 力系统及其自动化学报,2008,20(2):78-82.
    [57]P.Boonchiam, N.Mithulananthan. Diode-clamped Multilevel Voltage Source Converter Based on Medium Voltage DVR [J].International Journal of Electrical and Electronics Engineering,2009,62-67.
    [58]Brian A. Welchko, Member, IEEE, Mauricio Beltrao de Rossiter Correa, Member, IEEE,Thomas. A Three-Level MOSFET Inverter for Low-Power Drives[J].IEEE Transactions on Industrial Electronics,2004:669-674
    [59]Qing Xiong, Zhe Zhang, Jian Liu, Xianggen Yin. Failure Simulation and Protection Strategy of Mid-Voltage Three-Level Frequency Converter[C].11th International Conference on Electrical Machines and Systems,2008:1562-1566.
    [60]Ivo Dolezel, Jiri Skramlik, Viktor Valouch. High-Frequency Parasitic Currents in Inverter-Fed Induction Motor Drives[C].Proceeding of International Conference on Electrical Machines and Systems,2007:403-407.
    [61]Li Ming-Yong, Yang Tao. Medium Voltage Drive Based on the H Bridge Inverter and Its Common-Mode Voltage[C].11th International Conference on Electrical Machines and Systems,2008:1677-1682.
    [62]Dudi A. Rendusara, Member, IEEE, E. Cengelci, Member, IEEE, Prasad N. Enjeti, Fellow, IEEE. Analysis of Common Mode Voltage-“Neutral Shift" in Medium Voltage PWM Adjustable Speed Drive (MV-ASD) Systems[C].IEEE Transactions on Power Electronics,2000:1124-1133.
    [63]Bernet, Steffen. Recent Developments of High Power Converters for Industry and Traction Applications [J].IEEE Transactions on Power Electronics,2000, 15(6):1102-1117.
    [64]马小亮.大功率交交变频调速及矢量控制技术[M].北京机械工业出版社,2004:100-122.
    [65]洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真[M].北京机械工业出版社,2006:151-155.
    [66]程汉湘,尹项根,王志华等.变频调速中的共模电压分析[J].电气传动,2002,(6):3-9.
    [67]陈锐,尹项根,王志华.级联型高压变频器死区效应分析[J].电力自动化设 备,2003,23(8):33-37.
    [68]王志华,尹项根,程汉湘.级联型高级变频调速系统共模电压分析[J],电力系统自动化,2003,27(15):58-62.
    [69]刘健,尹项根,张哲等.FPGA实现高压大功率三电平逆变器的高性能SPWM控制,中国高校电力系统及其自动化专业第二十二届学术年会论文集[C].2006:1-4.
    [70]彭和平,张哲,刘健等.高压变频调速装置监测系统的设计与实现[J],水电能源科学,2007,25(3):107-110.
    [71]李崇坚.大功率交流电机变频调速技术的研究[J].中国工程科学,2009,11(5):31-36
    [72]鲁宗相,刘文华,王仲鸿.基于k/n(G)模型的STATCOM装置可靠性分析[J].中国电机工程学报,2007,27(13):13-16.
    [73]王传平.工矿电力机车斩波调速改进[J].煤炭技术,2010,(5):59-60.
    [74]钱诗宝,杨志.基于IGCT器件的两电平高压变频器研究与应用[J].华电技术,2008,30(1):34-35
    [75]鲍建室.电流型多电平变流器拓扑及其控制策略的研究[D].浙江:浙江大学电气工程学院2007:25-51.
    [76]白志红.电流型多电平变流器的一些相关理论以及应用技术研究[D].浙江:浙江大学电气工程学院2008:2-52.
    [77]岑岭山,李立敏,房子栋.大容量引风机变频在600MW机组的应用[C].全国火电600MW机组技术协作会第十三届年会论文集,山西,2009:708-715.
    [78]李崇坚.大功率电力电子变流技术在钢铁工业中的应用[J].变流技术与电力牵引,2006,(2):35-38.
    [79]乔鸣忠,张晓锋,杜承东,宋庆国.基于IGCT三电平多相同步电动机调速系统的电枢反应[J].电工技术学报,2008,23(8):25-28.
    [80]虞海贤.基于IGCT电流源型高压变频器的研究[D].安徽:合肥工业大学,2010:9-30.
    [81]张志强.基于IGCT的新型智能固态断路器仿真与设计[D].山西:太原理工大 学,2008:7-21.
    [82]汪水明.电网不平衡条件下三相PWM整流器控制策略研究[D].天津:天津理工大学2008:36-43.
    [83]费万民,张艳莉,吕征宇.基于IGCT的新型固态桥式短路故障限流器[J].电力系统及其自动化,2006,30(7):61-64.
    [84]费万民,张艳莉,吕征宇.基于IGCT的三相接地系统故障限流器及其控制策略[J].电网技术,2006,30(11):83-86.
    [85]张王西.基于IGCT的三电平高压变频器在发电厂凝结水泵的应用[J].陕西电力,2008,36(4):47-50.
    [86]张天凤.基于IGCT的故障电流限制器的机理研究[D].河北:华北电力大学(保定),2006:5-12.
    [87]付强,钟玲,吴春瑜,王中文,孙传邦,王辉.非对称型集成门极换流晶闸管(IGCT)在软件平台上器件模拟[J].辽宁大学学报.2006,33(2):177-179.
    [88]赵争鸣,张海涛,袁立强,白华,杨志.基于IGCT的高压三电平变频器失效机理及保护策略[J].电工技术学报,2006,21(5):2-6.
    [89]孙晓瑛,赵争鸣,袁立强.基于IGCT的高压大容量三电平变频调速系统的研制应用[J].电气技术,2008,(5):13-16.
    [90]王成胜,李崇坚,李耀华,绳伟辉,兰志明.7.5MVA大功率三电平IGCT交一直一交变流器[J].电工技术学报,2007,22(8):24-27
    [91]兰志明.基于IGCT的大功率三电平NPC变流器的研究[D].冶金自动化研究设计院.2007:28-40
    [92]董俞辉,李崇坚,李英杰.基于IGCT的大功率变流器损耗及温升计算[J].冶金自动化,2010,530-534.
    [93]俞斌,张禄,童亦斌,游小杰.4.5 kV/4.0 kA IGCT功率相单元测试平台设计[J].电气应用,2008,27(19):65-68.
    [94]Gordon. M, Hill. D. J. Global Transient Stability and Voltage Regulation for Multimachine Power Systems[C].2008 IEEE Power & Energy Society General Meeting,2008:1-8.
    [95]崔志良,赵争鸣,袁立强,易荣.基于集成门极换流晶闸管的中压三电平逆变器的驱动脉冲优化设计及复杂可编程逻辑器件实现[J].中国电机学报2006,17(26):51-56.
    [96]朱培祥.集成门极换流晶闸管IGCT在矿山中的应用[J],山西焦煤科技,2007,10,16-17.
    [97]郑舒予,方东哲.挤出机变频器改造解决方案[J],工业技术,2009,16:123-124.
    [98]贺春,赵刚,李涛.交直/交变频轧机高次谐波的治理[J],电力电子术,2011,4:40-42.
    [99]邓造明.交直交主传动装置谐波分析及治理[J].重庆大学学报,2008,8:869-873.
    [100]胥良,王金波,季厌浮,赵杰,郭松林.矿井交流提升机调速控制系统的研究[J].煤矿开采,2011,2(16):85-87.
    [101]祝龙记,过希文.矿井提升机三电平IGCT变频调速驱动系统[J],煤炭科学技术,2008,5(36):63-66.
    [102]徐凯.浅谈高压变频器在火电厂的应用[J],科学之友,2011,3:9-10.
    [103]周敏其,罗志敏.三电平高压变频器在唐山钢铁公司转炉风机上的应用[J],2006年工业企业节电技术研讨会论文集:54-56.
    [104]吕玉祥,张志强,袁阔.新型智能固态断路器研制[J],电力自动化设备,2008,9(28):112-114.
    [105]王伟.轻型直流输电中基于FPGA的多电平换流器控制系统研究[D].湖南:湖南大学,2010:5-17.
    [106]张明.IGCT器件制造中的阴极梳条成型技术[J].变流技术与电力牵引,2006(6):15-18.
    [107]薛旭恒,张禄,谢路耀.IGCT高压测试台的研制[J].大功率变流技术,2008:5-8.
    [108]何清亚,刘文辉.IGCT在大功率电压源逆变器中的应用[J].四川电力技术,2006,29:43-45.
    [109]谢军,孙忠献,温晓玲.IGCT在矿井提升机斩波串调系统中的应用[J].机电工程,2007,24(5):53-55.
    [110]兰云,张立.IGCT变频器在矿井提升机调速系统中的应用[J].电气传动,2008,38(11):62-64.
    [111]吴凤英,ABB中压传动系统在钢管轧制中的应用[J].电气传动2008,38(12):66-69.
    [112]Yu Liu. Advanced Modulation, Control and Application for Multilevel Inverters [D].North Carolina State University,2009:106-161.
    [113]刘健,尹项根,张哲,熊卿.串联中性点箝位三电平逆变电路的保护研究[C].中国继电保护及自动化行业年会论文集,2007:231-237.
    [114]千金,刘文华,范子超,宋强.IGCT功能仿真模型及其应用[J].电力电子技术,2006,40(6):126-130.
    [115]张婵,童亦斌,金新民.IGCT及其门极驱动电路研究[J].变流技术与电力牵引,2007:27-29.
    [116]王福刚,丁继和.IGCT交一直一交变频调速技术在本钢1700热轧机组的应用[J].辽宁科技学院学报,2008,10(1):16-17.
    [117]童亦斌,粱晖,唐芬,周飞.IGCT器件在风力发电并网变流器中的应用[J].电力电子技术,2008,42(4):83-85.
    [118]谢军,孙忠献,温晓玲.IGCT驱动及吸收电路的分析研究[J].煤矿机械,2007,28(4):190-192.
    [119]兰云,张立.应用IGCT模块的矿井提升机变频调速系统[J].煤矿机电,2008:67-69.
    [120]薛旭恒,张禄,谢路耀.IGCT高压测试台的研制[J].大功率变流技术,2009:5-8.
    [121]刘文华,宋强,滕乐天,郑东润,张东江.基于集成门极换向晶闸管与链式逆变器的±50 Mvar静止同步补偿器[J].中国电机工程学报,2008,28(15):56-60.
    [122]冉旺,林飞,郑琼林.基于零序电压注入的三电平变流器窄脉冲补偿方法研究[J].电力电子与电力传动,2008,957-966.
    [123]兰志明,李崇坚,朱春毅.大功率三电平IGCT交-直-交变流器的研究[J].冶金自动化,2008,32(5):50-53
    [124]P. Boonchiam and N. Mithulananthan. Diode-clamped Multilevel Voltage Source Converter Based on Medium Voltage DVR [J]. International Journal of Electrical and Electronics Engineering,2009:62-67.
    [125]Brian A. Welchko, Mauricio B. de R. Correa, Thomas A. Lipo. A Three-Level MOSFET Inverter for Low Power Drives. IEEE Transactions on Power Electronics, 2004,51(3):669-674.
    [126]YI Rong, ZHAO Zhengming, ZHONG Yulin. Modeling of Busbars in High Power Neutral Point Clamped Three-Level Inverters [J]. Tsinghua Scienceand Technology, 2008, Volume 13,91-97.
    [127]黄炜,何人望,王大刚.高压大功率IGCT器件在PS1M中的仿真研究[J].电气应用,2006,26(5):69-72.
    [128]项小娟,毛承雄,陆继明,李国栋.功率器件集成门极换流晶闸管关断特性研究[J].中国电机工程学报,2007(7):103-107.
    [129]童亦斌,张婵.反并联二极管对IGCT关断过程的影响[J].电工技术学报,2007,22(11):125-129.
    [130]李时华,毛承雄,陆继明,李国栋.基于RC阻容吸收的串联IGCT动态均压研究[J].高电压技术,2007,33(9):163-166.
    [131]何人望,黄炜.高压IGCT缓冲电路的仿真与实验研究[J].电力电子技术,2007,41(7):83-85
    [132]范子超,刘文华,宋强,李建国.适于硬开关变流器的IGCT/二极管综合模型[J],电工技术学报,2008,3(23):41-45.
    [133]易荣,赵争鸣.受杂散电感影响的大容量变换器中1GCT关断特性研究[J],中国电机学报,2007,31(27):115-120.
    [134]于克训,任章鳌,娄振袖,潘垣.新型高压大功率器件IGCT的建模与仿真[J],湖北工业大学学报,2010,1(25):89-93.
    [135]段大鹏,江秀臣,孙才新.IGCT的原理性电学模型与动态特性仿真[J].高电压技术,2008,34(1):196-201.
    [136]吴丽萍,基于DSP的光伏并网逆变系统的研究[D].河北工业大学.2007.
    [137]张键,三电平光伏并网逆变器的控制策略研究[D].江苏大学.2010.
    [138]赵争鸣,刘建政等.太阳能光伏发电及其应用[M].北京:科学出版社,2005.
    [139]杨贵恒,强生泽,张颖超,等.太阳能光伏发电系统及其应[M].北京:化学工业出版 社,2011.
    [140]B. K. Choudhury. Mapping the Market Potential for Solar Photovoltaic Systems[J].Asian J. Energy Environ., Vol.5, Issue 1, (2004):27-35
    [141]W. Kramer, S. Chakraborty, B. Kroposki, and H. Thomas.Advanced Power Electronic Interfaces for Distributed Energy Systems. Part 1:Systems and Topologies. Technical Report NREL/TP-581-42672. March 2008
    [142]王长贵.中国光伏产业发展现状与挑战[J],新材料产业,2009,09:16-20.
    [143]吴财福,张健轩,陈裕恺.太阳能光伏并网发电及照明系统[M].北京:科学出版社,2009.
    [144]陈雷.光伏并网发电系统的实现[D].华北电力大学.2008.
    [145]T. Kerekes, R. Teodorescu, U. Borup. Transformerless Photovoltaic Inverters Connected to the Grid[J]. IEEE.2007:1733-1737.
    [146]司俊丽.第三代太阳能电池的效率计算[D].合肥工业大学.2007.
    [147]赵希.基于ARM的独立型光伏系统研究[D].东南大学.2009.
    [148]芮崑.电力市场参与博弈、协调及公共管制研究[D].上海财经大学.2009
    [149]S. Chakraborty, B. Kroposki, and W. Kramer. Advanced Power ElectronicInterfaces for Distributed Energy Systems. Part 2:Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter. Technical Report NREL/TP-550-44313. November 2008
    [150]周志敏,纪爱华.太阳能光伏发电系统设计与应用实例[M].北京:电子工业出版社.2010
    [151]姚叙红.高效太阳能电池关键技术研究[D]中北大学.2009.
    [152]赵颖.独立运行光伏发电系统的研究[D].大连理工大学.2009.
    [153]Liuchen Chang, Zhumin Liu, Yaosuo Xue and Zhenhong Guo. A NOVEL BUCK-BOOST INVERTER FOR PHOTOVOLTAIC SYSTEMS [J]. Canadian Solar Buildings Conference Montreal, August 20-24,2004.
    [154]刘山凤.风光互补新能源成新趋势[J].电气技术,2008,10:20-24.
    [155]焦阳,宋强,刘文华.光伏电池实用仿真模型及光伏发电系统仿真[J].电网技术,2010,11:198-202.
    [156]Enslin J H R. Maxmum power point tracking:a cost saving necessity in solar energy systems, Renewable Energy,1992,2:543-549.
    [157]任海兵.户用光伏并网系统的研究[D].江苏大学.2006.
    [158]Fritz Schimpf, Lars E. Norum. Grid connected Converters for Photovoltaic, State of the Art, Ideas for Improvement of Transformerless Inverters[J]. NORPIE/2008, Nordic Workshop on Power and Industrial Electronics, June 9-11,2008
    [159]吴理博,赵争鸣,刘建政,等.单级式光伏并网逆变系统中的最大功率点跟踪算法稳定性研究[J].中国电机工程学报,2006,06:74-77.
    [160]J. M. A. Myrzik, M. Calais. String and Module Integrated Inverters for Single-Phase Grid Connected Photovoltaic Systems-A Review[J]. IEEE. Bologna Power Tech Conference, June 23th-26th, Bologna, Italy2003.
    [161]张利.光伏电池特性研究[D].华北电力大学.2008.
    [162]Underwriters Laboratories, UL 1741, Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources
    [163]赵春江.220KW太阳能光伏发电系统设计实践[J].节能技术,2007,12,P13-17.
    [164]VDE, DIN V VDE 0126-1-1, Eigenerzeugungsanlagen am Niederspannungsnetz
    [165]李炜,朱新坚.光伏系统最大功率点跟踪控制仿真模型[J].计算机仿真,2006,06:239-243.
    [166]IEC 62109, Safety of Power Conversion Equipment for Use in Photovoltaic Power Systems
    [167]V. Salas*, E. Olias Overview of the state of technique for PV inverters used in low voltage grid-connected PV systems:Inverters below 10 kW [J].Renewable and Sustainable Energy Reviews 13 (2009):1541-1550
    [168]范佳佳.无变压器光伏并网逆变器研究[D].华东交通大学.2011
    [169]H. S. Bae, S. J. Lee, K. S. Choi and Bo H. Cho S. S. Jang. Current Control Design for a Grid Connected Photovoltaic/Fuel Cell DC-AC Inverter[J]. IEEE 2009
    [170]陈哲照.光伏发电控制技术仿真研究[D].西安理工大学.2008.
    [171]Mukund R. Patel, Ph.D., P.E. U.S.Wind and Solar Power Systems[M]. Merchant Marine Academy Kings Point, New York Formerly Principal Engineer, General Electric Company Fellow Engineer, Westinghouse Reasearch Center.1999.
    [172]张洪亮,并网型单相光伏逆变器的研究[D].山东大学.2007
    [173]Balaji Siva Prasad, Sachin Jain, and Vivek Agarwal, Senior Member, Universal Single-Stage Grid-Connected Inverter[J].IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL.23, NO.1, MARCH 2008
    [174]贺明智,冯轲.译光伏逆变器-市场、技术和发展趋势.[J].电力电子.2008.3.P6-12.
    [175]Eric Zhang. Inverter Design Shines in Photovoltaic Systems [J]. Power Electronics Technology July 2008.
    [176]王岩.光伏发电系统MPPT控制方法的研究[D].华北电力大学.2007.
    [177]戴训江,晁勤.光伏并网逆变器电流滞环跟踪控制[J].电源技术,2009,7:596-600.
    [178]徐鹏威,康勇,段善旭,等.一种光伏系统变步长MPPT策略研究[J].通信电源技术.2007.3:1-5.
    [179]Balakrishna S, Thansoe, Nabil A, Rajamohan G, Kenneth A.S., Ling C. J. The Study and Evaluation of Maximum Power Point Tracking Systems[J]. ORGANIZED BY UNIVERSITI TENAGA NASIONAL, BANGI, SELANGOR, MALAYSIA; 28-30 AUGUST 2006
    [180]周廷.PWM光伏逆变电源DC-DC电路及最大功率点跟踪控制技术的研究[D].山东大学.2006.5
    [181]Bode G H, Holmes G D Implementation of Three Level Hysteresis Current Control for a Single Phase Voltage Source Inverter[J]. IEEE,2000:33-38.
    [182]B. K. Bose, Modern Power Electronics and AC Drivers[M], Rentice-Hall, New Jersey 2002
    [183]梁雪峰.5kw光伏并网逆变器的研究[D].北京交通大学.2008.
    [184]A. Engler, H. Muller, N. Henze, T. Bulo, A. Notholt Vergara, B. Sahan, A. Zimpfer. DESIGN OF A 200W 3-PHASE MODULE INTEGRATED PV INVERTER AS PART OF THE EUROPEAN PROJECT PV-MIPS[J].IEEE.2008.4
    [185]贺琳..基于DSP的光伏发电系统并网技术的仿真研究[D].大连交通大学.2009
    [186]Prof. Frede Blaabjerg. Power Electronics in Renewable Energy Systems[M].2006.4
    [187][50熊远生.太阳能光伏发电系统的控制问题研究[D].浙江工业大学.2009.
    [188]S.R.Wenham M.A. Green M.E. Watt R. Corkish. APPLIED PHOTOVOLTAICS[M]. Earthscan in the UK and USA.2007.
    [189]Viorel Badescu. Dynamic model of a Complex System Including PV Cells, Electric Battery, Electrical Motor and Water Pump. Energy,2003,28(12):1165-1181.
    [190]Lock A S. Improved Hysteresis Current Of a single Phase, Three Level, Double PFC Converter[J]. IEEE,2007:1326-1330.
    [191]Tamas Kerekes, Remus Teodorescu, Pedro Rodriguez, Gerardo Vazquez, Emiliano Aldabas. A new high-efficiency single-phase transformerless PV inverter topology[J].IEEE.2009.11.4
    [192]S.J. Lee, H.S. Bae, B.H. Cho. Modeling and Control of the Single-Phase Photovoltaic Grid-Connected Cascaded H-Bridge Multilevel Inverter[J].IEEE.2009.
    [193]陈昌喆.光伏并网发电系统仿真研究与设计[D].武汉理工大学.2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700